Biofiltration of cyanobacterial metabolites MIB and geosmin as a viable water treatment option

Daniel Hoefel, Lionel Ho, Bridget McDowall, Paul Monis, Gayle Newcombe and Christopher Saint

National Cyanobacterial Workshop, Parramatta, 12th to 13th August, 2009 Biological filtration in SA WTPs

Reservoir Sedimentation

Coagulation Flocculation

To sludge treatment and disposal

Increased Rapid anthracite-sand filters biological activity? Filtered water storage Backwash supply sump Chlorine •Ammonia •Fluoride, caustic Biological filtration at Morgan WTP

• Filter media in place since 1986 • December 2004

Decrease in biological activity? Rapid anthracite-sand filters

Filtered water storage Chlorine Backwash supply sump • Ammonia • Fluoride Geosmin Breakthrough • Caustic • Chlorine Geosmin breakthrough

60 -1 55 Geosmin raw 50 Geosmin product Chlorine in backwash 45 40 35 30 25 20 15 10

Geosmin concentration ng L 5 0

22/11/200022/04/200122/09/200122/02/200222/07/200222/12/200222/05/200322/10/200322/03/200422/08/200422/01/200522/06/200522/11/200522/04/200622/09/200622/02/2007

McDowall et al. (2007), Water 34(7), pp. 48-54

Laboratory scale Influent MIB 100 Effluent MIB Influent GSM 90 column experiments Effluent GSM

) 80 (Morgan WTP sand filter medium) -1

70 no no spiking 60 no spiking 50 40 Influent MIB 100 Effluent MIB 30

90 Influent GSM 20 )

-1 Effluent GSM 80 L (ng compound] [T&O 10 70 0 0 10 20 30 40 50 60 70 80 90 100110 120130140

60 no spiking Time (d) 50 40 30

[T&O compound] (ng L (ng compound] [T&O 20 10 0 0 10 20 30 40 50 60 70 80 90 100 Time (d) Ho et al. (2007), Chemosphere 66, pp. 2210-2218

BioreactorA (105cells/mL, 200ng/L) 180 BioreactorB (105cells/mL, 50ng/L) 160 BioreactorC (103cells/mL, 200ng/L) Batch experiments BioreactorD (sterile control) 140 (Morgan WTP settled water)

120

) -1 100

80

60

L (ng [GSM] BioreactorA (105cells/mL, 200ng/L) 40 240 5 BioreactorB (10 cells/mL, 50ng/L) 20 220 BioreactorC (103cells/mL, 200ng/L) 200 BioreactorD (sterile control) 0 0 5 10 15 20 25 30 35 40 45 50 180

160 Time (d) )

-1 140 120 100 80 [MIB] (ng L (ng [MIB] 60 40 20 0 0 5 10 15 20 25 30 35 40 45 50 Time (d) Ho et al. (2007), Chemosphere 66, pp. 2210-2218 58 chilensis (AF367204) Pseudomonas mucidolens (D84017) 3036 Sphingopyxis alaskensis (AY337601) 27 31 SphingomonasPseudomonas taejonensis synxantha (AF131297) (D84025) 27 Isolation of geosmin 47 PseudomonasSphingopyxis libanensis macrogoltabida (AF057645) (D84530) 29 PseudomonasSphingopyxis gessardii composta (AF074384) (AY563034) 94 83 degrading 64 PseudomonasSphingopyxis fluorescenswitflariensis (AF228367)(AJ416410) 47 Geo24Pseudomonas (DQ137852) azotoformans (D84009) (consortium of three bacteria) 75 Novosphingobium pentaromativorans (AF502400) 30 Pseudomonas cedrina (AF064461) 40 Sphingopyxis flavimaris (AY554010) 73 100 Pseudomonas fulgida (AJ492830) 67 Sphingomonas baekryungensis (AY608604) 63 Pseudomonas brenneri (AF268968) 24 Novosphingobium subarcticum (AY151394) Pseudomonas orientalis (AF064457) Novosphingobium tardaugens (AB070237) Pseudomonas poae (AJ492829) 16S rRNA gene 80Novosphingobium lentum (AJ303009) 90 43 Pseudomonas trivialis (AJ492831) Neighbour-joining phylogenetic 61 Novosphingobium hassiacum (AJ416411) 49 Pseudomonas costantinii (AF374472) analysis 99 Novosphingobium subterraneum (AB025014) 69 40 61NovosphingobiumPseudomonas aromaticivorans marginalis (AB025012) (AB021401) 20 55 NovosphingobiumPseudomonas taihuense rhodesiae (AY500142) (AF064459)

65 22 NovosphingobiumPseudomonas stygiae extremorientalis (AB025013) (AF405328) 96 Geo25 (DQ137853) 53 33 Geo33 (DQ137854) 43 93SphingomonasPseudomonas ursincola veronii (AF064460)(AB024289) Pseudomonas Sphingomonasmigulae (AF074383) suberifaciens (D13737) Sphingomonas cloacae (AY151393) Pseudomonas97 corrugata (AF348508) 12 54 Sphingomonas chungbukensis (AF159257) 99 Pseudomonas tolaasii (AF348507) Sphingomonas wittichii (AB021492) Pseudomonas mediterranea (AF386081) 12 Sphingopyxis terrae (D84531) 53 Pseudomonas congelans (AJ492828) 10 99 Pseudomonas mandeliiOther (AF058286) (24 species) 94 PseudomonasCaulobacter alcaligenes fusiformis (AY880302) (AJ007803)

0.005 0.02 Hoefel et al. (2006), Lett. Appl. Microbiol. 43 (4), pp. 417-423 Isolation of geosmin degrading bacteria (individual bacterium)

16S rRNA gene Neighbour-joining phylogenetic analysis

Hoefel et al. (2009), Wat. Res. 43 (11), pp. 2927-2935 Geosmin degradation by individual bacterium Sphingopyxis sp. Geo48

Effect of [Geosmin] 1300 0 0.5 100ng/l (k=0.0104h-1, R2=0.93) 1200 0.0 500ng/l (k=0.0241h-1, R2=0.99) -1 2

1100 -0.5 1000ng/l (k=0.02914h , R =0.97) )

) -1.0 o

1000 -1.5 ng/l ( 900 -2.0 -2.5 800 -3.0 700 -3.5 -4.0

600 -4.5 ln([Geosmin]/[Geosmin] 500 -5.0 -5.5

400 -20 0 20 40 60 80 100 120 140 160 180 300 Time (h) 200

Geosmin concentration 100 0 0 20 40 60 80 100 120 140 160 180 Hoefel et al. (2009), Wat. Res. 43 (11), pp. 2927-2935 Time (h) Enhancing biofiltration of geosmin by seeding sand filters with geosmin degrading bacteria

Influent Effluent sample port sample port Enhancing biofiltration of geosmin by seeding sand filters with geosmin degrading bacteria

Column inoculated 3000 ATP 100 between days 3 and 7 Geosmin 90

Percent Geosmin Removed (%) Removed Geosmin Percent 2500 80

70 2000 60

filter volume 1500 50 3

40 1000 30

20 500

nmol ATP / cm 10

0 0 0 3 8 10 14 17

McDowall et al. (2009), Wat. Res. 43, pp. 433-440 Time (d) Conclusions

 Chlorine in backwash water of Morgan WTP – Full scale evidence of biofiltration for the removal of secondary algal metabolites (T&O compounds)

 Laboratory scale column and batch experiments – Validated the full scale removals at Morgan WTP – Investigate transient periods for MIB and geosmin – Investigated the effect of T&O concentration, cell numbers etc

 Isolation and phylogenetic analysis of geosmin degrading bacteria – Better understanding of the organisms responsible for T&O removal

 Enhancing the biofiltration of T&O compounds by seeding sand filter columns Future work

 Isolation of bacteria involved in the degradation of MIB

 Investigation into the genes involved in the degradation of geosmin and MIB – Development of molecular tools for screening WTP sand filters

 Additional laboratory scale investigations into enhancing biofiltration of geosmin and MIB by seeding degrading organisms – Pilot scale Acknowledgements