The Generation of Knowledge Through Experimentation in Fundamental Physics: the Case of Gravity Probe B

Total Page:16

File Type:pdf, Size:1020Kb

The Generation of Knowledge Through Experimentation in Fundamental Physics: the Case of Gravity Probe B ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en TESI DOCTORAL The Generation of Knowledge through Experimentation in Fundamental Physics: The Case of Gravity Probe B Autor: Director de Tesi: Christopher EVANS Dr. H Carl HOEFER Signat: Signat: Tutor: Dr. Thomas STURM Aquesta tesi es ofereix d’acord amb els requeriments del Doctorat en Filosofia del Departament de Filosofia de la Facultat de Filosofia i Lletres Setembre de 2016 iii CERTIFICADO DE DIRECCIÓN Título de la tesis doctoral: The Generation of Knowledge through Experimentation in Fundamental Physics: The Case of Gravity Probe B Director de la tesis: Dr. H Carl HOEFER Doctorando: Christopher EVANS Programa de doctorado: DOCTORADO EN FILOSOFÍA del DEPARTAMENTO DE FILOSOFÍA de la FACULTAD DE FILOSOFÍA Y LETRAS Universitat Autònoma de Barcelona Visto bueno del director de la tesis. Firmado en Barcelona, el 26 de septiembre de 2016: H Carl HOEFER v UNIVERSITAT AUTÒNOMA DE BARCELONA Resumen Facultat de Filosofia i Lletres Departament de Filosofia Doctorat en Filosofia La Generación de Conocimiento a través de la Experimentación en la Física Fundamental: El Caso de "Gravity Probe B" escrito por Christopher EVANS En el presente trabajo analizo desde un punto de vista crítico el episodio que representa “Gravity Probe B” (GP-B) (La Sonda de la Gravedad B) en la historia de la experimentación en la física fundamental. Anunciado como una “Prueba del Universo de Einstein”, GP-B fue un experimento para ex- aminar predicciones de la teoría general de la relatividad (TGR) que duró 50 años. GP-B nació en Stanford University, en el momento que el principio de la tecnología de satélites lo convirtió en una posibilidad y se convirtió en el proyecto más longevo de la NASA: los resultados finales se publicaron en el año 2011. Siguiendo el diseño original de 1960, GP-B pretendió medir el arrastramiento del marco espaciotemporal y el efecto geodésico sobre un giroscopio en órbita alrededor de la tierra en un satélite funcionando en modo “drag-free” (sin resistencia). Siguiendo una órbita puramente gravitacional, junto con el giroscopio y los magnetómetros formados por dispositivos super- conductores de interferencia cuántica, la nave espacial contenía un telescopio que rastreaba una estrella guía como punto de referencia. La misión espacial empezó en el 2004 y concluyó en el 2005 con el objetivo de medir el cambio en la orientación del eje de giro de los giroscopios, relativo al inmóvil espacio inercial, con una precisión de 0.5 milésimas de un segundo de arco (∼ 10−7 vi grados) a lo largo de un año. Para realizar el experimento fue necesario desar- rollar varias tecnologías completamente novedosas, y los sistemas de abordo diseñados establecieron varios récords por ser los sistemas más cerca de la perfección diseñados jamás. (GP-B) representa una oportunidad única para analizar cómo funcionan los experimentos científicos extremos y una gran oportunidad de estudiar los esfuerzos para generar conocimiento acerca de la TRG basado en la experimentación. GP-B se encontró con serias dificultades durante la ejecución, con importantes anomalías y un ruido excesivo en los datos. El equipo se vio obligado a desarrollar controvertidos métodos nuevos para analizar los datos que se obtuvieron. Inicialmente presento tanto la física relevante a la aproximación específica a la TRG apropiada para analizar la gravitación en el sistema solar (el marco posnewtoniano de parametrización) como la historia de la confirmación de TRG. Después de presentar GP-B y sus objetivos, introduzco el marco analítico que adopto para examinar los resultados y conclusiones que el equipo logró. Utilizo el trabajo de James Woodward y Deborah Mayo, combinándolo en una perspectiva basada en tres puntos: los datos observados pueden ser evidencia para fenómenos teóricos subyacentes; la experimentación hace lo posible para rastrear la veracidad de las hipótesis a través de la sensibilidad contrafáctica de los datos a las afirmaciones teóricas; y para que los datos valgan como evidencia a favor de un fenómeno, la prueba que represente el encaje de estos con las predicciones de las hipótesis examinadas debe ser severo, aunque no necesariamente rep- resente un uso novedoso de los datos. Destaco muchas preocupaciones con el análisis de los datos producidos por GP-B, pero a través de mi análisis basada en este marco, mi conclusión es que las afirmaciones del equipo de GP-B son perfectamente válidas. También indico que este episodio demuestra que puede ser importante que los científicos adopten las perspectivas más sofisticadas propuestas por filósofos en lugar de contar con los más comunes acercamientos epistemológicos. Finalmente, indico que a pesar de la posi- bilidad de que el conocimiento generado no sea del todo sólido e inmóvil, y que algún día pueda revisarse, cumple con los requisitos más estrictos que la sociedad normalmente pide de las conclusiones de la investigación. vii UNIVERSITAT AUTÒNOMA DE BARCELONA Abstract Facultat de Filosofia i Lletres Departament de Filosofia Doctorat en Filosofia The Generation of Knowledge through Experimentation in Fundamental Physics: The Case of Gravity Probe B by Christopher EVANS In this thesis, I critically analyse Gravity Probe B (GP-B) as an extraordinary episode in the history of experimentation in fundamental physics. Billed as “Testing Einstein’s Universe,” GP-B was a 50-year-long experiment to test crucial predictions of the General Theory of Relativity (GTR). GP-B started life at Stanford University when satellite technology first made the “Relativity Gyroscope Experiment” feasible and it went on to become the longest running mission in NASA’s history; final results were published in 2011. Following the original design published in 1960, GP-B set out to measure frame dragging (also known as the Lense-Thirring effect) and the geodetic (or de Sitter) effect on a superconducting gyroscope orbiting the Earth in a “drag-free” satellite. Essentially executing a purely gravitational orbit, together with the science instrument assembly containing the (multiple) gyroscope(s) and supercon- ducting quantum interference devices used as magnetometers, the spacecraft housed a telescope trained on a reference “guide star”. The mission flew from 2004 to 2005 and aimed to measure the change in the orientation of the spin axis of the gyroscopes, relative to “fixed” inertial space identified using the guide star, to within 0.5 milliarcseconds (∼ 10−7 degrees) over the year-long experiment. The experiment required the development of several viii completely new technologies before it could be performed and the on-board systems broke numerous records as the most nearly perfect and most sensitive systems created. It represents a unique opportunity to analyse the workings of scientific experimentation taken to the extreme and a rare chance to examine efforts to generate knowledge based on experimental GTR: one of our two current fundamental physics theories. GP-B encountered serious problems during execution of the space mission with major anomalies and excessive noise in the data collected. The team was forced to develop controversial new data analysis methods to attempt to salvage meaningful results from the unexpected and unrepeatable dataset they retrieved. I initially present both the physics of GTR in the specific weak gravity approximation appropriate for analysing gravitational effects within the Solar System (the parametrised post-Newtonian framework) and the prior history of confirmation of GTR. After presenting GP-B and its aims, I then introduce the analytical framework that I adopt to examine the claims made by the team regarding their data analysis and eventual findings. I draw heavily on work by James Woodward and Deborah Mayo, among others, and combine this into a 3-point approach: observed data can act as evidence for underlying theoretical phenomena; experimentation contrives to track the truth of hypotheses via the counter- factual sensitivity of the data produced by the specific experimental set-up to those theoretical claims; and for data to count as evidence in favour of a phenomenon, the test that the match between them and the predictions of the hypothesis being examined represents must be severe, although not necessar- ily entail novel use of the data. I highlight many worries with the GP-B data analysis, but through analysing it within this framework, I conclude that the claims of the GP-B team are valid. I also indicate that the episode shows how it can be important for working scientists to adopt the more sophisticated approaches advocated by some philosophers rather than relying on more typical epistemological attitudes found in 20th century textbooks. I close by noting that although the knowledge gained may not be unshakeably solid and is open to future revision, it fulfils the strictest demands normally placed by society on the conclusions of investigation. ix Acknowledgements First and foremost I would like to thank my supervisor, Carl Hoefer, for his limitless help and encouragement, as well as his patience; I don’t feel I need to say that without him this project would never have got off the ground and much less have been brought to a satisfying close. Thanks also to Thomas Sturm for stepping in and agreeing to be my tutor over the last year of my work to produce this thesis; but maybe much more importantly, for encouraging me to continue with my research when I had almost abandoned it and always expressing his faith in me.
Recommended publications
  • 5-Dimensional Space-Periodic Solutions of the Static Vacuum Einstein Equations
    5-DIMENSIONAL SPACE-PERIODIC SOLUTIONS OF THE STATIC VACUUM EINSTEIN EQUATIONS MARCUS KHURI, GILBERT WEINSTEIN, AND SUMIO YAMADA Abstract. An affirmative answer is given to a conjecture of Myers concerning the existence of 5-dimensional regular static vacuum solutions that balance an infinite number of black holes, which have Kasner asymp- totics. A variety of examples are constructed, having different combinations of ring S1 × S2 and sphere S3 cross-sectional horizon topologies. Furthermore, we show the existence of 5-dimensional vacuum solitons with Kasner asymptotics. These are regular static space-periodic vacuum spacetimes devoid of black holes. Consequently, we also obtain new examples of complete Riemannian manifolds of nonnegative Ricci cur- vature in dimension 4, and zero Ricci curvature in dimension 5, having arbitrarily large as well as infinite second Betti number. 1. Introduction The Majumdar-Papapetrou solutions [14, 16] of the 4D Einstein-Maxwell equations show that gravi- tational attraction and electro-magnetic repulsion may be balanced in order to support multiple black holes in static equilibrium. In [15], Myers generalized these solutions to higher dimensions, and also showed that such balancing is also possible for vacuum black holes in 4 dimensions if an infinite number are aligned properly in a periodic fashion along an axis of symmetry; these 4-dimensional solutions were later rediscovered by Korotkin and Nicolai in [11]. Although the Myers-Korotkin-Nicolai solutions are not asymptotically flat, but rather asymptotically Kasner, they play an integral part in an extended version of static black hole uniqueness given by Peraza and Reiris [17]. It was conjectured in [15] that these vac- uum solutions could be generalized to higher dimensions, possibly with black holes of nontrivial topology.
    [Show full text]
  • Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
    Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings.
    [Show full text]
  • Supergravity Pietro Giuseppe Frè Dipartimento Di Fisica Teorica University of Torino Torino, Italy
    Gravity, a Geometrical Course Pietro Giuseppe Frè Gravity, a Geometrical Course Volume 2: Black Holes, Cosmology and Introduction to Supergravity Pietro Giuseppe Frè Dipartimento di Fisica Teorica University of Torino Torino, Italy Additional material to this book can be downloaded from http://extras.springer.com. ISBN 978-94-007-5442-3 ISBN 978-94-007-5443-0 (eBook) DOI 10.1007/978-94-007-5443-0 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012950601 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • What Is Gravity Probe B? a Quest for Experimental Truth the GP-B Flight
    What is Gravity Probe B? than Gravity Probe B. It’s just a star, a telescope, and a spinning sphere.” However, it took the exceptional collaboration of Stanford, Gravity Probe B (GP-B) is a NASA physics mission to experimentally MSFC, Lockheed Martin and a host of others more than four decades investigate Einstein’s 1916 general theory of relativity—his theory of gravity. to develop the ultra-precise gyroscopes and the other cutting- GP-B uses four spherical gyroscopes and a telescope, housed in a satellite edge technologies necessary to carry out this “simple” experiment. orbiting 642 km (400 mi) above the Earth, to measure, with unprecedented accuracy, two extraordinary effects predicted by the general theory of rela- The GP-B Flight Mission & Data Analysis tivity: 1) the geodetic effect—the amount by which the Earth warps the local spacetime in which it resides; and 2) the frame-dragging effect—the amount On April 20, 2004 at 9:57:24 AM PDT, a crowd of over 2,000 current and by which the rotating Earth drags its local spacetime around with it. GP-B former GP-B team members and supporters watched and cheered as the tests these two effects by precisely measuring the precession (displacement) GP-B spacecraft lifted off from Vandenberg Air Force Base. That emotionally angles of the spin axes of the four gyros over the course of a year and com- overwhelming day, culminating with the extraordinary live video of paring these experimental results with predictions from Einstein’s theory. the spacecraft separating from the second stage booster meant, as GP-B Program Manager Gaylord Green put it, “that 10,000 things went right.” A Quest for Experimental Truth Once in orbit, the spacecraft first underwent a four-month Initialization The idea of testing general relativity with orbiting gyroscopes was sug- and Orbit Checkout (IOC), in which all systems and instruments were gested independently by two physicists, George Pugh and Leonard Schiff, initialized, tested, and optimized for the data collection to follow.
    [Show full text]
  • SEER for Hardware's Cost Model for Future Orbital Concepts (“FAR OUT”)
    Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com SEER for Hardware’s Cost Model for Future Orbital Concepts (“FAR OUT”) Lee Fischman ISPA/SCEA Industry Hills 2008 Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Introduction A model for predicting the cost of long term unmanned orbital spacecraft (Far Out) has been developed at the request of AFRL. Far Out has been integrated into SEER for Hardware. This presentation discusses the Far Out project and resulting model. © 2008 Galorath Incorporated Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Goals • Estimate space satellites in any earth orbit. Deep space exploration missions may be considered as data is available, or may be an area for further research in Phase 3. • Estimate concepts to be launched 10-20 years into the future. • Cost missions ranging from exploratory to strategic, with a specific range decided based on estimating reliability. The most reliable estimates are likely to be in the middle of this range. • Estimates will include hardware, software, systems engineering, and production. • Handle either government or commercial missions, either “one-of-a-kind” or constellations. • Be used in a “top-down” manner using relatively less specific mission resumes, similar to those available from sources such as the Earth Observation Portal or Janes Space Directory. © 2008 Galorath Incorporated Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Challenge: Technology Change Over Time Evolution in bus technologies Evolution in payload technologies and performance 1.
    [Show full text]
  • Tests of General Relativity - Wikipedia
    12/2/2018 Tests of general relativity - Wikipedia Tests of general relativity T ests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift. The precession of Mercury was already known; experiments showing light bending in line with the predictions of general relativity was found in 1919, with increasing precision measurements done in subsequent tests, and astrophysical measurement of the gravitational redshift was claimed to be measured in 1925, although measurements sensitive enough to actually confirm the theory were not done until 1954. A program of more accurate tests starting in 1959 tested the various predictions of general relativity with a further degree of accuracy in the weak gravitational field limit, severely limiting possible deviations from the theory. In the 197 0s, additional tests began to be made, starting with Irwin Shapiro's measurement of the relativistic time delay in radar signal travel time near the sun. Beginning in 197 4, Hulse, Taylor and others have studied the behaviour of binary pulsars experiencing much stronger gravitational fields than those found in the Solar System. Both in the weak field limit (as in the Solar System) and with the stronger fields present in systems of binary pulsars the predictions of general relativity have been extremely well tested locally. In February 2016, the Advanced LIGO team announced that they had directly detected gravitational waves from a black hole merger.[1] This discovery, along with additional detections announced in June 2016 and June 2017 ,[2] tested general relativity in the very strong field limit, observing to date no deviations from theory.
    [Show full text]
  • VLBI for Gravity Probe B. VII. the Evolution of the Radio Structure Of
    Accepted to the Astrophysical Journal Supplement Series VLBI for Gravity Probe B. VII. The Evolution of the Radio Structure of IM Pegasi M. F. Bietenholz1,2, N. Bartel1, D. E. Lebach3, R. R. Ransom1,4, M. I. Ratner3, and I. I. Shapiro3 ABSTRACT We present measurements of the total radio flux density as well as very-long-baseline interferometry (VLBI) images of the star, IM Pegasi, which was used as the guide star for the NASA/Stanford relativity mission Gravity Probe B. We obtained flux densities and images from 35 sessions of observations at 8.4 GHz (λ = 3.6 cm) between 1997 January and 2005 July. The observations were accurately phase-referenced to several extragalactic reference sources, and we present the images in a star-centered frame, aligned by the position of the star as derived from our fits to its orbital motion, parallax, and proper motion. Both the flux density and the morphology of IM Peg are variable. For most sessions, the emission region has a single-peaked structure, but 25% of the time, we observed a two-peaked (and on one occasion perhaps a three-peaked) structure. On average, the emission region is elongated by 1.4 ± 0.4 mas (FWHM), with the average direction of elongation being close to that of the sky projection of the orbit normal. The average length of the emission region is approximately equal to the diameter of the primary star. No significant correlation with the orbital phase is found for either the flux density or the direction of elongation, and no preference for any particular longitude on the star is shown by the emission region.
    [Show full text]
  • Global Program
    PROGRAM Monday morning, July 13th La Sapienza Roma - Aula Magna 09:00 - 10:00 Inaugural Session Chairperson: Paolo de Bernardis Welcoming addresses Remo Ruffini (ICRANet), Yvonne Choquet-Bruhat (French Académie des Sciences), Jose’ Funes (Vatican City), Ricardo Neiva Tavares (Ambassador of Brazil), Sargis Ghazaryan (Ambassador of Armenia), Francis Everitt (Stanford University) and Chris Fryer (University of Arizona) Marcel Grossmann Awards Yakov Sinai, Martin Rees, Sachiko Tsuruta, Ken’Ichi Nomoto, ESA (acceptance speech by Johann-Dietrich Woerner, ESA Director General) Lectiones Magistrales Yakov Sinai (Princeton University) 10:00 - 10:35 Deterministic chaos Martin Rees (University of Cambridge) 10:35 - 11:10 How our understanding of cosmology and black holes has been revolutionised since the 1960s 11:10 - 11:35 Group Picture - Coffee Break Gerard 't Hooft (University of Utrecht) 11:35 - 12:10 Local Conformal Symmetry in Black Holes, Standard Model, and Quantum Gravity Plenary Session: Mathematics and GR Katarzyna Rejzner (University of York) 12:10 - 12:40 Effective quantum gravity observables and locally covariant QFT Zvi Bern (UCLA Physics & Astronomy) 12:40 - 13:10 Ultraviolet surprises in quantum gravity 14:30 - 18:00 Parallel Session 18:45 - 20:00 Stephen Hawking (teleconference) (University of Cambridge) Public Lecture Fire in the Equations Monday afternoon, July 13th Code Classroom Title Chairperson AC2 ChN1 MHD processes near compact objects Sergej Moiseenko FF Extended Theories of Gravity and Quantum Salvatore Capozziello, Gabriele AT1 A Cabibbo Cosmology Gionti AT3 A FF3 Wormholes, Energy Conditions and Time Machines Francisco Lobo Localized selfgravitating field systems in the AT4 FF6 Dmitry Galtsov, Michael Volkov Einstein and alternatives theories of gravity BH1:Binary Black Holes as Sources of Pablo Laguna, Anatoly M.
    [Show full text]
  • Equivalence Principle (WEP) of General Relativity Using a New Quantum Gravity Theory Proposed by the Authors Called Electro-Magnetic Quantum Gravity Or EMQG (Ref
    WHAT ARE THE HIDDEN QUANTUM PROCESSES IN EINSTEIN’S WEAK PRINCIPLE OF EQUIVALENCE? Tom Ostoma and Mike Trushyk 48 O’HARA PLACE, Brampton, Ontario, L6Y 3R8 [email protected] Monday April 12, 2000 ACKNOWLEDGMENTS We wish to thank R. Mongrain (P.Eng) for our lengthy conversations on the nature of space, time, light, matter, and CA theory. ABSTRACT We provide a quantum derivation of Einstein’s Weak Equivalence Principle (WEP) of general relativity using a new quantum gravity theory proposed by the authors called Electro-Magnetic Quantum Gravity or EMQG (ref. 1). EMQG is manifestly compatible with Cellular Automata (CA) theory (ref. 2 and 4), and is also based on a new theory of inertia (ref. 5) proposed by R. Haisch, A. Rueda, and H. Puthoff (which we modified and called Quantum Inertia, QI). QI states that classical Newtonian Inertia is a property of matter due to the strictly local electrical force interactions contributed by each of the (electrically charged) elementary particles of the mass with the surrounding (electrically charged) virtual particles (virtual masseons) of the quantum vacuum. The sum of all the tiny electrical forces (photon exchanges with the vacuum particles) originating in each charged elementary particle of the accelerated mass is the source of the total inertial force of a mass which opposes accelerated motion in Newton’s law ‘F = MA’. The well known paradoxes that arise from considerations of accelerated motion (Mach’s principle) are resolved, and Newton’s laws of motion are now understood at the deeper quantum level. We found that gravity also involves the same ‘inertial’ electromagnetic force component that exists in inertial mass.
    [Show full text]
  • Variable Planck's Constant
    Variable Planck’s Constant: Treated As A Dynamical Field And Path Integral Rand Dannenberg Ventura College, Physics and Astronomy Department, Ventura CA [email protected] [email protected] January 28, 2021 Abstract. The constant ħ is elevated to a dynamical field, coupling to other fields, and itself, through the Lagrangian density derivative terms. The spatial and temporal dependence of ħ falls directly out of the field equations themselves. Three solutions are found: a free field with a tadpole term; a standing-wave non-propagating mode; a non-oscillating non-propagating mode. The first two could be quantized. The third corresponds to a zero-momentum classical field that naturally decays spatially to a constant with no ad-hoc terms added to the Lagrangian. An attempt is made to calibrate the constants in the third solution based on experimental data. The three fields are referred to as actons. It is tentatively concluded that the acton origin coincides with a massive body, or point of infinite density, though is not mass dependent. An expression for the positional dependence of Planck’s constant is derived from a field theory in this work that matches in functional form that of one derived from considerations of Local Position Invariance violation in GR in another paper by this author. Astrophysical and Cosmological interpretations are provided. A derivation is shown for how the integrand in the path integral exponent becomes Lc/ħ(r), where Lc is the classical action. The path that makes stationary the integral in the exponent is termed the “dominant” path, and deviates from the classical path systematically due to the position dependence of ħ.
    [Show full text]
  • Time Series Analysis of Long-Term Photometry of the RS Cvn Star IM Pegasi
    Master's thesis International Master's Programme in Space Science Time series analysis of long-term photometry of the RS CVn star IM Pegasi Victor S, olea May 2013 Tutor: Doc. Lauri Jetsu Censors: Prof. Alexis Finoguenov Doc. Lauri Jetsu University of Helsinki Department of Physics P.O. Box 64 (Gustaf Hallstr¨ omin¨ katu 2a) FIN-00014 University of Helsinki Helsingin yliopisto | Helsingfors universitet | University of Helsinki Tiedekunta/Osasto | Fakultet/Sektion | Faculty Laitos | Institution | Department Faculty of Science Department of Physics Tekij¨a | F¨orfattare | Author Victor S, olea Ty¨on nimi | Arbetets titel | Title Time series analysis of long-term photometry of the RS CVn star IM Pegasi Oppiaine | L¨aro¨amne | Subject International Master's Programme in Space Science Ty¨on laji | Arbetets art | Level Aika | Datum | Month and year Sivum¨a¨ar¨a | Sidoantal | Number of pages Master's thesis May 2013 31 Tiivistelm¨a | Referat | Abstract We applied the Continuous Period Search (CPS) method to 23 years of V-band photometric data of the spectroscopic binary star IM Pegasi (primary: K2-class giant; secondary: G{ K-class dwarf). We studied the short and long-term activity changes of the light curve. Our modelling gave the mean magnitude, amplitude, period and the minima of the light curve, as well as their error estimates. There was not enough data to establish whether the long-term changes of the spot distribution followed an activity cycle. We also studied the differential rotation and detected that it was significantly stronger than expected, k ≥ 0:093. This result is based on the assumption that the law of solar differential rotation is valid also for IM Peg.
    [Show full text]
  • A Domain Wall Solution by Perturbation of the Kasner Spacetime
    A Domain Wall Solution by Perturbation of the Kasner Spacetime George Kotsopoulos 1906-373 Front St. West, Toronto, ON M5V 3R7 [email protected] and Charles C. Dyer Dept. of Physical and Environmental Sciences, University of Toronto Scarborough, and Dept. of Astronomy and Astrophysics, University of Toronto, Toronto, Canada [email protected] January 24, 2012 Received ; accepted arXiv:1201.5362v1 [gr-qc] 25 Jan 2012 –2– Abstract Plane symmetric perturbations are applied to an axially symmetric Kasner spacetime which leads to no momentum flow orthogonal to the planes of symme- try. This flow appears laminar and the structure can be interpreted as a domain wall. We further extend consideration to the class of Bianchi Type I spacetimes and obtain corresponding results. Subject headings: general relativity, Kasner metric, Bianchi Type I, domain wall, perturbation –3– 1. Finding New Solutions There are three principal exact solutions to the Einstein Field Equations (EFE) that are most relevant for the description of astrophysical phenomena. They are the Schwarzschild (internal and external), Kerr and Friedman-LeMaître-Robertson-Walker (FLRW) models. These solutions are all highly idealized and involve the introduction of simplifying assumptions such as symmetry. The technique we use which has led to a solution of the EFE involves the perturbation of an already symmetric solution (Wilson and Dyer 2007). Whereas standard perturbation techniques involve specifying the forms of the energy-momentum tensor to determine the form of the metric, we begin by defining a new metric with an applied perturbation: gab =g ˜ab + hab (1) where g˜ab is a known symmetric metric and hab is the applied perturbation.
    [Show full text]