Quarks and Quirks Among Friends
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A YEAR of LIVING DANGEROUSLY a Seasonal Cycle by Brent
A YEAR OF LIVING DANGEROUSLY a seasonal cycle by Brent Englar 2124 Heritage Drive Baltimore, MD 21209 (443) 414-3202 [email protected] www.brentenglar.com NOTES FROM THE PLAYWRIGHT The four short plays that make up this cycle contain twelve roles (three per play). I strongly suggest casting six performers and doubling as follows: “Opening “Fireworks” “The Critic” “Plunge” Day, 2050” Middle-aged Baby Bill David Man 1 Middle-aged Johnson Turner Man 2 Middle-aged Sharon Waitress Woman Younger Man ’Remy Max Younger Maygin Jo Woman 1 Younger Jenifer Wendy Woman 2 The set may be as simple as chairs and tables, rearranged or removed as necessary for each play. During scene changes, please play seasonally appropriate music. OPENING DAY, 2050: O’S AT NATS a 10-minute play by Brent Englar CHARACTERS “BABY BILL” MURKOVSKI, 45, self-described Number One Mid-Atlantic Sports Fan SHARON, 45, his wife JOHNSON, 35, local reporter TIME Opening day of the 2050 Major League Baseball season PLACE Nationals Park in Washington, D.C. “Opening Day, 2050: O’s at Nats” — 1 (Lights up on a mostly empty section of the upper outfield gallery. In fact, the only people present are BABY BILL and SHARON, who sit watching the game, and JOHNSON, who points a recording device at BABY BILL. BABY BILL is decked out in full fan regalia: a Nationals cap and an Orioles jersey, or an Orioles cap and a Nationals jersey, or perhaps he alternates between innings; the grass-stained trousers to a beer league softball uniform; a bright orange shoe paired with a black sock; a bright red shoe paired with a blue sock; and a large baseball glove. -
Satchel Paige
Comprehension Skill Lessons Additional Objective: Understand author’s purpose Author’s Purpose Intervention/Remediation Author’s Purpose Materials Student Book pp. 150–151 Explain Write the following on the board and Explain Tell students that the author’s purpose read it aloud: Skiing is fun, but snowboarding is the reason he or she wrote a selection. To is the best winter sport. It may cost more than find the author’s purpose, make inferences some sports, but it’s worth it. You get speed and and analyze the text. An author might write to excitement. You can snowboard even if you can’t ski! persuade, to entertain, or to inform the reader. Go snowboarding. You won’t regret it! Discuss the passage and ask questions, such as Do you learn Model Read aloud “Women Pick up the Ball” on how to snowboard in this passage? Is this a story Student Book pages 150–151. Say, On page 150, about snowboarding? Then have students identify I began to think about why the author wrote this the author’s purpose for writing the passage. (to passage. At first, I thought it was a story. As I kept persuade the reader to try snowboarding) reading, I began finding information. I am getting information about how the girls’ league started. Practice Read this text aloud to students and have them listen for the purpose: Where I used Guided Practice Have students list three to live, the train ran by my house twice a day. At things they learned from the selection on pages five in the morning and five at night, a horrid blast 150–151. -
Unification of Nature's Fundamental Forces
Unification of Nature’s Geoffrey B. West Fredrick M. Cooper Fundamental Forces Emil Mottola a continuing search Michael P. Mattis it was explicitly recognized at the time that basic research had an im- portant and seminal role to play even in the highly programmatic en- vironment of the Manhattan Project. Not surprisingly this mode of opera- tion evolved into the remarkable and unique admixture of pure, applied, programmatic, and technological re- search that is the hallmark of the present Laboratory structure. No- where in the world today can one find under one roof such diversity of talent dealing with such a broad range of scientific and technological challenges—from questions con- cerning the evolution of the universe and the nature of elementary parti- cles to the structure of new materi- als, the design and control of weapons, the mysteries of the gene, and the nature of AIDS! Many of the original scientists would have, in today’s parlance, identified themselves as nuclear or particle physicists. They explored the most basic laws of physics and continued the search for and under- standing of the “fundamental build- ing blocks of nature’’ and the princi- t is a well-known, and much- grappled with deep questions con- ples that govern their interactions. overworked, adage that the group cerning the consequences of quan- It is therefore fitting that this area of Iof scientists brought to Los tum mechanics, the structure of the science has remained a highly visi- Alamos to work on the Manhattan atom and its nucleus, and the devel- ble and active component of the Project constituted the greatest as- opment of quantum electrodynamics basic research activity at Los Alam- semblage of scientific talent ever (QED, the relativistic quantum field os. -
People and Things
People and things An irresistible photograph: at a StAC Christmas party. Laboratory Director Pief Panofsky was presented with a CERN T-shirt, which he promptly put on. With him in the picture are (left to right) Roger Gear hart playing a seasonal master of ceremonies role, J. J. Murray and Ed Seppi. On people Elected vice-president of the Amer ican Physical Society for this year is Robert E. Marshak of Virginia Polytechnic Institute and State Uni versity. He succeeds Maurice Goldhaberr who becomes president elect. The new APS president is Arthur Schawlow of Stanford. In the same elections, Columbia theorist Malvin Ruder man was elected to serve for four years as councillor-at-large. Gisbert zu Pulitz, Scientific Director of the Darmstadt Heavy Ion Linear Accelerator Laboratory and Profes sor of Physics at the University of Heidelberg, has been elected as the new Chairman of the Association of German Research Centres (Ar- beitsgemeinschaft der Grossfor- schungseinrichtungen in der Bun- desrepublik Deutschland), succeed ing Herwig Schopper. The Associa the American Association for the tion includes the Julich and Karls Advancement of Science. ruhe nuclear research centres, LEP optimization DESY, and the Max Planck Institute for Plasma Physics as well as other The detail of the LEP electron-posi centres in the technical and biome tron storage ring project continues dical fields. to be studied so as to optimize the Moves at Brookhaven machine parameters from the point of view of performance and of cost. Nick Samios, former chairman of This optimization stays within the Brookhaven's Physics Department, description of Phase I of LEP which becomes the Laboratory's Deputy was agreed by the Member States Director for High Energy and Nu at the CERN Council meeting in clear Physics. -
1 Introduction
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server 1 TWENTY FIVE YEARS OF ASYMPTOTIC FREEDOM David J. Gross Institute For Theoretical Physics, UCSB Santa Barbara, California, USA e-mail: [email protected] Abstract th On the o ccasion of the 25 anniversary of Asymptotic Freedom, celebrated at the QCD Euorconference 98 on Quantum Chro dynamics, Montp ellier, July 1998, I describ ed the discovery of Asymptotic Freedom and the emergence of QCD. 1 INTRODUCTION Science progresses in a much more muddled fashion than is often pictured in history b o oks. This is esp ecially true of theoretical physics, partly b ecause history is written by the victorious. Con- sequently, historians of science often ignore the many alternate paths that p eople wandered down, the many false clues they followed, the many misconceptions they had. These alternate p oints of view are less clearly develop ed than the nal theories, harder to understand and easier to forget, esp ecially as these are viewed years later, when it all really do es make sense. Thus reading history one rarely gets the feeling of the true nature of scienti c development, in which the element of farce is as great as the element of triumph. The emergence of QCD is a wonderful example of the evolution from farce to triumph. During a very short p erio d, a transition o ccurred from exp erimental discovery and theoretical confusion to theoretical triumph and exp erimental con rmation. In trying to relate this story, one must be wary of the danger of the p ersonal bias that o ccurs as one lo oks back in time. -
ISABELLE DESIGN Studyk
© 1973 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. ISABELLE DESIGN STUDYk F. E. Mills Brookhaven National Laboratory Upton, New York Introduction Intersection Regions Following the 1970 BNL Summer Study on AGS Utili- The philosophy of design of the intersection re- zation, John Blewett and I began to consider the design gions is to remove the momentum dispersion, allow the of colliding beam systems in the center of mass energy beam to spread in size, to pass it through a strong range from 200 GeV to 2000 GeV, since it seemed to us lens and bring it to a small focus at the intersection then that significant new phenomena could be expected region (low p). The process is then reversed to return in nuclear interactions in that energy range. We took it to the normal lattice. In some cases (elastic as initial conditions, that we would employ the emer- scattering), the beam is kept large, to obtain good gent technology of superconducting magnets, and that angular resolution. What we have done is to design a we would employ the AGS as the injector, hence requir- "catalog" of intersecting regions, in cooperation with ing the acceleration of the full stored beam to final experimentalists, to fit the needs of particular exper- energies in the storage device. In the summer of 1971, iments. -
Color Screening in Quantum Chromodynamics Arxiv
Color Screening in Quantum Chromodynamics Alexei Bazavov, Johannes H. Weber Department of Computational Mathematics, Science and Engineering and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA October 6, 2020 Abstract We review lattice studies of the color screening in the quark-gluon plasma. We put the phenomena related to the color screening into the context of similar aspects of other physical systems (electromag- netic plasma or cold nuclear matter). We discuss the onset of the color screening and its signature and significance in the QCD transi- tion region, and elucidate at which temperature and to which extent the weak-coupling picture based on hard thermal loop expansion, po- tential nonrelativistic QCD, or dimensionally-reduced QCD quantita- tively captures the key properties of the color screening. We discuss the different regimes pertaining to the color screening and thermal arXiv:2010.01873v1 [hep-lat] 5 Oct 2020 dissociation of the static quarks in depth for various spatial correla- tion functions that are studied on the lattice, and clarify the status of their asymptotic screening masses. We finally discuss the screening correlation functions of dynamical mesons with a wide range of flavor and spin content, and how they conform with expectations for low- and high-temperature behavior. 1 Contents 1 Introduction3 2 Field theoretical foundations7 2.1 Partition function and Lagrangian . .7 2.2 Finite temperature field theory . 11 2.3 Lattice regularization . 14 2.4 Renormalization and weak coupling . 17 2.5 Light quarks . 19 2.6 Heavy quarks . 21 2.7 Implementation of QCD on the lattice . -
Iasinstitute for Advanced Study
IAInsti tSute for Advanced Study Faculty and Members 2012–2013 Contents Mission and History . 2 School of Historical Studies . 4 School of Mathematics . 21 School of Natural Sciences . 45 School of Social Science . 62 Program in Interdisciplinary Studies . 72 Director’s Visitors . 74 Artist-in-Residence Program . 75 Trustees and Officers of the Board and of the Corporation . 76 Administration . 78 Past Directors and Faculty . 80 Inde x . 81 Information contained herein is current as of September 24, 2012. Mission and History The Institute for Advanced Study is one of the world’s leading centers for theoretical research and intellectual inquiry. The Institute exists to encourage and support fundamental research in the sciences and human - ities—the original, often speculative thinking that produces advances in knowledge that change the way we understand the world. It provides for the mentoring of scholars by Faculty, and it offers all who work there the freedom to undertake research that will make significant contributions in any of the broad range of fields in the sciences and humanities studied at the Institute. Y R Founded in 1930 by Louis Bamberger and his sister Caroline Bamberger O Fuld, the Institute was established through the vision of founding T S Director Abraham Flexner. Past Faculty have included Albert Einstein, I H who arrived in 1933 and remained at the Institute until his death in 1955, and other distinguished scientists and scholars such as Kurt Gödel, George F. D N Kennan, Erwin Panofsky, Homer A. Thompson, John von Neumann, and A Hermann Weyl. N O Abraham Flexner was succeeded as Director in 1939 by Frank Aydelotte, I S followed by J. -
Murray Gell-Mann Hadrons, Quarks And
A Life of Symmetry Dennis Silverman Department of Physics and Astronomy UC Irvine Biographical Background Murray Gell-Mann was born in Manhattan on Sept. 15, 1929, to Jewish parents from the Austro-Hungarian empire. His father taught German to Americans. Gell-Mann was a child prodigy interested in nature and math. He started Yale at 15 and graduated at 18 with a bachelors in Physics. He then went to graduate school at MIT where he received his Ph. D. in physics at 21 in 1951. His thesis advisor was the famous Vicky Weisskopf. His life and work is documented in remarkable detail on videos that he recorded on webofstories, which can be found by just Google searching “webofstories Gell-Mann”. The Young Murray Gell-Mann Gell-Mann’s Academic Career (from Wikipedia) He was a postdoctoral fellow at the Institute for Advanced Study in 1951, and a visiting research professor at the University of Illinois at Urbana– Champaign from 1952 to 1953. He was a visiting associate professor at Columbia University and an associate professor at the University of Chicago in 1954-55, where he worked with Fermi. After Fermi’s death, he moved to the California Institute of Technology, where he taught from 1955 until he retired in 1993. Web of Stories video of Gell-Mann on Fermi and Weisskopf. The Weak Interactions: Feynman and Gell-Mann •Feynman and Gell-Mann proposed in 1957 and 1958 the theory of the weak interactions that acted with a current like that of the photon, minus a similar one that included parity violation. -
A Pp and E+E- Collider in a 100Km Ring at Fermilab
A pp and e+e- collider in a 100km ring at Fermilab Tanaji Sen In collaboration with C.M.Bhat, P.C. Bhat, W. Chou, E. Gianfelice-Wendt, J. Lykken, M.K. Medina, G.L. Sabbi, R. Talman 5th TLEP Workshop July 25-26, 2013 Fermilab Outline Motivation • Snowmass study • TLEP design study in a 80 km ring • Past studies of VLHC and VLLC in a 233 km ring in 2001 • Now a “more modest” ring of circumference = 100 km • Design of a pp collider with 100 TeV CM energy • Design of an e+e- collider with 240-350 GeV CM energy • No discussion of - Cost - Politics of acquiring 100 km of real estate T. Sen pp and e+e- colliders 2 Hadron Colliders - Wikipedia Hadron colliders Intersecting Storage Rings CERN, 1971–1984 Super Proton Synchrotron CERN, 1981–1984 ISABELLE BNL, cancelled in 1983 Tevatron Fermilab, 1987–2011 Relativistic Heavy Ion Collider BNL, 2000–present Superconducting Super Collider Cancelled in 1993 Large Hadron Collider CERN, 2009–present High Luminosity Large Hadron Proposed, CERN, 2020– Collider Very Large Hadron Collider Theoretical T. Sen pp and e+e- colliders 3 Hadron Colliders ISR SPS Tevatron RHIC (pp) LHC (2012) Circumference [km] 0.94 6.9 6.3 3.8 26.7 Energy [GeV] 31 315 980 255 4000 Number of bunches dc 6 36 107 1380 Bunch spacing [ns] - 1150 396 108 50 Bunch intensity [x1011 ] - 2.75 (3.1/1 ) 2.0 1.7 Particles/beam [x 1014] 9.8 7.8/4.2 112/36 143 3089 Trans. rms Emitt [ μm] 1.5/0.15 (3/1.5) 3.3 2.5 Beam-beam tune shift 0.0035x8 0.005x3 0.013x2 0.007x2 0.01x2 Luminosity [x1032 cm-2s-1] 1.3 0.06 4.0 2.3 77 # of events/crossing 12 37 Stored beam energy [MJ] 0.005 0.04 1.75/0.57 0.57 140 T. -
SCOPE of the WORKSHOP D. Cline Fermi National
SCOPE OF THE WORKSHOP D. Cline Fermi National Accelerator Laboratory and University of Wisconsin at Madison A Workshop was held during the week of March 1. The very interesting talk of R. Feynman on 27-31 at the Lawrence Berkeley Laboratory in ultra high energy interactions (Ua) and the historical Berkeley, California. The purpose of the Workshop surveys of beam cooling by A. Sessler and was to discuss various beam-cooling techniques and to R. R. Wilson. investigate the possibility of constructing high luminosity proton-antiproton storage rings. 2. The general conviction that pp machines pro Herman Grunder and other members of the LBL staff posed in the present CERN and Fermilab schemes are were largely responsible for the efficient operation of sound (UIc, d; IVc; Vb). the Workshop and the success. The Workshop was jointly sponsored by Fermilab and LBL. 3. The discussion of the cooling of high energy That this was the first workshop totally devoted proton-antiproton beams by electrons (Rubbia, Month, to beam cooling and to high luminosity pp storage rings Ruggiero) or by synchrotron radiation (Wilson). The indicates the close coupling between the two subjects. report of Ruggiero, Vh, was completed after the The construction of pp storage rings is an old dream Workshop and is reproduced here for completeness. of accelerator physicists, the practical realization of these machines certainly relies on beam-cooling tech 4. The understanding of improvements in target niques. The late G. Budker often discussed the possi efficiency that can raise the p yield by a considerable bility of pp storage rings and realized that beam factor (IVd). -
A Peek Into Spin Physics
A Peek into Spin Physics Dustin Keller University of Virginia Colloquium at Kent State Physics Outline ● What is Spin Physics ● How Do we Use It ● An Example Physics ● Instrumentation What is Spin Physics The Physics of exploiting spin - Spin in nuclear reactions - Nucleon helicity structure - 3D Structure of nucleons - Fundamental symmetries - Spin probes in beyond SM - Polarized Beams and Targets,... What is Spin Physics What is Spin Physics ● The Physics of exploiting spin : By using Polarized Observables Spin: The intrinsic form of angular momentum carried by elementary particles, composite particles, and atomic nuclei. The Spin quantum number is one of two types of angular momentum in quantum mechanics, the other being orbital angular momentum. What is Spin Physics What Quantum Numbers? What is Spin Physics What Quantum Numbers? Internal or intrinsic quantum properties of particles, which can be used to uniquely characterize What is Spin Physics What Quantum Numbers? Internal or intrinsic quantum properties of particles, which can be used to uniquely characterize These numbers describe values of conserved quantities in the dynamics of a quantum system What is Spin Physics But a particle is not a sphere and spin is solely a quantum-mechanical phenomena What is Spin Physics Stern-Gerlach: If spin had continuous values like the classical picture we would see it What is Spin Physics Stern-Gerlach: Instead we see spin has only two values in the field with opposite directions: or spin-up and spin-down What is Spin Physics W. Pauli (1925)