MGS B 45.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

MGS B 45.Pdf UNIVERSITY OF MINNESOTA MINNESOTA GEOLOGICAL SURVEY PAUL K. SIMS, DIRECTOR BULLETIN 45 Progressive Contact Metamorphism of the Biwabik Iron-formation, Mesabi Range, Minnesota BY BEVAN M. FRENCH MINNEAPOLIS 1968 THE UNIVERSITY OF MINNESOTA PRESS © Copyright 1968 by the University of Minnesota. All rights reserved. PRINTED IN THE UNITED STATES OF AMERICA AT THE LUND PRESS, INC., MINNEAPOLIS I~O Library of Congress Catalog Card Number: A 68-·7000 PUBLISHED IN GREAT BRITAIN, INDIA, AND PAKISTAN BY THE OXFORD UNIVERSITY PRESS, LONDON, BOMBAY, AND KARACHI, AND IN CANADA BY THE COPP CLARK PUBLISHING CO. LIMITED, TORONTO FOREWORD The recent, spectacular growth of the taconite industry, and the expan­ sion of taconite operations from the eastern to the central and western parts of the Mesabi range, emphasizes the importance of knowledge of the geology of the range. The earliest taconite plants were established in the Eastern Mesabi district, in areas in which the Biwabik Iron-formation was metamorphosed by the Duluth Gabbro Complex; most of the recent plants are in the Main and Western Mesabi districts, in areas of "unal­ tered" iron-formation. This report describes the changes in mineralogy and texture from "un­ altered" taconite in the Main Mesabi district to highly metamorphosed taconite in the Eastern Mesabi district. It describes not only the silicate minerals, but also the opaque iron oxides, carbonate minerals, and carbon­ aceous material. Knowledge of the mineralogic changes is extremely im­ portant to the practical problems related to beneficiating characteristics of the magnetic taconites. The report is modified from a Ph.D. thesis submitted to the Graduate School at Johns Hopkins University by Bevan M. French. P. K. SIMS v ACKNOWLEDGMENTS The research was undertaken as part of the writer's doctoral disserta­ tion in geology at the Johns Hopkins University (French, 1964a). The dissertation was supervised by H. P. Eugster of the Department of Geol­ ogy; his encouragement and advice were consistently helpful. The writer is also indebted to David R. Wones for a thorough critical reading of the manuscript in its early stages of preparation. H. L. James originally suggested the suitability of the Mesabi range for a detailed study of progressively metamorphosed iron-formation. The ac­ tual study would have been impossible without the generous and whole­ hearted cooperation given to the writer by the many companies mining the Mesabi range, especially the Oliver Iron Mining Division of the United States Steel Corporation, Pickands Mather & Company, the Reserve Min­ ing Company, the Hanna Mining Company, and the Meriden Iron Com­ pany. The assistance given by individuals cannot be acknowledged in full, but particular thanks are due to H. V. Wuerch and Henry Bakkila of the Oliver Iron Mining Division, to D. R. Croswell of the Erie Mining Com­ pany, to James Emanuelson of the Reserve Mining Company, and to C. A. Beckman of the Hanna Mining Company. In addition, the writer has benefited greatly from discussions with J. N. Gundersen, P. K. Sims, S. S. Goldich, J. W. Gruner, and R. L. Blake. Financial support for the dissertation was supplied by a National Sci­ ence Foundation fellowship for the academic year 1960-61 and by fellow­ ships and research assistantships from Johns Hopkins University for the academic years 1961-62 and 1962-63. A grant from the Penrose Fund of the Geological Society of America for field work on the Mesabi range dur­ ing the summer of 1962 is gratefully acknowledged. Vll CONTENTS FOREWORD v ACKNOWLEDGMENTS VII ABSTRACT ..................................................... XV INTRODUCTION ................................................ 3 NATURE AND ORIGIN OF SEDIMENTARY IRON-FORMATION. .. .. 4 General Discussion .......................................... 4 Earlier Studies of Metamorphosed Iron-formation ...... .. 5 GEOLOGY AND METAMORPHISM OF BIWABIK IRON-FORMATION. .. 7 General Geology of the Mesabi Range . .. 7 Mineralogy and Textures of the Biwabik Iron-formation. .. 10 Metamorphism of the Biwabik Iron-formation .................. 11 METHODS OF STUDY ................... '" ............... , .. , ... 14 Subdivision of the Mesabi Range ................. .. 14 Sampling ................................................... 16 Determination of Mineralogy ................................. 16 PROGRESSIVE METAMORPHISM OF THE BIWABIK IRON-FORMATION AND RELATED R.OCKS ......................................... " 19 Unaltered Taconite (Zone 1) ................................. 19 Introduction .............................................. 19 Cherty Taconite. .. 19 Introduction ........................................... 19 Primary Mineralogy and Textures . .. 19 Secondary Minerals and Textures . .. 21 Silicates ................................................ 22 Carbonates ............................................. 22 Other Minerals . .. 24 IX x METAMORPHISM OF THE BIWABIK IRON-FORMATION Summary .............................................. 26 Slaty Taconite and the Intermediate Slate (Zones 1 and 2) ..... 27 Introduction ............................................ '27 Mineralogy of Slaty Taconite . 27 Mineralogy of the Intermediate Slate . .. 29 Summary .................................... 30 Transitional Taconite (Zone '2) ........................... 31 Cherty Taconite .......................................... 31 Moderately Metamorphosed Taconite (Zone 3) ................. 34 Cherty Taconite .......................................... 34 Introduction ............................................ 34 Formation of Grunerite .................................. 36 Other Minerals .,. .. .... 36 Slaty Taconite ............................................ 38 The Intermediate Slate ................................ 39 Highly Metamorphosed Taconite (Zone 4) ................. 40 Introduction .............................................. 40 Mineralogy ............................................... 40 Veins and Small Pegmatite Bodies. 41 Metamorphism of Hematite-Bearing Units of the Biwabik Iron-formation ................................ 43 Introduction .............................................. 43 Metamorphism ........................................... 44 Metamorphism of the Pokegama Formation .................. '. 45 Introduction ............................................. 45 Unaltered Pokegama Formation (Zone 1) .................... 45 Metamorphosed Pokegama Formation ....................... 46 Metamorphism of the Virginia Formation . 47 MINERALOGICAL CHANGES DURING PROGRESSIVE METAMORPHISM OF THE BIWABIK IRON-FORMATION ............................... 48 General Discussion .......................................... 48 Mineralogy and Composition of the Carbonates ................. 51 Methods of Study ......................................... 51 Experimental Results ......... .. 52 Composition of Cummingtonite-Grunerite Amphiboles ........... 64 CONTENTS XI Compositions of Coexisting Grunerite and Carbonates ........... 67 Changes in the Organic Material during Metamorphism . .. 69 CHARACTER OF PROGRESSIVE METAMORPHISM OF THE BIWABIK IRON-FORMATION ............................... 73 Nature of the Biwabik Iron-formation before Intrusion of the Duluth Gabbro Complex . .. 73 Nature of Metamorphism of the Biwabik Iron-formation ... 74 Mineral Assemblages and Isograds in the Metamorphosed Biwabik Iron-formation ................................. 76 Mineral Assemblages in Cherty and Slaty Taconite . .. 76 Mineralogical Isograds in the Biwabik Iron-formation .......... 81 CONDITIONS DURING lVIETAMORPHISM .................. ...... 85 General Discussion .............................. 85 Formation of Wollastonite. 86 Evidence from the Iron Carbonates . 87 Significance of Fayalite in Metamorphosed Iron-formation ........ 87 SUMMARY AND CONCLUSIONS. .. .... 90 REFERENCES 97 INDEX ........................................................ 101 LIST OF FIGURES 1. Geologic map of part of the Mesabi range, Minnesota 8 2. Generalized stratigraphic section of the Biwabik Iron-formation.. 12 3. Generalized geologic map of part of the Mesabi range, showing lo­ cation of samples and boundaries of the four metamorphic zones distinguished in this study . .. 15 4. Greenalite granule taconite from unaltered Biwabik Iron-forma- tion (Zone 1) ............................................. 20 5. Greenalite granule taconite from unaltered Biwabik Iron-forma- tion (Zone 1) ............................................. 20 XII METAMORPHISM OF THE BIWABIK IRON-FORMATION 6. Stilpnomelane granule taconite from unaltered Biwabik Iron-for- mation (Zone 1) ........................................... 21 7. Intense replacement of greenalite granule taconite by minneso- taite in unaltered Biwabik Iron-formation (Zone 1) ............ 2:3 8. Strong replacement of granule taconite by carbonate in unaltered Biwabik Iron-formation (Zone 1) ............................ 2:3 9. Ankerite-rich cherty taconite from unaltered Biwabik Iron-forma- tion (Zone 1) ............................................. 25 10. Strong replacement of silicate granule taconite by coarse-grained ankerite in unaltered Biwabik Iron-formation (Zone 1) ........ 25 11. Strong replacement of silicate granule taconite by magnetite in unaltered Biwabik Iron-formation (Zone 1) .................. 26 12. Finely laminated slaty taconite composed of alternating carbonate­ and silicate-rich bands, in unaltered Biwabik Iron-formation (Zone 1) ....................................................... 28 IS.
Recommended publications
  • Hydrothermal and Metamorphic Berthierine
    n27 CanadianMineralogist Vol. 30,pp. 1127-1142 (1992) HYDROTHERMALAND METAMORPHICBERTHIERINE FROM THE KIDD CREEK VOLCANOGENICMASSTVE SULFIDE DEPOSIT. TIMMINS, ONTARIO JOHNF.SLACK U.S.Geological Survey, Nationnl Center, Mail Stop954, Reston, Virginia 22092, U.S.A. WEI-TEH JIANG ANDDONALD R. PEACOR Depamnent of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. PATRICKM. OKITA* U.S.Geological Survey, National Center,Mail Stop954, Reston,Virginia 22092,U.S.A. ABSTRACT Berthierine,a 7 A pe-Al memberof the serpentinegroup, occursin the footwall stringerzone of the ArcheanKidd Creek massivesulfide deposit, Ontario, associated with quartz,muscovite, chlorite, pyrite, sphalerite,chalcopyrite, and local tourmaline' cassiterite,and halloysite. Berthierine has been identified by the lack of 14A basalreflections on X-ray powderdiffractionpattems, by its composition (electron-microprobedata), and by transmissionelectron microscopy (TEM). Peoogaphic and scanning eiectronmicroscopic (SEM) studiesreveal different types of berthierineocculrences, including interlayerswithin and rims on deformedchlorite, intergrowthswith muscoviteand halloysite,and discretecoarse grains. TEM imagesshow thick packetsof berthierineand chlorite that are parallel or relatedby low-angle boundaries,and layer terminationsof chlorite by berthierine; mixedJayer chlorite-berthierinealso is observed,intergrown with Fe-rich chlorite and berthierine.End-member (Mg-free) berthierineis presentin small domainsin two samples.The Kidd Creekberthierine is chemicallysimilar
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Far-Infrared Spectra of Hydrous Silicates at Low Temperatures Providing Laboratory Data for Herschel and ALMA
    A&A 492, 117–125 (2008) Astronomy DOI: 10.1051/0004-6361:200810312 & c ESO 2008 Astrophysics Far-infrared spectra of hydrous silicates at low temperatures Providing laboratory data for Herschel and ALMA H. Mutschke1,S.Zeidler1, Th. Posch2, F. Kerschbaum2, A. Baier2, and Th. Henning3 1 Astrophysikalisches Institut, Schillergässchen 2-3, 07745 Jena, Germany e-mail: [mutschke;sz]@astro.uni-jena.de 2 Institut für Astronomie, Türkenschanzstraße 17, 1180 Wien, Austria e-mail: [email protected] 3 Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] Received 2 June 2008 / Accepted 4 September 2008 ABSTRACT Context. Hydrous silicates occur in various cosmic environments, and are among the minerals with the most pronounced bands in the far infrared (FIR) spectral region. Given that Herschel and ALMA will open up new possibilities for astronomical FIR and sub-mm spectroscopy, data characterizing the dielectric properties of these materials at long wavelengths are desirable. Aims. We aimed at examining the FIR spectra of talc, picrolite, montmorillonite, and chamosite, which belong to four different groups of phyllosilicates. We tabulated positions and band widths of the FIR bands of these minerals depending on the dust temperature. Methods. By means of powder transmission spectroscopy, spectra of the examined materials were measured in the wavelength range 25−500 μm at temperatures of 300, 200, 100, and 10 K. Results. Room-temperature measurements yield the following results. For talc, a previously unknown band, centered at 98.5 μm, was found, in addition to bands at 56.5 and 59.5 μm.
    [Show full text]
  • Strike on the Mesabi, 1907
    STRIKE on the MESABI—1907 NEIL BETTEN WHEN NEWS CAME in July, 1907, that miners along the length of the Mesabi Range had walked off the job, the state of Minnesota braced itself for all-out labor war. It was the first widespread, organized strike to occur in the iron district, and it was en­ gineered by the Western Federation of Miners, an or­ ganization associated in the public mind with names like Coeur d'Alene, Leadville, and Cripple Creek — each the scene of fierce and bloody labor struggles. In the fifteen years since 1892 the Mesabi Range had been transformed from a wilderness of wooded hills into a mining complex that produced nearly half of the nation's iron ore. The soft red hematite lying in pockets near the surface could be scooped up from A typical iron range great open pits. Into these, and into underground mine worker of the mines as well, had poured whole armies of unskilled early twentieth century workers. Youth, health, and a strong back were all that was called for — not even the language was necessary — and before long the first wave of miners, made up of Mr. Betten wrote the present article while working for his doctorate in history at the University of Minnesota. He re­ cently joined the facidty of the University of Indiana at Gary. 340 MINNESOTA History Americans, Cornishmen, French Canadians, AFL. The preamble to the WFM constitu­ Irish, Scandinavians, and some Finns, was tion declared that "the class struggle will replaced by a throng of more recent immi­ continue until the producer is recognized as grants.
    [Show full text]
  • On the Relation of Chamosite and Daphnite to the Chlorite Group. 1 (With Plates XVIII and XIX.) by A
    441 On the relation of chamosite and daphnite to the chlorite group. 1 (With Plates XVIII and XIX.) By A. F. HXLLIMOSD, M.A., Sc.D. Assistant Curator, Museum of Practical Geology, London. With chemical analyses by C. O. HARVEY, B.Sc., A.R.C.S. and X-ray measurements by F. A. BANNISTER, M.A. [Read June 9, 1938.] I. INTRODUCTION. HERE is a close optical and chemical resemblance between chamo- T site, the chloritic mineral of the bedded ironstones, and daphnite, a low-temperature vein-chlorite common in some of the Cornish tin mines. New material has made it possible to undertake a fresh com- parison of the two minerals: chemical analyses have been made by Mr. C. O. Harvey, chemist to H.M. Geological Survey, and a report on the X-ray measurements is contributed by Mr. F. A. Bannister, of the Mineral Department of the British Museum. The new analysis of chamosite agrees with the simple formula pre- viously assigned: X-ray examination of material from several localities has now established the distinctive crystalline nature of this fine-grained mineral, which differs structurally from ordinary chlorites such as clinochlore. Daphnite, on the other hand, has the ordinary chlorite structure, but the new analysis hilly confirms Tschermak's original opinion that it cannot be represented chemically as a mixture of serpen- tine and amesite. In attempting a comparison with chlorite analyses already published, great difficulty arises from the confused nomenclature. In order to ascertain the nearest chemically allied chlorites to those under dis- cussion, a representative number of selected chlorite analyses have been plotted on a diagram with co-ordinates proportional to R2Oa/SiO2 and RO/Si02.
    [Show full text]
  • The Ore and Gangue Mineralogy of the Newly Discovered Federation Massive Sulfide Deposit, Central New South Wales, Australia †
    Proceedings The Ore and Gangue Mineralogy of the Newly Discovered Federation Massive Sulfide Deposit, Central New South Wales, Australia † Khalid Schellen 1, Ian T. Graham 1,*, Adam McKinnon 2, Karen Privat 1,3 and Christian Dietz 4 1 School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; [email protected] (K.S); [email protected] (K.P.) 2 Aurelia Metals Limited, Level 17, 144 Edward Street, Brisbane, QLD 4000, Australia; [email protected] 3 Electron Microscope Unit, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia 4 Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-435-296-555 † Presented at the 2nd International Electronic Conference on Mineral Science, 1–15 March 2021; Available online: https://iecms2021.sciforum.net/. Abstract: The newly discovered Federation deposit, with a resource estimate of 2.6 Mt @ 7.7% Pb, 13.5% Zn, 0.8 g/t Au, and 9 g/t Ag, lies 10 km south of the Hera deposit within the Cobar Basin of the Lachlan Orogen. Located just north of the Erimeran Granite contact and between the Lower Amphitheatre Group and underlying shallow marine Mouramba Group Roset Sandstone, the host siltstones and sandstones have been brecciated, intensely silicified, and chloritized close to miner- alization. Oriented in an overall east-northeast strike and with a steep south-southeast dip, the silt- stones mainly comprise quartz, clinochlore, biotite, and muscovite. Federation also has highly frag- mented zones with breccia and vein-fill of calcite.
    [Show full text]
  • The Role of Ferrous Clays in the Interpretation of Wettability – a Case Study
    SCA2018-019 1/12 THE ROLE OF FERROUS CLAYS IN THE INTERPRETATION OF WETTABILITY – A CASE STUDY Velazco M.A, Bruce A., Ferris M, Reed J., Kandasamy R. Lloyd’s Register Energy Consultancy, Rock Properties Group, Aberdeen, UK This paper was prepared for presentation at the International Symposium of the Society of Core Analysts held in Trondheim, Norway, 27-30 August 2018 ABSTRACT Clean sandstone, with minimal clay content, is expected to be strongly water wet once the rock has been through an effective cleaning process. Even samples containing significant clay minerals are usually expected to be water wet after appropriate cleaning. However, tests carried out on core samples from Fields in three different global locations show mixed indices, even for clean state samples where no aging with crude oil has taken place. A few hypotheses for this behaviour considered herein are: whether the cleaning method was adequate, whether wettability was altered by an external factor, or if wettability was due to mineral composition. This paper presents the results obtained from wettability studies on fresh, clean and restored state core plug samples from three different Fields. Wettability indices were obtained by using the combined Amott-USBM method. Petrography was performed on sample end-trims to investigate the possible presence of halite or barite in the clean state samples, thought to be from drilling fluid infiltration, which should have been removed by the methanol cleaning cycle. This showed no organic material or salt (halite), negating wetting change from inefficient cleaning. From a reactive clays [1] model perspective, these rock samples are considered clean-sand (i.e.
    [Show full text]
  • Isotopic and Chemical Characterization of Water from Mine Pits and Wells on the Mesabi Iron Range, Northeastern Minnesota, As a Tool for Drinking Water Protection
    Isotopic and Chemical Characterization of Water From Mine Pits and Wells on the Mesabi Iron Range, Northeastern Minnesota, as a Tool for Drinking Water Protection James F. Walsh, Minnesota Department of Health Abstract The Biwabik Iron Formation is both a world-class source of iron ore and an important aquifer for the residents of the Mesabi Iron Range in northeastern Minnesota. Numerous public water supply wells draw from this aquifer, and several communities pump directly from abandoned mine pits for their water supply. It is important that the groundwater flow characteristics of this aquifer be determined so that drinking water supplies can be protected in a technically defensible manner. The iron formation is early Proterozoic in age and consists primarily of fine-grained silica and iron minerals that were deposited as chemical sediments in a marine environment. The unit has little primary porosity. Groundwater flow through the aquifer is controlled predominantly by secondary features such as folds, high- angle faults, joints, and man-made mining structures. Efforts at delineating source water protection areas on the Mesabi Range have been complicated by the extremely heterogeneous and anisotropic nature of porosity in the Biwabik Iron Formation aquifer. In the absence of reliable groundwater flow models for this type of setting, isotopic and chemical studies have been emphasized, in addition to hydrogeologic mapping. Conservative environmental tracers such as chloride and the stable isotopes of oxygen and hydrogen have proved useful for 1) identifying wells that are receiving recharge from mine pits, 2) characterizing the tracer signature of those mine pits that may represent recharge areas for nearby public supply wells, and 3) quantifying the significance of these recharge areas for the purpose of targeting source water protection efforts.
    [Show full text]
  • Mining on the Mesabi Iron Range?
    What’s Happening in Mining on the Mesabi Iron Range? Dan Jordan Mining & Minerals Program Supervisor Iron Range Resources Projects that must go through Environmental Review lvpmn.org 23 Project locations 13 Developers $6 billion dollars = Approximate total value of all projects Large Scale Developments 2005 - 2011 The Iron Range has a history of large scale projects that can transform the landscape. But, not since the 1960’s and early 1970’s has the region seen so many large scale projects under consideration all at the same time • Excelsior Energy Project $2,000,000,000 • Minnesota Steel Industries project in Nashwauk $1,650,000,000 • Machine #7 at the UPM paper mill in Grand Rapids $650,000,000 • Franconia Minerals – Birch Lake & Maturi Extension $616,000,000 • PolyMet’s NorthMet Project $380,000,000 • Keetac Plant Expansion $300,000,000 • Mesabi Nugget Production Scale Plant in Hoyt Lakes $235,000,000 • Taconite Plant Capacity Expansion $275,000,000 & Alternate Energy Improvements • MP Allete Clay Boswell Unit 3 Retrofit $200,000,000 • Laurentian Energy Project for Hibbing and Virginia $80,000,000 Total $6,386,000,000 Currently 6 Taconite Mines are in operation in Minnesota 2004 Foreign ownership: Stelco 14.7% of HibTac Today: Global ownership & competition United States Steel 2007 Name Production Employees Ownership Million Tons Minntac 12.751 1210 US Steel Corp. Keewatin Taconite 5.220 385 US Steel Corp. Managed by Cleveland Cliffs Mining Co. 2007 Name Production Emp. Ownership Million Tons ArcelorMittal 62.3% Hibbing 7.266 689 U S Steel Corp. 14.7% Taconite Cleveland-Cliffs 25% Northshore 4.975 511 Cleveland-Cliffs 100% Mining United Cleveland-Cliffs 70% 5.279 431 Taconite Laiwu Steel Group 30% 2007 Name Production Emp Ownership Million Tons ArcelorMittal 2.708 533 ArcelorMittal 100% Minorca Mine Inc.
    [Show full text]
  • Minnesota Statewide Historic Railroads Study Final MPDF
    St. Michael Big Marine ! ! Anoka Lake ! Berning Mill !Rogers Champlin ! Anoka HennepinMis siss Fletcher ip Maple Island ! pi ! R Lino Lakes ! i Centerville v ! er ! on Hanover ! Hugo ti Wright ! Coon Creek Maple Grove ! Hennepin arnelian Junc rcola Anoka Withrow C ! A Burschville ! ! ! !Osseo Ramsey te Bear Beach Whi ! Bald Eagle ! !Dupont !Corcoran !Brooklyn Park on ! ! Dellwood Rockford ! Fridley White di ! White me ! C Bear luth Juncti Lake Sarah ardigan Bear ahto ! Du ! Lake !M Lake !Leighton New Junction Vadnais Heights ! Stillwater ! Columbia Brighton ! ! Lor ! ! ood Heights etto rchw ! ! Bi Hamel ! ! ! Little Canada Medi Robbinsdale North c Bayport ine La ! ! Ditter ! St. Paul S Lon ! t Roseville . ! C gL r Maple Plain k Golden Gloster o e ! a i k ! Valley ! x e ! ! Lake Elmo R i Lyndale ! ! v ! Oakdale e ! r ! Midvale Ramsey ! Wayzata Washington Minneapolis Spring P Minnet ! onka Saint Paul St. D ! ! M . Oakbury Lakeland ! ark Lake ills ! Mound ! ! Louis D ! Minnetonka ! D . ! Park ! . ! . ! ! D . Deephaven ! ! ! West Highwood . ! Hopkins ! D St. Paul ! Glen Lake . ! ! ! Afton D ! St. Bonifacius M ! Excelsior . .! is Oak Terrace! South s ! i s s D ! St. Paul .! ! Fort . i ! Mendota . p Carver p Snelling . ! i D . ! Waconia R iver Newport ! D Chanhassen .! D ! ! Atwood D !Victoria Inver Grove ! ! D Eden Prairie .! St. Paul Cottage Grove ! !D Park .! Oxboro ! Bl oo D Hennep Bloomington .! mington Ferry ! ! Nicols Wescott ! D . ! in ! er . ! iv ! Augusta ta R ! Langdon ! so D nne . ! i ! ! M D Map adapted from the MN DNR divison of Fish and Wildlife 100k Lakes and Rivers and 100k Hydrography, Railroad Commissioners Map of Minnesota, 1930, and MN DOT Abandonded Railroads GIS data.
    [Show full text]
  • Phyllosilicates in the Sediment-Forming Processes: Weathering, Erosion, Transportation, and Deposition
    Acta Geodyn. Geomater., Vol. 6, No. 1 (153), 13–43, 2009 PHYLLOSILICATES IN THE SEDIMENT-FORMING PROCESSES: WEATHERING, EROSION, TRANSPORTATION, AND DEPOSITION Jiří KONTA Faculty of Sciences, Charles University, Albertov 6, 128 43 Prague 2 Home address: Korunní 127, 130 00 Prague 3, Czech Republic *Corresponding author‘s e-mail: [email protected] (Received October 2008, accepted January 2009) ABSTRACT Phyllosilicates are classified into the following groups: 1 - Neutral 1:1 structures: the kaolinite and serpentine group. 2 - Neutral 2:1 structures: the pyrophyllite and talc group. 3 - High-charge 2:1 structures, non-expansible in polar liquids: illite and the dioctahedral and trioctahedral micas, also brittle micas. 4 - Low- to medium-charge 2:1 structures, expansible phyllosilicates in polar liquids: smectites and vermiculites. 5 - Neutral 2:1:1 structures: chlorites. 6 - Neutral to weak-charge ribbon structures, so-called pseudophyllosilicates or hormites: palygorskite and sepiolite (fibrous crystalline clay minerals). 7 - Amorphous clay minerals. Order-disorder states, polymorphism, polytypism, and interstratifications of phyllosilicates are influenced by several factors: 1) a chemical micromilieu acting during the crystallization in any environment, including the space of clay pseudomorphs after original rock-forming silicates or volcanic glasses; 2) the accepted thermal energy; 3) the permeability. The composition and properties of parent rocks and minerals in the weathering crusts, the elevation, and topography of source areas and climatic conditions control the intensity of weathering, erosion, and the resulting assemblage of phyllosilicates to be transported after erosion. The enormously high accumulation of phyllosilicates in the sedimentary lithosphere is primarily conditioned by their high up to extremely high chemical stability in water-rich environments (expressed by index of corrosion, IKO).
    [Show full text]
  • Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications
    minerals Review Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications Marina Fomina * and Iryna Skorochod Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, 03143 Kyiv, Ukraine; [email protected] * Correspondence: [email protected] Received: 13 August 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Clay minerals are very common in nature and highly reactive minerals which are typical products of the weathering of the most abundant silicate minerals on the planet. Over recent decades there has been growing appreciation that the prime involvement of clay minerals in the geochemical cycling of elements and pedosphere genesis should take into account the biogeochemical activity of microorganisms. Microbial intimate interaction with clay minerals, that has taken place on Earth’s surface in a geological time-scale, represents a complex co-evolving system which is challenging to comprehend because of fragmented information and requires coordinated efforts from both clay scientists and microbiologists. This review covers some important aspects of the interactions of clay minerals with microorganisms at the different levels of complexity, starting from organic molecules, individual and aggregated microbial cells, fungal and bacterial symbioses with photosynthetic organisms, pedosphere, up to environmental and biotechnological implications. The review attempts to systematize our current general understanding of the processes of biogeochemical transformation of clay minerals by microorganisms. This paper also highlights some microbiological and biotechnological perspectives of the practical application of clay minerals–microbes interactions not only in microbial bioremediation and biodegradation of pollutants but also in areas related to agronomy and human and animal health.
    [Show full text]