Fundamental Principles of Global Ecophagy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sustainable Development, Technological Singularity and Ethics
European Research Studies Journal Volume XXI, Issue 4, 2018 pp. 714- 725 Sustainable Development, Technological Singularity and Ethics Vyacheslav Mantatov1, Vitaly Tutubalin2 Abstract: The development of modern convergent technologies opens the prospect of a new technological order. Its image as a “technological singularity”, i.e. such “transhuman” stage of scientific and technical progress, on which the superintelligence will be practically implemented, seems to be quite realistic. The determination of the basic philosophical coordinates of this future reality in the movement along the path of sustainable development of mankind is the most important task of modern science. The article is devoted to the study of the basic ontological, epistemological and moral aspects in the reception of the coming technological singularity. The method of this study is integrating dialectical and system approach. The authors come to the conclusion: the technological singularity in the form of a “computronium” (superintelligence) opens up broad prospects for the sustainable development of mankind in the cosmic dimension. This superintelligence will become an ally of man in the process of cosmic evolution. Keywords: Technological Singularity, Superintelligence, Convergent Technologies, Cosmocentrism, Human and Universe JEL code: Q01, Q56. 1East Siberia State University of Technology and Management, Ulan-Ude, Russia [email protected] 2East Siberia State University of Technology and Management, Ulan-Ude, Russia, [email protected] V. Mantatov, V. Tutubalin 715 1. Introduction Intelligence organizes the world by organizing itself. J. Piaget Technological singularity is defined as a certain moment or stage in the development of mankind, when scientific and technological progress will become so fast and complex that it will be unpredictable. -
The Promise and Threat of Nanotechnology: Can Environmental Ethics Guide Us?
University of Montana ScholarWorks at University of Montana Philosophy Faculty Publications Philosophy 2005 The Promise and Threat of Nanotechnology: Can Environmental Ethics Guide Us? Christopher J. Preston The University Of Montana, [email protected] Follow this and additional works at: https://scholarworks.umt.edu/philosophy_pubs Part of the Philosophy Commons Let us know how access to this document benefits ou.y Recommended Citation Preston, Christopher J., "The Promise and Threat of Nanotechnology: Can Environmental Ethics Guide Us?" (2005). Philosophy Faculty Publications. 2. https://scholarworks.umt.edu/philosophy_pubs/2 This Article is brought to you for free and open access by the Philosophy at ScholarWorks at University of Montana. It has been accepted for inclusion in Philosophy Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. The Promise and Threat of Nanotechnology Can Environmental Ethics Guide Us? Christopher J. Preston Abstract: The growing presence of the products of nanotechnology in the public domain raises a number of ethical questions. This paper considers whether existing environmental ethics can provide some guidance on these questions. After a brief discussion of the appropriateness of an environmental ethics framework for the task at hand, the paper identifies a representative en- vironmental ethic and uses it to evaluate four salient issues that emerge from nanotechnology. The discussion is intended both to give an initial theoretical take on nanotechnology from the perspective of environmental ethics and to provide a clear indication of the direction from which environmental resis- tance might come. Keywords: nanotechnology, environmental ethics, nature, fabricated biology, evolution. -
Molecular Nanotechnology - Wikipedia, the Free Encyclopedia
Molecular nanotechnology - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Molecular_manufacturing Molecular nanotechnology From Wikipedia, the free encyclopedia (Redirected from Molecular manufacturing) Part of the article series on Molecular nanotechnology (MNT) is the concept of Nanotechnology topics Molecular Nanotechnology engineering functional mechanical systems at the History · Implications Applications · Organizations molecular scale.[1] An equivalent definition would be Molecular assembler Popular culture · List of topics "machines at the molecular scale designed and built Mechanosynthesis Subfields and related fields atom-by-atom". This is distinct from nanoscale Nanorobotics Nanomedicine materials. Based on Richard Feynman's vision of Molecular self-assembly Grey goo miniature factories using nanomachines to build Molecular electronics K. Eric Drexler complex products (including additional Scanning probe microscopy Engines of Creation Nanolithography nanomachines), this advanced form of See also: Nanotechnology Molecular nanotechnology [2] nanotechnology (or molecular manufacturing ) Nanomaterials would make use of positionally-controlled Nanomaterials · Fullerene mechanosynthesis guided by molecular machine systems. MNT would involve combining Carbon nanotubes physical principles demonstrated by chemistry, other nanotechnologies, and the molecular Nanotube membranes machinery Fullerene chemistry Applications · Popular culture Timeline · Carbon allotropes Nanoparticles · Quantum dots Colloidal gold · Colloidal -
Defense 2045: Assessing the Future Security Environment And
NOVEMBER 2015 1616 Rhode Island Avenue NW Washington, DC 20036 202-887-0200 | www.csis.org Defense 2045 Lanham • Boulder • New York • London 4501 Forbes Boulevard Assessing the Future Security Environment and Implications Lanham, MD 20706 301- 459- 3366 | www.rowman.com for Defense Policymakers Cover photo: Shutterstock.com A Report of the CSIS International Security Program AUTHOR ISBN 978-1-4422-5888-4 David T. Miller 1616 Rhode Island Avenue NW FOREWORD Washington,Ë|xHSLEOCy258884z DC 20036v*:+:!:+:! Joseph S. Nye Jr. 202-887-0200 | www.csis.org Blank Defense 2045 Assessing the Future Security Environment and Implications for Defense Policymakers AUTHOR David T. Miller FOREWORD Joseph S. Nye Jr. A Report of the CSIS International Security Program November 2015 Lanham • Boulder • New York • London 594-62791_ch00_3P.indd 1 11/6/15 7:13 AM hn hk io il sy SY ek eh About CSIS hn hk io il sy SY ek eh For over 50 years, the Center for Strategic and International Studies (CSIS) has worked to hn hk io il sy SY ek eh develop solutions to the world’s greatest policy challenges. Today, CSIS scholars are hn hk io il sy SY ek eh providing strategic insights and bipartisan policy solutions to help decisionmakers chart hn hk io il sy SY ek eh a course toward a better world. hn hk io il sy SY ek eh CSIS is a nonprofit organ ization headquartered in Washington, D.C. The Center’s 220 full- time staff and large network of affiliated scholars conduct research and analy sis and hn hk io il sy SY ek eh develop policy initiatives that look into the future and anticipate change. -
Green Goo: Nanobiotechnology Comes Alive!
Communiqué January/February 2003 Issue # 77 Green Goo: Nanobiotechnology Comes Alive! Issue: If the word registers in the public consciousness at all, "nanotechnology" conjures up visions of itty- bitty mechanical robots building BMWs, burgers or brick walls. For a few, nanotech inspires fear that invisible nanobots will go haywire and multiply uncontrollably until they suffocate the planet – a scenario known as "Gray Goo." Still others, recalling Orwell’s 1984, see nanotech as the path to Big Brother’s military-industrial dominance, a kind of “gray governance.” Gray Goo or gray governance – both are plausible outcomes of nanotechnology – the manipulation of matter at the scale of the nanometer (one billionth of a meter) – but possibly diversionary images of our techno-future. The first and greatest impact of nano-scale technologies may come with the merger of nanotech and biotech – a newly recognized discipline called nanobiotechnology. While Gray Goo has grabbed the headlines, self- replicating nanobots are not yet possible. The more likely future scenario is that the merger of living and non- living matter will result in hybrid organisms and products that end up behaving in unpredictable and uncontrollable ways – get ready for “Green Goo!” Impact: Roughly one-fifth (21%) of nanotech businesses in the USA are currently focusing on nanobiotechnology for the development of pharmaceutical products, drug delivery systems and other healthcare-related products.1 The US National Science Foundation predicts that the market for nano-scale products will reach $1 trillion per annum by 2015. As with biotech before it, nanotech is also expected to have a major impact on food and agriculture. -
Ray Kurzweil Reader Pdf 6-20-03
Acknowledgements The essays in this collection were published on KurzweilAI.net during 2001-2003, and have benefited from the devoted efforts of the KurzweilAI.net editorial team. Our team includes Amara D. Angelica, editor; Nanda Barker-Hook, editorial projects manager; Sarah Black, associate editor; Emily Brown, editorial assistant; and Celia Black-Brooks, graphics design manager and vice president of business development. Also providing technical and administrative support to KurzweilAI.net are Ken Linde, systems manager; Matt Bridges, lead software developer; Aaron Kleiner, chief operating and financial officer; Zoux, sound engineer and music consultant; Toshi Hoo, video engineering and videography consultant; Denise Scutellaro, accounting manager; Joan Walsh, accounting supervisor; Maria Ellis, accounting assistant; and Don Gonson, strategic advisor. —Ray Kurzweil, Editor-in-Chief TABLE OF CONTENTS LIVING FOREVER 1 Is immortality coming in your lifetime? Medical Advances, genetic engineering, cell and tissue engineering, rational drug design and other advances offer tantalizing promises. This section will look at the possibilities. Human Body Version 2.0 3 In the coming decades, a radical upgrading of our body's physical and mental systems, already underway, will use nanobots to augment and ultimately replace our organs. We already know how to prevent most degenerative disease through nutrition and supplementation; this will be a bridge to the emerging biotechnology revolution, which in turn will be a bridge to the nanotechnology revolution. By 2030, reverse-engineering of the human brain will have been completed and nonbiological intelligence will merge with our biological brains. Human Cloning is the Least Interesting Application of Cloning Technology 14 Cloning is an extremely important technology—not for cloning humans but for life extension: therapeutic cloning of one's own organs, creating new tissues to replace defective tissues or organs, or replacing one's organs and tissues with their "young" telomere-extended replacements without surgery. -
Transhumanism
T ranshumanism - Wikipedia, the free encyclopedia http://en.wikipedia.org/w/index.php?title=T ranshum... Transhumanism From Wikipedia, the free encyclopedia See also: Outline of transhumanism Transhumanism is an international Part of Ideology series on intellectual and cultural movement supporting Transhumanism the use of science and technology to improve human mental and physical characteristics Ideologies and capacities. The movement regards aspects Abolitionism of the human condition, such as disability, Democratic transhumanism suffering, disease, aging, and involuntary Extropianism death as unnecessary and undesirable. Immortalism Transhumanists look to biotechnologies and Libertarian transhumanism other emerging technologies for these Postgenderism purposes. Dangers, as well as benefits, are Singularitarianism also of concern to the transhumanist Technogaianism [1] movement. Related articles The term "transhumanism" is symbolized by Transhumanism in fiction H+ or h+ and is often used as a synonym for Transhumanist art "human enhancement".[2] Although the first known use of the term dates from 1957, the Organizations contemporary meaning is a product of the 1980s when futurists in the United States Applied Foresight Network Alcor Life Extension Foundation began to organize what has since grown into American Cryonics Society the transhumanist movement. Transhumanist Cryonics Institute thinkers predict that human beings may Foresight Institute eventually be able to transform themselves Humanity+ into beings with such greatly expanded Immortality Institute abilities as to merit the label "posthuman".[1] Singularity Institute for Artificial Intelligence Transhumanism is therefore sometimes Transhumanism Portal · referred to as "posthumanism" or a form of transformational activism influenced by posthumanist ideals.[3] The transhumanist vision of a transformed future humanity has attracted many supporters and detractors from a wide range of perspectives. -
Some Limits to Global Ecophagy by Biovorous Nanoreplicators, With
make no preparation. We have trouble enough controlling viruses and Some Limits to Global Ecophagy fruit flies. by Biovorous Nanoreplicators, with Among the cognoscenti of nanotechnology, this threat has become known as the "gray goo problem." Though masses of uncontrolled Public Policy Recommendations replicators need not be gray or gooey, the term "gray goo" emphasizes that replicators able to obliterate life might be less inspiring than a single species of crabgrass. They might be superior in an evolutionary Robert A. Freitas Jr. sense, but this need not make them valuable. Research Scientist, Zyvex LLC , 1321 North Plano Road, The gray goo threat makes one thing perfectly clear: We cannot afford Richardson, TX 75081 © April 2000 Robert A. Freitas Jr. certain kinds of accidents with replicating assemblers. http://www.foresight.org/nano/Ecophagy.html Gray goo would surely be a depressing ending to our human adventure on Earth, far worse than mere fire or ice, and one that could Abstract stem from a simple laboratory accident. The maximum rate of global ecophagy by biovorous self- Lederberg [ 3] notes that the microbial world is evolving at a replicating nanorobots is fundamentally restricted by the fast pace, and suggests that our survival may depend upon replicative strategy employed; by the maximum dispersal embracing a "more microbial point of view." The emergence velocity of mobile replicators; by operational energy and of new infectious agents such as HIV and Ebola demonstrates chemical element requirements; by the homeostatic resistance that we have as yet little knowledge of how natural or of biological ecologies to ecophagy; by ecophagic thermal technological disruptions to the environment might trigger pollution limits (ETPL); and most importantly by our mutations in known organisms or unknown extant organisms determination and readiness to stop them. -
Nanotech Ideas in Science-Fiction-Literature
Nanotech Ideas in Science-Fiction-Literature Nanotech Ideas in Science-Fiction-Literature Text: Thomas Le Blanc Research: Svenja Partheil and Verena Knorpp Translation: Klaudia Seibel Phantastische Bibliothek Wetzlar Special thanks to the authors Karl-Ulrich Burgdorf and Friedhelm Schneidewind for the kind permission to publish and translate their two short stories Imprint Nanotech Ideas in Science-Fiction-Literature German original: Vol. 24 of the Hessen-Nanotech series by the Ministry of Economics, Energy, Transport and Regional Development, State of Hessen Compiled and written by Thomas Le Blanc Svenja Partheil, Verena Knorpp (research) Phantastische Bibliothek Wetzlar Turmstrasse 20 35578 Wetzlar, Germany Edited by Sebastian Hummel, Ulrike Niedner-Kalthoff (Ministry of Economics, Energy, Transport and Regional Development, State of Hessen) Dr. David Eckensberger, Nicole Holderbaum (Hessen Trade & Invest GmbH, Hessen-Nanotech) Editor For NANORA, the Nano Regions Alliance: Ministry of Economics, Energy, Transport and Regional Development, State of Hessen Kaiser-Friedrich-Ring 75 65185 Wiesbaden, Germany Phone: +49 (0) 611 815 2471 Fax: +49 (0) 611 815 49 2471 www.wirtschaft.hessen.de The editor is not responsible for the truthfulness, accuracy and completeness of this information nor for observing the individual rights of third parties. The views and opinions rendered herein do not necessarily reflect the opinion of the editor. © Ministry of Economics, Energy, Transport and Regional Development, State of Hessen Kaiser-Friedrich-Ring 75 65185 Wiesbaden, Germany wirtschaft.hessen.de All rights reserved. No part of this brochure may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without prior permission in writing from the publisher. -
Did the Greeks and Romans Believe in Their Gods?
Issue 1 December 2016 Will time travel ever become a practical reality? Did the Greeks and Romans believe in their gods? To what extent is mental illness a product of society? Should the wide-scale use of nanomaterials be encouraged? WOODARD JOURNAL ISSUE 1, DECEMBER 2016 Forewords _______________________________________________________ Research suggests that a 4 year old asks around 300 This new cross-curricular publication epitomises the ethos questions a day and 40,000 questions between the age of the SCHOLA outreach project, a Woodard initiative to of 2-5 years! I have recently been reading Warren share the systems and approaches which have enabled Berger’s book, ‘A Beautiful Question’. Warren Berger is an scholarship to flourish so richly and abundantly at St American journalist and host of the website “A More Olave’s Grammar School. Given the high quality of the Beautiful Question”. Berger conveys to the reader of the articles contained within this publication, from a range of importance in cultivating a natural questioning learning partner schools, we know we are far from alone in sharing disposition in children, where curiosity is central to being the highest possible aspirations for our students. an inquirer about the world. Today questioning is a highly valued skill in the world. Companies require people to ask Poised at the start of the 21st Century, there has never been a more exciting time for young people to set out on deep questions that will solve real problems in the world. voyages of discovery into science and society. The This first edition of The Woodard Journal is an exploration convergence of mathematics, biochemistry, technology of some fascinating questions, many of them high level and theoretical physics heralds unprecedented industrial ethical and philosophical inquiries. -
Nanotechnology and Regulatory Policy: Three Futures
Harvard Journal of Law & Technology Volume 17, Number 1 Fall 2003 NANOTECHNOLOGY AND REGULATORY POLICY: THREE FUTURES Glenn Harlan Reynolds* TABLE OF CONTENTS I. INTRODUCTION..............................................................................180 II. A BEGINNER’S GUIDE TO NANOTECHNOLOGY ............................181 A. How Nanotechnology Works....................................................181 B. What Nanotechnology Can Do.................................................185 III. REGULATORY RESPONSES ..........................................................187 A. “Relinquishment” and Prohibition ..........................................188 1. The Case for Prohibition: Children of Our Minds.................188 2. Problems with Turning a Blind Eye ......................................190 B. Restriction to the Military Sphere ............................................193 1. The Case for “Painting It Black”...........................................193 2. Problems with Military Classification...................................194 C. Modest Regulation and Robust Civilian Research...................197 1. Early Biotechnology Regulation ...........................................198 2. Evaluating the Biotechnology Model....................................199 IV. LESSONS FOR NANOTECHNOLOGY .............................................200 A. Research...................................................................................201 B. Beyond the Lab.........................................................................202 -
Economic Impact of the Personal Nanofactory
______________________________________________________________________________________________________N20FR06 Economic Impact of the Personal Nanofactory Robert A. Freitas Jr Institute for Molecular Manufacturing, Palo Alto, California, USA Is the advent of, and mass availability of, desktop personal nanofactories (PNs)1 likely to cause deflation (a persistent decline in the general prices of goods and services), inflation (a persistent general price increase), or neither? A definitive analysis would have to address: (1) the technical assumptions that are made, including as yet imprecisely defined future technological advances and the pace and order of their introduction; (2) the feedback-mediated dynamic responses of the macroeconomy in situations where we don’t have a lot of historical data to guide us; (3) the counter-leaning responses of existing power centers (corporate entities, wealthy owners/investors, influential political actors, antitechnology-driven activists, etc.) to the potential dilution of their power, influence, or interests, including their likely efforts to actively oppose or at least delay this potential dilution; (4) legal restrictions that may be placed on the widespread use of certain technological options, for reasons ranging from legitimate public safety and environmental concerns to crass political or commercial opportunism; (5) the possibility (having an as yet ill- defined probability) that nanotechnology might actually “break the system” and render conven- tional capitalism obsolete (much as solid state electronics obsoleted vacuum tubes), in which case it is not clear what new economic system might replace capitalism; and (6) the changes in human economic behavior that may result when human nature itself may have changed. A definitive answer is beyond the scope of this essay. Here, we take only a first look at the question.