Idiopathic Orthostatic Hypotension from Failure of Noradrenaline Release in a Patient with Vasomotor Innervation

Total Page:16

File Type:pdf, Size:1020Kb

Idiopathic Orthostatic Hypotension from Failure of Noradrenaline Release in a Patient with Vasomotor Innervation J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.1.11 on 1 January 1977. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1977, 40, 11-19 Idiopathic orthostatic hypotension from failure of noradrenaline release in a patient with vasomotor innervation R. N. NANDA,1 F. C. BOYLE, J. S. GILLESPIE, R. H. JOHNSON,2 AND H. J. KEOGH From the University Department ofNeurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, and the University Department ofPharmacology, Glasgow SUMMARY A 26 year old man is described with life-long orthostatic hypotension unrelated to autonomic nerve degeneration and apparently due to failure ofperipheral noradrenaline release. Tests of parasympathetic and sympathetic cholinergic nerve function were normal, but sympathetic adren- ergic activity was defective. Thus blood pressure regulation was abnormal. There was no pressor response to tyramine, an indirect sympathomimetic drug, but a marked pressor response to the directly acting sympathomimetic drugs phenylephrine and noradrenaline. On standing there was a guest. Protected by copyright. progressive fall rather than a rise in circulating noradrenaline concentrations, although adrenaline levels rose normally. The pupils showed diminished responses to ephedrine and cocaine, and a normal response to phenylephrine. Fluorescence microscopy of blood vessels showed that they were in- nervated with adrenergic nerves. His orthostatic hypotension responded well to oral phenylephrine (50 mg five times daily) but not to other forms of therapy. It is suggested that this patient's symptoms were due to failure of noradrenaline release even though sympathetic adrenergic nerves were present. We therefore wish to draw attention to a further cause oforthostatic hypotension, failure ofperipheral noradrenaline release without autonomic neuropathy. Orthostatic hypotension may occur either as an idio- Case report pathic disorder or as a complication of many neuro- logical disorders (Johnson and Spalding, 1974, 1976). CLINICAL HISTORY The lesion may be in the afferent or efferent pathways, The patient (A. M., Institute of Neurological or in the central nervous system connections of the Sciences, Glasgow, 816955) complained of'blackouts' baroreceptor reflex arc controlling vasoconstriction. from early childhood, at least since the age of 5 years. Reduced noradrenaline excretion has been reported During the blackouts, which always occurred when in patients with idiopathic orthostatic hypotension standing, he had greying of vision, and would then http://jnnp.bmj.com/ (Luft and von Euler, 1953; Barnett et al., 1955; frequently collapse unconscious for a few seconds. He Hickler et al., 1959), and some of these patients lack had been unable to participate in games involving the fluorescent fibres characteristic of sympathetic standing and running. He found that if he stood in a vasomotor innervation (Kontos et al., 1975). We now stooped manner, crossed his legs, or leant against a report a patient with idiopathic orthostatic hypo- wall, symptoms were less frequent, and he adopted tension who also had failure of peripheral nora- this posture as a habit. He attended school until the drenaline release, but biopsy studies demonstrated age of 15 years, and had earned his living as a bar that he had adrenergic innervation of blood vessels. tender. He had been married for two years and on September 27, 2021 by complained of impotence which had resulted in serious marital strife. He had normal penile erection, but there was no ejaculation. His past medical history 'Address for correspondence: Dr R. N. Nanda, Department of was non-contributory, he was an only child, and his Medicine, Clinical Medical School, Wellington Hospital, Wellington 2, New Zealand. parents were alive and well. The parents' marriage 2Present address as in'. was not consanguineous. He smoked over 20 cigar- Accepted 30 August 1976 ettes daily and drank alcohol in moderation. 11 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.1.11 on 1 January 1977. Downloaded from 12 R. N. Nanda, F. C. Boyle, J. S. Gillespie, R. H. Johnson, and H. J. Keogh On examination he was thin, with an asthenic resting levels. The procedure was repeated on three build, and pale but not obviously anaemic. He had a occasions within half an hour (Fig. 1). Arterial blood marked kyphosis. His height was 171.5 cm and his was sampled at the end of each tilt for estimation of weight was 59 kg. Blood pressure when lying was circulating adrenaline and noradrenaline concentra- 127/70 mmHg, with pulse rate of 64 beats/min; on tions (Valori et al., 1970; Rennie, 1974). The resting standing the blood pressure became unrecordable levels ofnoradrenaline and adrenaline were 2.2 nmol/l within one minute. Neurological examination, and 0.25 nmol/l respectively. During the investigation, including tendon reflexes, was normal. External adrenaline levels rose to a maximum of 1.1 nmol/l. genitalia and secondary sexual characteristics were The noradrenaline levels, however, fell, instead of also normal. rising, so that during the final tilt there was no measurable noradrenaline in the circulating blood. INVESTIGATIONS The following investigations were normal: ESR, Valsalva's manoeuvre haemoglobin, differential white cell count, blood After a deep inspiration, the patient attempted a urea and electrolytes (sodium, potassium, chloride, forced expiration for 10 seconds through a face mask calcium and phosphate), alkaline phosphatase, bili- connected by a thick-walled rubber tube to a strain rubin and flocculation tests, B12, Wassermann gauge manometer and anaeroid manometer which the reaction, glucose tolerance test, urine excretion of patient observed. The strain gauge manometer was 17-ketosteroids (68.4 timol/24 h) and 17-hydroxy- attached to a chart recorder (Elema Sch6nander corticosteroids (55.9 ,tmol/24 h), urinary excretion of Mingograph). The patient was asked to maintain a porphyrins (nil). Cerebrospinal fluid had normal pressure of 30-40 mmHg for the 10 s period. The findings for protein, cells and glucose. Urinary blood pressure fell progressively during the man- guest. Protected by copyright. metadrenaline output was normal (2.2 Htmol/24 h), oeuvre and a tachycardia developed (67 beats/min to and urinary vanillylmandelic acid output was low 83 beats/min) but there was no overshoot of blood (6.6 ttmol/24 h, normal range 10-35 ttmol/24 h). pressure after intrathoracic pressure returned to normal (a 'blocked response', Johnson and Spalding, AUTONOMIC FUNCTION 1974). As the blood pressure returned to normal, the Change ofposture heart rate was reduced to the original level. On the morning of the investigation of arterial blood pressure responses, the patient stayed in bed and was Heart rate changes with drugs and respiration taken to the laboratory and then transferred onto a Intravenous atropine sulphate (3 mg) increased the tilt table. The arterial blood pressure was recorded patient's heart rate from resting values in the range of with a catheter in the brachial artery. The catheter 53-60 to 98-102 beats/min. No further increase in was connected to a strain gauge manometer recording heart rate could be obtained when orthostatic hypo- system (Elema-Schonander) with the manometer tension was induced by tilting. After the administra- fixed at the mid-sternal level. Its calibration was tion ofatropine, propranolol (0.2 mg/kg body weight) checked before and at the end of each investigation produced no further significant change in heart rate and when the patient's posture was changed. Heart (even in the presence of orthostatic hypotension rate was recorded continuously during the investiga- produced by tilting). During deep breathing, the tion with an electrocardiograph. Intravenous infus- patient showed normal sinus arrhythmia which was ions were administered from a motor driven syringe abolished by atropine (Wheeler and Watkins, 1973). http://jnnp.bmj.com/ through a 22 gauge cannula inserted under local anaesthesia into an antecubital vein in the opposite Sudden noise and mental arithmetic arm to that into which the blood pressure catheter A starting pistol was fired immediately behind the had been inserted. Blood pressure and heart rate were patient without causing a rise in blood pressure. A observed while the patient's posture was changed and simple standard test of addition and subtraction other tests were performed. failed to produce a rise of blood pressure. Both these The patient was moved from the supine to the erect tests usually cause a rise of blood pressure in normal position. The blood pressure when he was supine was subjects (Johnson and Spalding, 1974). on September 27, 2021 by 110/70 mmHg, and it fell when he was in the erect position (850) to 65/45 mmHg within one minute. The Infusion ofdrugs (Fig. 2) heart rate was 64 beats/min in the supine position and L-noradrenaline was infused at progressively in- increased to 98 beats/min one minute later. The creasing rates of2, 4, 6, and 8 jig/min, each level being patient complained of feeling faint and was returned maintained for one minute. At the highest infusion to the horizontal position. The systolic and diastolic rate, the blood pressure rose to 200/100 mmHg, and pressures rose again, but did not exceed the original the heart rate decreased to 40 beats/min. Similar J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.1.11 on 1 January 1977. Downloaded from Idiopathic orthostatic hypotension from failure ofnoradrenaline release 13 120 - M Standing 100 - Blood Pressure 80 - ( mmHg) 60 - 40 - 100 - Heart Rate 80 - Fig. 1 Response to repeated ( beats/ min ) standing (M) on bloodpressure, 60 - -- heart rate, andplasma catecholamines ( x - x x noradrenaline, 0-0 2-0 - adrenaline). x NA guest. Protected by copyright. 15 - x Catechol - amines 1 0 - (n mot/Il) 0 5 - x 0 - x 0 10 20 30 40 TIME ( min ) results were obtained with infusion of phenylephrine as the slope of the graph relating the pulse interval at measured rates of between 60 and 200 ,ig/min.
Recommended publications
  • DEMAND REDUCTION a Glossary of Terms
    UNITED NATIONS PUBLICATION Sales No. E.00.XI.9 ISBN: 92-1-148129-5 ACKNOWLEDGEMENTS This document was prepared by the: United Nations International Drug Control Programme (UNDCP), Vienna, Austria, in consultation with the Commonwealth of Health and Aged Care, Australia, and the informal international reference group. ii Contents Page Foreword . xi Demand reduction: A glossary of terms . 1 Abstinence . 1 Abuse . 1 Abuse liability . 2 Action research . 2 Addiction, addict . 2 Administration (method of) . 3 Adverse drug reaction . 4 Advice services . 4 Advocacy . 4 Agonist . 4 AIDS . 5 Al-Anon . 5 Alcohol . 5 Alcoholics Anonymous (AA) . 6 Alternatives to drug use . 6 Amfetamine . 6 Amotivational syndrome . 6 Amphetamine . 6 Amyl nitrate . 8 Analgesic . 8 iii Page Antagonist . 8 Anti-anxiety drug . 8 Antidepressant . 8 Backloading . 9 Bad trip . 9 Barbiturate . 9 Benzodiazepine . 10 Blood-borne virus . 10 Brief intervention . 11 Buprenorphine . 11 Caffeine . 12 Cannabis . 12 Chasing . 13 Cocaine . 13 Coca leaves . 14 Coca paste . 14 Cold turkey . 14 Community empowerment . 15 Co-morbidity . 15 Comprehensive Multidisciplinary Outline of Future Activities in Drug Abuse Control (CMO) . 15 Controlled substance . 15 Counselling and psychotherapy . 16 Court diversion . 16 Crash . 16 Cross-dependence . 17 Cross-tolerance . 17 Custody diversion . 17 Dance drug . 18 Decriminalization or depenalization . 18 Demand . 18 iv Page Demand reduction . 19 Dependence, dependence syndrome . 19 Dependence liability . 20 Depressant . 20 Designer drug . 20 Detoxification . 20 Diacetylmorphine/Diamorphine . 21 Diuretic . 21 Drug . 21 Drug abuse . 22 Drug abuse-related harm . 22 Drug abuse-related problem . 22 Drug policy . 23 Drug seeking . 23 Drug substitution . 23 Drug testing . 24 Drug use .
    [Show full text]
  • Use of Sympathomimetic Drugs Leads to Increased Risk of Hospitalization for Arrhythmias in Patients with Congestive Heart Failure
    ORIGINAL INVESTIGATION Use of Sympathomimetic Drugs Leads to Increased Risk of Hospitalization for Arrhythmias in Patients With Congestive Heart Failure Marcel L. Bouvy, PharmD; Eibert R. Heerdink, PhD; Marie L. De Bruin, PharmD; Ron M. C. Herings, PhD; Hubert G. M. Leufkens, PhD; Arno W. Hoes, PhD Background: Sympathomimetic agents have a direct exposure to sympathomimetic agents, expressed as positive chronotropic effect on heart rate and may cause odds ratios. hypokalemia, even when administered by inhalation. In selected patients (eg, patients with congestive heart fail- Results: Of 149 case patients, a total of 33 (22.1%) were ure [CHF]) this can lead to arrhythmias. Despite the po- treated with any sympathomimetic agent, and 6 pa- tential adverse effects of these agents, they are used fre- tients (4.0%) were treated with systemic sympathomi- quently in patients with CHF, due to a high incidence of metics. The use of any sympathomimetic drug was as- respiratory comorbidity. This study investigates the ef- sociated with an increased risk of admission for arrhythmia fects of sympathomimetics on the incidence of hospital- (odds ratio, 4.0; 95% confidence interval, 1.0-15.1). For izations for arrhythmias in patients with CHF. systemic sympathomimetic drugs, the corresponding odds ratio was 15.7 (95% confidence interval, 1.1-228.0). Methods: In a cohort of 1208 patients with a validated hospital discharge diagnosis of CHF, we identified 149 Conclusions: The results of this study strongly suggest cases with a readmission for arrhythmias, and com- an increased risk of hospitalization for arrhythmias in pa- pared these in a nested matched case-control design tients with CHF treated with sympathomimetic drugs.
    [Show full text]
  • Adrenergic Drugs
    Adrenergic Drugs Overview Overview -- Adrenergic drugs exert their principal pharmacological and • therapeutic effects by either enhancing or reducing the activity of the sympathetic division of the autonomic nervous system. Substances (drugs)that produce effects similar to stimulation of sympathetic nervous activity are known as sympathomimetics or adrenergic stimulants. Those that decrease sympathetic activity are referred to as sympatholyti- cs, antiadrenergics, or adrenergic-blocking agents. Overview -- Adrenergic agents either act on adrenergic • receptors (adrenoceptors, ARs) or affect the life cycle of adrenergic neurotransmitters (NTs), including norepinephrine (NE, noradrenaline), epinephrine (E, adrenaline), and dopamine (DA). Normally these NTs modulate many vital functions, such as the rate and force of cardiac contraction, constriction and dilation of blood vessels and bronchioles, the release of insulin, and the breakdown of fat (table 16.1). Overview Adrenergic NTs(structure and physicochemical properties) -- NE, E, and DA are chemically catecholamines (CAs), which • refer generally to all organic compounds that contain a catechol nucleus (ortho-dihydroxybenzene) and an ethylamine group • (Fig. 16.1). In a physiological context, the term usually means DA and its metabolites NE and E. E contains one secondary amino group and three hydroxyl groups. Using calculated log p(-0.63) of E, one would expect the molecule is polar and soluble in water. NTs NTs -- E is a weak base (pKa = 9.9) because of its aliphatic • amino group. It is also a weak acid (pKa =8.7) because of its phenolic hydroxyl groups. It can be predicted that ionized species (the cation form) of E at physiological pH is predominant (log D at pH 7 = -2.75).
    [Show full text]
  • GPCR/G Protein
    Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com GPCR/G Protein G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. G proteins are specialized proteins with the ability to bind the nucleotides guanosine triphosphate (GTP) and guanosine diphosphate (GDP). In unstimulated cells, the state of G alpha is defined by its interaction with GDP, G beta-gamma, and a GPCR. Upon receptor stimulation by a ligand, G alpha dissociates from the receptor and G beta-gamma, and GTP is exchanged for the bound GDP, which leads to G alpha activation. G alpha then goes on to activate other molecules in the cell. These effects include activating the MAPK and PI3K pathways, as well as inhibition of the Na+/H+ exchanger in the plasma membrane, and the lowering of intracellular Ca2+ levels. Most human GPCRs can be grouped into five main families named; Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2, and Secretin, forming the GRAFS classification system. A series of studies showed that aberrant GPCR Signaling including those for GPCR-PCa, PSGR2, CaSR, GPR30, and GPR39 are associated with tumorigenesis or metastasis, thus interfering with these receptors and their downstream targets might provide an opportunity for the development of new strategies for cancer diagnosis, prevention and treatment. At present, modulators of GPCRs form a key area for the pharmaceutical industry, representing approximately 27% of all FDA-approved drugs. References: [1] Moreira IS. Biochim Biophys Acta. 2014 Jan;1840(1):16-33.
    [Show full text]
  • 4-Fluoroamphetamine (4-FA) Critical Review Report Agenda Item 4.3
    4-Fluoroamphetamine (4-FA) Critical Review Report Agenda Item 4.3 Expert Committee on Drug Dependence Thirty-ninth Meeting Geneva, 6-10 November 2017 39th ECDD (2017) Agenda item 4.3 4-FA Contents Acknowledgements.................................................................................................................................. 4 Summary...................................................................................................................................................... 5 1. Substance identification ....................................................................................................................... 6 A. International Nonproprietary Name (INN).......................................................................................................... 6 B. Chemical Abstract Service (CAS) Registry Number .......................................................................................... 6 C. Other Chemical Names ................................................................................................................................................... 6 D. Trade Names ....................................................................................................................................................................... 6 E. Street Names ....................................................................................................................................................................... 6 F. Physical Appearance ......................................................................................................................................................
    [Show full text]
  • Journal of Pharmacology and Toxicological Studies
    e-ISSN:2322-0139 p-ISSN:2322-0120 RESEARCH AND REVIEWS: JOURNAL OF PHARMACOLOGY AND TOXICOLOGICAL STUDIES Exploration of Mechanism of Action of Ephedrine on Rat Blood Pressure. Paresh Solanki1, Preeti Praveen Yadav2*, Naresh D Kantharia2. 1Lambda Therapeutic Research LTD, Ahmedabad, Gujarat, India. 2Department of Pharmacology, Government Medical College, Surat, Gujarat, India. Research Article Received: 19/05/2014 ABSTRACT Revised: 20/06/2014 Accepted: 24/06/2014 The aim of the study is to study mechanism of action (direct, indirect or mixed) of ephedrine on rat blood pressure by *For Correspondence using agents affecting synthesis, storage and release of noradrenaline. 30 male Wistar albino rats divided into 6 groups Department of Pharmacology, (n=5). A: ephedrine control, B: tyramine control, C: reserpine + Government Medical College, metyrosine + ephedrine, D: reserpine + metyrosine + tyramine, E: Surat, Gujarat, India. desipramine + ephedrine, F: desipramine + tyramine. In A and B: Mobile: +91 9408670190 blood pressure responses of ephedrine and tyramine were taken for control, C and D: reserpine was injected 18 hrs. before and Keywords: Reserpine, metyrosine was injected 2 hrs before taking responses of ephedrine Metyrosine, Tyramine, or tyramine respectively. For E and F: desipramine w a s given 10 desipramine min. before taking response of ephedrine or tyramine respectively. Rat mean blood pressure was measured by using student’s physiograph. Reserpine and metyrosine, inhibits the vesicular uptake and synthesis of noradrenaline respectively decrease the pressor responses of tyramine significantly (p=0.000) but not of ephedrine (p=0.893).Prior administration of desipramine which inhibits axonal uptake of noradrenaline also significantly decreases the effect of tyramine (p=0.000) but do not affect the effect of ephedrine significantly (p=0.893).Study concludes the pressor effect of ephedrine is not mediated by release of noradrenaline from neurons, indicating that ephedrine act directly on adrenergic receptors.
    [Show full text]
  • Fluticasone Furoate; Umeclidinium Bromide; Vilanterol Trifenatate May 2021
    Contains Nonbinding Recommendations Draft – Not for Implementation Draft Guidance on Fluticasone Furoate; Umeclidinium Bromide; Vilanterol Trifenatate May 2021 This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA, or the Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the Office of Generic Drugs. This guidance, which interprets the Agency’s regulations on bioequivalence at 21 CFR part 320, provides product-specific recommendations on, among other things, the design of bioequivalence studies to support abbreviated new drug applications (ANDAs) for the referenced drug product. FDA is publishing this guidance to further facilitate generic drug product availability and to assist the generic pharmaceutical industry with identifying the most appropriate methodology for developing drugs and generating evidence needed to support ANDA approval for generic versions of this product. The contents of this document do not have the force and effect of law and are not meant to bind the public in any way, unless specifically incorporated into a contract. This document is intended only to provide clarity to the public regarding existing requirements under the law. FDA guidance documents, including this guidance, should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The use of the word should in FDA guidances means that something is suggested or recommended, but not required. This is a new draft product-specific guidance for industry on generic fluticasone furoate; umeclidinium bromide; vilanterol trifenatate.
    [Show full text]
  • Effects of Cocaine and Antidepressant Drugs on the Nictitating Membrane of the Cat by R
    Brit. J. Pharmacol. (1961), 17, 339-357. EFFECTS OF COCAINE AND ANTIDEPRESSANT DRUGS ON THE NICTITATING MEMBRANE OF THE CAT BY R. W. RYALL* From the Research Laboratories, May & Baker, Dagenham, Essex (Received May 16, 1961) Cocaine, imipramine and pipradol potentiated the contractions to adrenaline and noradrenaline, but not to tyramine, on the nictitating membrane of the spinal cat. Pheniprazine and dexamphetamine potentiated the responses to adrenaline, noradren- aline and tyramine, whereas nialamide only potentiated the response to tyramine. Potentiation of the response to stimulation of either the preganglionic or the post- ganglionic sympathetic nerve trunks was observed with imipramine, pipradol, pheniprazine and dexamphetamine. Only dexamphetamine and pheniprazine caused substantial contractions of the membrane when the preganglionic nerve was cut (acutely decentralized), or when the superior cervical ganglion was removed (acutely denervated). Cocaine produced contractions of the innervated but not of the acutely decentralized membrane. The significance of the peripheral effects of these antidepressant drugs in relation to their central actions is discussed. Several workers, for example, Rothballer (1957), Costa & Zetler (1959), Sigg (1959), and Maxwell, Sylwestrowicz, Plummer, Povalski & Schneider (1960), have speculated on the possible relationship between the central actions of many stimulant drugs and their effects on the peripheral actions of adrenaline. In the present investigation five antidepressant drugs (imipramine, pipradol, pheniprazine, nialamide and dexamphetamine), which have all been used with varying degrees of success in the treatment of depressive illness (Rees, 1960), and cocaine, have been compared for their ability to modify the actions of adrenaline, noradrenaline, tyramine and sympathetic nerve stimulation on the nictitating membrane of the spinal cat.
    [Show full text]
  • The Role of Norepinephrine in the Pharmacology of 3,4
    !"#$%&'#$&($)&*#+,-#+"*,-#$,-$."#$/"0*102&'&34$&($ 56789#."4'#-#:,&;41#."01+"#.01,-#$<9=9>6$?#[email protected]@4AB$ $ C-0D3D*0':,@@#*.0.,&-$$ ! $ ED*$ F*'0-3D-3$:#*$GH*:#$#,-#@$=&I.&*@$:#*$/",'&@&+",#$ J&*3#'#3.$:#*$ /",'&@&+",@2"8)0.D*K,@@#-@2"0(.',2"#-$L0ID'.M.$ :#*$N-,J#*@,.M.$O0@#'$ $ $ J&-$ $ PQ:*,2$90*2$R4@#I$ 0D@$O#''1D-:6$OF$ $ O0@#'6$STU5$ $ $ V*,3,-0':&ID1#-.$3#@+#,2"#*.$0D($:#1$=&ID1#-.#-@#*J#*$:#*$N-,J#*@,.M.$O0@#'W$#:&2XD-,Y0@X2"$ $ =,#@#@$ G#*I$ ,@.$ D-.#*$ :#1$ Z#*.*03$ [P*#0.,J#$ P&11&-@$)01#-@-#--D-38\#,-#$I&11#*E,#''#$)D.ED-38\#,-#$ O#0*Y#,.D-3$ SX]$ ^2"K#,E_$ ',E#-E,#*.X$ =,#$ J&''@.M-:,3#$ `,E#-E$ I0--$ D-.#*$ 2*#0.,J#2&11&-@X&*3a',2#-2#@aY48-28 -:aSX]a2"$#,-3#@#"#-$K#*:#-X !"#$%&%$%%'%()*$+%$,-.##$/0+$11$,!'20'%()*$+%$,3$"/4$+2'%(,567,89:;$+0 8+$,<=/>$%? !"#$%&'($)&')*&+,-+.*/&01$)&'2'&*.&0$30!$4,,&0.+*56$73/-0/+*56$8"56&0 @',<$%,>.1($%<$%,3$<+%('%($%? !"#$%&%$%%'%(9$:*&$8;##&0$!&0$<"8&0$!&#$=3.>'#?@&56.&*06"2&'#$*0$!&'$ )>0$*68$,&#./&+&/.&0$%&*#&$0&00&0$AB>!3'56$"2&'$0*56.$!&'$C*0!'35($&0.#.&6&0$ !"',1$:*&$>!&'$!*&$<3.730/$!&#$%&'(&#$!3'56$:*&$B;'!&0$&0.+>60.D9 *$+%$,-.##$/0+$11$,!'20'%(9$E*&#&#$%&'($!"',$0*56.$,;'$(>88&'7*&++&$ FB&5(&$)&'B&0!&.$B&'!&09 *$+%$,3$"/4$+2'%(9$E*&#&#$%&'($!"',$0*56.$2&"'2&*.&.$>!&'$*0$"0!&'&'$%&*#&$ )&'-0!&'.$B&'!&09 ! G8$H"++&$&*0&'$I&'2'&*.30/$8;##&0$:*&$"0!&'&0$!*&$J*7&072&!*0/30/&01$30.&'$B&+56&$!*&#&#$%&'($,-++.1$ 8*..&*+&09$=8$C*0,"56#.&0$*#.$&#1$&*0&0$J*0($"3,$!*&#&$:&*.&$&*0732*0!&09 ! K&!&$!&'$)>'/&0"00.&0$L&!*0/30/&0$("00$"3,/&6>2&0$B&'!&01$#>,&'0$:*&$!*&$C*0B*++*/30/$!&#$ @&56.&*06"2&'#$!"73$&'6"+.&09
    [Show full text]
  • 4-Fluoroamphetamine (4-FA) Critical Review Report Agenda Item 5.4
    4-Fluoroamphetamine (4-FA) Critical Review Report Agenda item 5.4 Expert Committee on Drug Dependence Thirty-seventh Meeting Geneva, 16-20 November 2015 37th ECDD (2015) Agenda item 5.4 4-Fluoroamphetamine Page 2 of 35 37th ECDD (2015) Agenda item 5.4 4-Fluoroamphetamine Page 3 of 35 37th ECDD (2015) Agenda item 5.4 4-Fluoroamphetamine Contents Acknowledgements .......................................................................................................................... 6 Summary .......................................................................................................................................... 7 1. Substance identification ................................................................................................................ 8 A. International Nonproprietary Name (INN) .................................................................................... 8 B. Chemical Abstract Service (CAS) Registry Number ...................................................................... 8 C. Other Names .................................................................................................................................. 8 D. Trade Names .................................................................................................................................. 8 E. Street Names .................................................................................................................................. 8 F. Physical properties .......................................................................................................................
    [Show full text]
  • How to Handle a Hypertension Crisis
    10:45 – 11:45 am Presenter Disclosure Information How to Handle Hypertension The following relationships exist related to this presentation: Crisis ► Karol E. Watson, MD, PhD, FACC: Advisory Board for AstraZeneca; Daiichi Sankyo; Merck & Co., Inc.; and Quest Diagnostics. SPEAKER Karol E. Watson, MD, PhD, FACC Off-Label/Investigational Discussion ►In accordance with pmiCME policy, faculty have been asked to disclose discussion of unlabeled or unapproved use(s) of drugs or devices during the course of their presentations. Learning Objectives How to handle a Define hypertensive crises: Hypertension urgency Hypertension Crisis and hypertension emergency Outline the pathophysiology of hypertensive urgencies and emergencies Karol Watson, MD, PhD Identify treatment goals and treatment options for Professor of Medicine hypertensive crises. David Geffen School of Medicine at UCLA Los Angeles, California Current State of Hypertensive Crisis Acute Severe Hypertension Management Epidemiology and Mortality • Hypertensive crises are among the most misunderstood and mismanaged of acute medical Historical Study problems seen in clinical practice • 1939: First study of the natural history of • Delays in initiating therapy can cause severe complications in target end organs hypertensive emergencies published • Overzealous therapy resulting in a too-rapid • Untreated hypertensive emergencies had a 1- reduction in blood pressure is equally damaging year mortality rate of 79%, with median survival of 10.5 months • Consideration of the pathophysiologic principles involved in hypertensive crises is of utmost importance Varon J, Marik PE. Chest. 2000;118:214-227. Varon J. CHEST 2007; 131:1949–1962. Epstein M. Clin Cornerstone. 1999;2:41-54. Hypertension Emergencies in context Severe hypertension is relatively common Chronic Hypertension There are ~100,000 ER ~15,000 of those Hypertension visits each year visits are for Urgencies for hypertension severely high BP Hypertension Emergencies Pitts et al.
    [Show full text]
  • Snomed Ct Dicom Subset of January 2017 Release of Snomed Ct International Edition
    SNOMED CT DICOM SUBSET OF JANUARY 2017 RELEASE OF SNOMED CT INTERNATIONAL EDITION EXHIBIT A: SNOMED CT DICOM SUBSET VERSION 1.
    [Show full text]