FRACTURE NETWORKS on MARS: Preservation of Surface and Subsurface Environments at Mawrth Vallis

Total Page:16

File Type:pdf, Size:1020Kb

FRACTURE NETWORKS on MARS: Preservation of Surface and Subsurface Environments at Mawrth Vallis FRACTURE NETWORKS ON MARS: Preservation of Surface and Subsurface Environments at Mawrth Vallis Student Author Mentor Phoebe Kinzelman is a rising Briony Horgan is an assistant senior at Purdue University professor in the Department majoring in planetary science of Earth, Atmospheric, and with a minor in global liberal Planetary Sciences at Purdue arts studies. She is especially University. She received her BS interested in planetary geology in physics from Oregon State and public science policy and University in 2005 and her worked as a space policy intern PhD in astronomy and space at the National Academy of Sciences in Washington, sciences from Cornell University in 2010, then was D.C., for the summer of 2019. Kinzelman currently an Exploration Postdoctoral Fellow at Arizona State works as an ambassador for both the College of University until joining EAPS in 2014. Horgan’s Science and the Department of Earth, Atmospheric, research program uses data from NASA satellites and and Planetary Sciences (EAPS) in addition to rovers, along with lab and fieldwork back on Earth, undergraduate research and enjoys rock climbing in to understand the surface processes that have shaped her spare time. In the future, she hopes to become an Mars and the moon. She is particularly interested astronaut on Mars. in using mineralogy to investigate weathering and past surface environments on Mars as well as volcanic, sedimentary, and impact processes on both planets. Horgan is a participating scientist on NASA’s Mars Science Laboratory rover mission and a coinvestigator on NASA’s upcoming Mars 2020 rover mission, the first step toward the Mars sample return mission. 42 Journal of Purdue Undergraduate Research: Volume 9, Fall 2019 http://dx.doi.org/https://doi.org/10.5703/1288284316931 INTRODUCTION Abstract Modern Mars is cold and hyperarid, but there are Mawrth Vallis is an outfl ow channel on Mars abundant physical signs of past fl owing water, that cuts through some of the planet’s most such as valleys, deltas, outfl ow channels, and lake ancient terrains, which contain many diff erent sediments. One such sign of fl uvial activity is types of fractures. The ExoMars rover mission Mawrth Vallis, an outfl ow channel that cuts through will search for biosignatures on Mars, and some of the most ancient terrains on Mars. This this site was proposed as one of the two kind of channel formation most likely occurred fi nal candidate landing sites for the rover. A during the late Noachian era due to rare fl ooding biosignature is any object that shows evidence episodes (e.g., Carr & Head, 2010). As shown in of past or present life. Fracture networks are Figure 1, the channel is situated on the dichotomy a high priority for the mission because they boundary between the Martian highlands and might contain minerals precipitated by fl uid lowlands at ~25°N, 20°W (Bishop et al., 2008). The interaction, and these minerals could trap area around Mawrth Vallis is composed of a thick and preserve biosignatures, critical for our sequence of light-toned sedimentary layers dating understanding of ancient processes. In this from the Noachian era (~3.7 billion to 4.0 billion project, we seek to determine the distribution years ago). Orbital spectroscopy has shown that and origin of large fractures in the Mawrth these layers are clay rich, with Al-phyllosilicates and Vallis region. The Java Mission-Planning hydrated silica layered on top of Fe/Mg smectites and Analysis for Remote Sensing (JMARS) and overlaid by a partially eroded dark capping program and satellite images from the High unit (Loizeau et al., 2015). Most of the layered clay Resolution Imaging Science Experiment deposits in the area are over 200 meters thick. The (HiRISE) orbiter were both used to map clays appear to be inconsistent with hydrothermal fractures at Mawrth Vallis. Based on similar activity or groundwater, and regional extent and fractures on Earth, we have interpreted that lack of topographic infl uence suggest a surface all of the large fractures formed due to water weathering origin for the clays (Noe Dobrea et al., loss, but a rectangular shape suggests that the 2010). This layering of Al-phyllosilicates and Fe/Mg fractures formed when rocks contracted at the smectites can be attributed to a semiarid climate and surface, while curvilinear fractures formed weathering by rain that produced the paleosols seen in subaqueous sediments. After contraction, in the area today (Carter, Loizeau, Mangold, Poulet, the fractures were fi lled in by precipitated & Bibring, 2015). minerals, causing them to appear bright. These fractures on Mars imply some sort of fl uid These ancient Martian rocks were likely formed in fl ow, and precipitated minerals in the fractures aqueous environments that were habitable for ancient may preserve evidence of the environment and microbial life. Bishop et al. (2008, 2013) showed ancient life that once existed in that area. that an Fe2+ mineral layer appears at the areas of transition from Al-phyllosilicates to Fe/Mg smectites. Kinzelman, P. (2019). Fracture networks on On Earth, Fe2+ typically exists in sedimentary rocks Mars: Preservation of surface and subsurface environments at Mawrth Vallis. Journal of Networks on Mars Fracture Purdue Undergraduate Research, 9, 42–48. https://doi.org/10.5703/1288284316931 Keywords Mawrth Vallis, Mars, fractures, biosignatures, Al-phyllosilicates and hydrated silica, Fe/Mg smectites, fl uvial activity Figure 1. Global MOLA map of Mars with Mawrth Vallis denoted by a white star. 43 because it precipitated out of reducing fluids (Bishop in the clay layers at Mawrth are a high priority for et al., 2008). The presence of strong redox gradients this mission because they might contain minerals in the subsurface is a key discovery in the study of precipitated by fluid interaction, and these minerals the history of Mawrth Vallis, as it could indicate a could trap and preserve biosignatures, critical habitable environment with significant microbial for our understanding of ancient processes and energy sources (Horgan, Rice, Farrand, Sheldon, & environmental conditions of the planet. However, no Bishop, 2015). In addition, on Earth, organic material map currently exists of the distribution of fractures and/or microbes are often necessary to reduce Fe, in the proposed Mawrth Vallis landing ellipse for the and paleosols have a high preservation potential ExoMars rover. for this kind of material (Hays et al., 2017). Thus, the clays at Mawrth Vallis have the potential of The objective of our study was to map the preserving biosignatures from ancient microbial life. distribution and morphologic properties of fractures within a region of Mawrth Vallis as outlined by two The clay-rich terrain in Mawrth Vallis also hosts a potential landing ellipses for the ExoMars rover. One diverse suite of large fractures and fracture networks, ellipse was centered at 341.567E, 22.372N and the some of which are further indications of subsurface other at 342.055E, 22.156N. We used HiRISE orbital fluid flow in the area. Loizeau et al. (2015) identified imagery to look for fractures and fracture patterns, four different types of fractures at Mawrth Vallis: and the physical features of each fracture were small and thin, thick, short, and parallel fractures. analyzed once it was recorded. We identified three According to Loizeau et al. (2015), fracturing of the key fracture morphologies within the mapping area: clay unit occurred after the clay had lithified into rectangular, irregular (linear and curvilinear), and solid rock. This process broke the newly formed rock halo-bounded fractures. into blocks, and then groundwater flowed through the fractures and left behind precipitated minerals. We hypothesize that the variety of fracture “Halo-bounded” fractures (a subset of thick and short morphologies present at Mawrth Vallis represents fractures) were created in this way. Loizeau et al. different formation environments, and any (2015) also found that the Al clay unit holds the most precipitated minerals in the fractures could be potential for preserving biosignatures because it is accessed by a future rover mission such as ExoMars protectively covered by the capping unit and has not in the search for preserved Martian biosignatures. been subject to erosional surface processes. Thus, the earlier discovery of at least two watery episodes MATERIALS AND METHODS (surface water that lithified the clay, then subsurface water that filled fractures with precipitated minerals) This research project began in July 2018 and leaves the possibility of multiple areas for trapped eventually extended into the fall semester. Three biosignatures. However, the depth and environment undergraduate students (Phoebe Kinzelman, (surface vs. subsurface) of the large fractures in the Jonathan Forss, and Madison Van Buskirk) along Mawrth Vallis region are not well understood. with faculty adviser Professor Briony Horgan were contributors to this project. Each student was The ExoMars program is a European Space Agency responsible for mapping a third of the total outlined project tasked with investigating the possibility of landing ellipses and recording all mapped data into a past microbial life on Mars. ExoMars consists of fracture database. The JMARS software application the Schiaparelli lander, a Trace Gas Orbiter (both was used to view images, create maps, and build launched in 2016), and a rover that will launch in the fracture database. JMARS is an open-source 2020. The Trace Gas Orbiter will analyze gases geospatial information system created at Arizona in the Martian atmosphere, and Schiaparelli was State University and designed to assist researchers meant to test landing sequences on the planet but has with mission planning and data analysis on the since crashed. The ExoMars rover, now colloquially surface of other planets. The information system named after Rosalind Franklin, will visit different contains a wealth of Martian orbiter data and maps sites that are important to the investigation for use in a variety of scientific research projects.
Recommended publications
  • Mawrth Vallis, Mars: a Fascinating Place for Future in Situ Exploration
    Mawrth Vallis, Mars: a fascinating place for future in situ exploration François Poulet1, Christoph Gross2, Briony Horgan3, Damien Loizeau1, Janice L. Bishop4, John Carter1, Csilla Orgel2 1Institut d’Astrophysique Spatiale, CNRS/Université Paris-Sud, 91405 Orsay Cedex, France 2Institute of Geological Sciences, Planetary Sciences and Remote Sensing Group, Freie Universität Berlin, Germany 3Purdue University, West Lafayette, USA. 4SETI Institute/NASA-ARC, Mountain View, CA, USA Corresponding author: François Poulet, IAS, Bâtiment 121, CNRS/Université Paris-Sud, 91405 Orsay Cedex, France; email: [email protected] Running title: Mawrth: a fascinating place for exploration 1 Abstract After the successful landing of the Mars Science Laboratory rover, both NASA and ESA initiated a selection process for potential landing sites for the Mars2020 and ExoMars missions, respectively. Two ellipses located in the Mawrth Vallis region were proposed and evaluated during a series of meetings (3 for Mars2020 mission and 5 for ExoMars). We describe here the regional context of the two proposed ellipses as well as the framework of the objectives of these two missions. Key science targets of the ellipses and their astrobiological interests are reported. This work confirms the proposed ellipses contain multiple past Martian wet environments of subaerial, subsurface and/or subaqueous character, in which to probe the past climate of Mars, build a broad picture of possible past habitable environments, evaluate their exobiological potentials and search for biosignatures in well-preserved rocks. A mission scenario covering several key investigations during the nominal mission of each rover is also presented, as well as descriptions of how the site fulfills the science requirements and expectations of in situ martian exploration.
    [Show full text]
  • Columbus Crater HLS2 Hangout: Exploration Zone Briefing
    Columbus Crater HLS2 Hangout: Exploration Zone Briefing Kennda Lynch1,2, Angela Dapremont2, Lauren Kimbrough2, Alex Sessa2, and James Wray2 1Lunar and Planetary Institute/Universities Space Research Association 2Georgia Institute of Technology Columbus Crater: An Overview • Groundwater-fed paleolake located in northwest region of Terra Sirenum • ~110 km in diameter • Diversity of Noachian & Hesperian aged deposits and outcrops • High diversity of aqueous mineral deposits • Estimated 1.5 km depth of sedimentary and/or volcanic infill • High Habitability and Biosignature Preservation Potential LZ & Field Station Latitude: 194.0194 E Longitude: 29.2058 S Altitude: +910 m SROI #1 RROI #1 LZ/HZ SROI #4 SROI #2 SROI #5 22 KM HiRISE Digital Terrain Model (DTM) • HiRISE DTMs are made from two images of the same area on the ground, taken from different look angles (known as a stereo-pair) • DTM’s are powerful research tools that allow researchers to take terrain measurements and model geological processes • For our traversability analysis of Columbus: • The HiRISE DTM was processed and completed by the University of Arizona HiRISE Operations Center. • DTM data were imported into ArcMap 10.5 software and traverses were acquired and analyzed using the 3D analyst tool. • A slope map was created in ArcMap to assess slope values along traverses as a supplement to topography observations. Slope should be ≤30°to meet human mission requirements. Conclusions Traversability • 9 out of the 17 traverses analyzed met the slope criteria for human missions. • This region of Columbus Crater is traversable and allows access to regions of astrobiological interest. It is also a possible access point to other regions of Terra Sirenum.
    [Show full text]
  • Atmospheric Dust on Mars: a Review
    47th International Conference on Environmental Systems ICES-2017-175 16-20 July 2017, Charleston, South Carolina Atmospheric Dust on Mars: A Review François Forget1 Laboratoire de Météorologie Dynamique (LMD/IPSL), Sorbonne Universités, UPMC Univ Paris 06, PSL Research University, Ecole Normale Supérieure, Université Paris-Saclay, Ecole Polytechnique, CNRS, Paris, France Luca Montabone2 Laboratoire de Météorologie Dynamique (LMD/IPSL), Paris, France & Space Science Institute, Boulder, CO, USA The Martian environment is characterized by airborne mineral dust extending between the surface and up to 80 km altitude. This dust plays a key role in the climate system and in the atmospheric variability. It is a significant issue for any system on the surface. The atmospheric dust content is highly variable in space and time. In the past 20 years, many investigations have been conducted to better understand the characteristics of the dust particles, their distribution and their variability. However, many unknowns remain. The occurrence of local, regional and global-scale dust storms are better documented and modeled, but they remain very difficult to predict. The vertical distribution of dust, characterized by detached layers exhibiting large diurnal and seasonal variations, remains quite enigmatic and very poorly modeled. Nomenclature Ls = Solar Longitude (°) MY = Martian year reff = Effective radius τ = Dust optical depth (or dust opacity) CDOD = Column Dust Optical Depth (i.e. τ integrated over the atmospheric column) IR = Infrared LDL = Low Dust Loading (season) HDL = High Dust Loading (season) MGS = Mars Global Surveyor (NASA spacecraft) MRO = Mars Reconnaissance Orbiter (NASA spacecraft) MEX = Mars Express (ESA spacecraft) TES = Thermal Emission Spectrometer (instrument aboard MGS) THEMIS = Thermal Emission Imaging System (instrument aboard NASA Mars Odyssey spacecraft) MCS = Mars Climate Sounder (instrument aboard MRO) PDS = Planetary Data System (NASA data archive) EDL = Entry, Descending, and Landing GCM = Global Climate Model I.
    [Show full text]
  • Refereed Articles in 2020
    Refereed articles in 2020 [1] R. Brunetto, C. Lantz, T. Nakamura, D. Baklouti, T. Le Pivert-Jolivet, S. Kobayashi, and F. Borondics. Characterizing irradiated surfaces using IR spectroscopy. Icarus, 345:113722, July 2020. [2] G. Cremonese, F. Capaccioni, M. T. Capria, A. Doressoundiram, P. Palumbo, M. Vincendon, M. Massironi, S. Debei, M. Zusi, F. Altieri, M. Amoroso, G. Aroldi, M. Baroni, A. Barucci, G. Bellucci, J. Benkhoff, S. Besse, C. Bettanini, M. Blecka, D. Borrelli, J. R. Brucato, C. Carli, V. Carlier, P. Cerroni, A. Cicchetti, L. Colangeli, M. Dami, V. Da Deppo, V. Della Corte, M. C. De Sanctis, S. Erard, F. Esposito, D. Fantinel, L. Fer- ranti, F. Ferri, I. Ficai Veltroni, G. Filacchione, E. Flamini, G. Forlani, S. Fornasier, O. Forni, M. Fulchignoni, V. Galluzzi, K. Gwinner, W. Ip, L. Jorda, Y. Langevin, L. Lara, F. Leblanc, C. Leyrat, Y. Li, S. Marchi, L. Marinangeli, F. Marzari, E. Mazzotta Epifani, M. Mendillo, V. Men- nella, R. Mugnuolo, K. Muinonen, G. Naletto, R. Noschese, E. Palomba, R. Paolinetti, D. Perna, G. Piccioni, R. Politi, F. Poulet, R. Ragaz- zoni, C. Re, M. Rossi, A. Rotundi, G. Salemi, M. Sgavetti, E. Simioni, N. Thomas, L. Tommasi, A. Turella, T. Van Hoolst, L. Wilson, F. Zam- bon, A. Aboudan, O. Barraud, N. Bott, P. Borin, G. Colombatti, M. El Yazidi, S. Ferrari, J. Flahaut, L. Giacomini, L. Guzzetta, A. Lucchetti, E. Martellato, M. Pajola, A. Slemer, G. Tognon, and D. Turrini. SIMBIO- SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Sci. Rev., 216(5):75, June 2020. [3] Pierre Guiot, Mathieu Vincendon, John Carter, Yves Langevin, and Alain Carapelle.
    [Show full text]
  • Page 1 E X O M a R S E X O M a R S
    NOTE ADDED BY JPL WEBMASTER: This document was prepared by the European Space Agency. The content has not been approved or adopted by, NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology. EE XX OO MM AA RR SS ExoMars Status th J. L. Vago and the ExoMars Project Team 20 MEPAG Meeting 3–4 March 2009, Arlington, VA (USA) ExoMars Original Objectives Technology Demonstration Objectives : Entry, Descent, and Landing (EDL) of a large payload on the surface of Mars; Surface mobility with a rover having several kilometres range; Access to the subsurface with a drill to acquire samples down to 2 metres; Automatic sample preparation and distribution for analysis with scientific instruments. Scientific Objectives (in order of priority): To search for signs of past and present life on Mars; To characterise the water/geochemical environment as a function of depth in the shallow subsurface; To study the surface environment and identify hazards to future human missions; To investigate the planet’s subsurface and deep interior to better understand its evolution and habitability. What is ExoMars Now? KEY REQUIREMENTS FOR EXOMARS : (but also for all future ESA Mars exploration missions) Clear synergy of technology and science goals: ExoMars has to land; ExoMars has to rove; ExoMars has to drill; ExoMars has to perform novel organics
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Open Research Online Oro.Open.Ac.Uk
    Open Research Online The Open University’s repository of research publications and other research outputs Oxia Planum: The Landing Site for the ExoMars “Rosalind Franklin” Rover Mission: Geological Context and Prelanding Interpretation Journal Item How to cite: Quantin-Nataf, Cathy; Carter, John; Mandon, Lucia; Thollot, Patrick; Balme, Matthew; Volat, Matthieu; Pan, Lu; Loizeau, Damien; Millot, Cédric; Breton, Sylvain; Dehouck, Erwin; Fawdon, Peter; Gupta, Sanjeev; Davis, Joel; Grindrod, Peter M.; Pacifici, Andrea; Bultel, Benjamin; Allemand, Pascal; Ody, Anouck; Lozach, Loic and Broyer, Jordan (2021). Oxia Planum: The Landing Site for the ExoMars “Rosalind Franklin” Rover Mission: Geological Context and Prelanding Interpretation. Astrobiology, 21(3) For guidance on citations see FAQs. c 2020 Cathy Quantin-Nataf et al. https://creativecommons.org/licenses/by/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1089/ast.2019.2191 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk ASTROBIOLOGY Volume 21, Number 3, 2021 Research Article Mary Ann Liebert, Inc. DOI: 10.1089/ast.2019.2191 Oxia Planum: The Landing Site for the ExoMars ‘‘Rosalind Franklin’’ Rover Mission: Geological Context and Prelanding Interpretation Cathy Quantin-Nataf,1 John Carter,2 Lucia Mandon,1 Patrick Thollot,1 Matthew Balme,3 Matthieu Volat,1 Lu Pan,1 Damien Loizeau,1,2 Ce´dric Millot,1 Sylvain Breton,1 Erwin Dehouck,1 Peter Fawdon,3 Sanjeev Gupta,4 Joel Davis,5 Peter M.
    [Show full text]
  • Mineralogy of the Martian Surface
    EA42CH14-Ehlmann ARI 30 April 2014 7:21 Mineralogy of the Martian Surface Bethany L. Ehlmann1,2 and Christopher S. Edwards1 1Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California 91125; email: [email protected], [email protected] 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 Annu. Rev. Earth Planet. Sci. 2014. 42:291–315 Keywords First published online as a Review in Advance on Mars, composition, mineralogy, infrared spectroscopy, igneous processes, February 21, 2014 aqueous alteration The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: The past fifteen years of orbital infrared spectroscopy and in situ exploration 10.1146/annurev-earth-060313-055024 have led to a new understanding of the composition and history of Mars. Copyright c 2014 by Annual Reviews. Globally, Mars has a basaltic upper crust with regionally variable quanti- by California Institute of Technology on 06/09/14. For personal use only. All rights reserved ties of plagioclase, pyroxene, and olivine associated with distinctive terrains. Enrichments in olivine (>20%) are found around the largest basins and Annu. Rev. Earth Planet. Sci. 2014.42:291-315. Downloaded from www.annualreviews.org within late Noachian–early Hesperian lavas. Alkali volcanics are also locally present, pointing to regional differences in igneous processes. Many ma- terials from ancient Mars bear the mineralogic fingerprints of interaction with water. Clay minerals, found in exposures of Noachian crust across the globe, preserve widespread evidence for early weathering, hydrothermal, and diagenetic aqueous environments. Noachian and Hesperian sediments include paleolake deposits with clays, carbonates, sulfates, and chlorides that are more localized in extent.
    [Show full text]
  • Bio-Preservation Potential of Sediment in Eberswalde Crater, Mars
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Fall 2020 Bio-preservation Potential of Sediment in Eberswalde crater, Mars Cory Hughes Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geology Commons Recommended Citation Hughes, Cory, "Bio-preservation Potential of Sediment in Eberswalde crater, Mars" (2020). WWU Graduate School Collection. 992. https://cedar.wwu.edu/wwuet/992 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Bio-preservation Potential of Sediment in Eberswalde crater, Mars By Cory M. Hughes Accepted in Partial Completion of the Requirements for the Degree Master of Science ADVISORY COMMITTEE Dr. Melissa Rice, Chair Dr. Charles Barnhart Dr. Brady Foreman Dr. Allison Pfeiffer GRADUATE SCHOOL David L. Patrick, Dean Master’s Thesis In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permissions from the owner of any third party copyrighted material included in these files.
    [Show full text]
  • Geophysical and Remote Sensing Study of Terrestrial Planets
    GEOPHYSICAL AND REMOTE SENSING STUDY OF TERRESTRIAL PLANETS A Dissertation Presented to The Academic Faculty By Lujendra Ojha In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in Earth and Atmospheric Sciences Georgia Institute of Technology August, 2016 COPYRIGHT © 2016 BY LUJENDRA OJHA GEOPHYSICAL AND REMOTE SENSING STUDY OF TERRESTRIAL PLANETS Approved by: Dr. James Wray, Advisor Dr. Ken Ferrier School of Earth and Atmospheric School of Earth and Atmospheric Sciences Sciences Georgia Institute of Technology Georgia Institute of Technology Dr. Joseph Dufek Dr. Suzanne Smrekar School of Earth and Atmospheric Jet Propulsion laboratory Sciences California Institute of Technology Georgia Institute of Technology Dr. Britney Schmidt School of Earth and Atmospheric Sciences Georgia Institute of Technology Date Approved: June 27th, 2016. To Rama, Tank, Jaika, Manjesh, Reeyan, and Kali. ACKNOWLEDGEMENTS Thanks Mom, Dad and Jaika for putting up with me and always being there. Thank you Kali for being such an awesome girl and being there when I needed you. Kali, you are the most beautiful girl in the world. Never forget that! Thanks Midtown Tavern for the hangovers. Thanks Waffle House for curing my hangovers. Thanks Sarah Sutton for guiding me into planetary science. Thanks Alfred McEwen for the continued support and mentoring since 2008. Thanks Sue Smrekar for taking me under your wings and teaching me about planetary geodynamics. Thanks Dan Nunes for guiding me in the gravity world. Thanks Ken Ferrier for helping me study my favorite planet. Thanks Scott Murchie for helping me become a better scientist. Thanks Marion Masse for being such a good friend and a mentor.
    [Show full text]
  • The History of Water on Mars: Hydrated Minerals As a Water Sink in the Martian Crust
    Ninth International Conference on Mars 2019 (LPI Contrib. No. 2089) 6065.pdf THE HISTORY OF WATER ON MARS: HYDRATED MINERALS AS A WATER SINK IN THE MARTIAN CRUST. L. J. Wernicke1,2 and B. M. Jakosky1,3, 1Laboratory for Atmospheric and Space Physics, University of Colorado Boulder. [email protected]. [email protected]. Introduction: The ancient landscape of Mars pro- example calculation. Nontronite’s empirical formula vides morphological and mineralogical evidence that and all other values used in the example calculation can significant amounts of liquid water once flowed on its be found in Table 1. Nontronite has 6 oxygen atoms surface. Previous research has identified the amount of from water and hydroxyl, which comprises 19.36% of water stored in the polar caps and in high latitude sub- its molecular mass. The oxygen mass/thickness of surface ice [1]. The amount of water lost to space has nontronite is: also been constrained [2]. But how much water is stored (0.1936)*(2300 kg/m3)*(1.449×1014 m2) in Martian rocks? 16 =6.45×10 kg/m Chemical alteration hydrates Martian minerals, stor- 3+ ing water within Martian rocks. A large variety of hy- Nontronite - Na0.3Fe 2Si3AlO10(OH)2•4(H2O) drated minerals have been detected on the surface of Molecular mass (kg) 0.4959 Mars [3,4], and a significant abundance of hydrated minerals has been detected inside Martian craters [5,6]. Oxygen from water 19.36% We use published surveys of the global distribution and Density (kg/m3) 2300 abundance of hydrated minerals to calculate the total Surface area of Mars (m2) 1.449×1014 volume of water stored in hydrated minerals within the Oxygen Mass/thick (kg/m) 6.45×1016 Martian crust.
    [Show full text]
  • Discovery of Jarosite Within the Mawrth Vallis Region of Mars: Implications for the Geologic History of the Region
    Icarus 204 (2009) 478–488 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region William H. Farrand a,*, Timothy D. Glotch b, James W. Rice Jr. c, Joel A. Hurowitz d, Gregg A. Swayze e a Space Science Institute, 4750 Walnut St., #205, Boulder, CO 80301, USA b Stony Brook University, Department of Geosciences, 255 Earth and Space Sciences Building, Stony Brook, NY 11794-2100, USA c Arizona State University, School of Earth and Space Exploration, P.O. Box 871404, Tempe, AZ 85287-6305, USA d Jet Propulsion Laboratory, Mail Stop 183-501, 4800 Oak Grove Drive, Pasadena, CA 91109, USA e U.S. Geological Survey, Box 25046, Denver Federal Center Mail Stop 964, Denver, CO 80225-0046, USA article info abstract Article history: Analysis of visible to near infrared reflectance data from the MRO CRISM hyperspectral imager has Received 20 March 2009 revealed the presence of an ovoid-shaped landform, approximately 3 by 5 km in size, within the layered Revised 12 June 2009 terrains surrounding the Mawrth Vallis outflow channel. This feature has spectral absorption features Accepted 3 July 2009 consistent with the presence of the ferric sulfate mineral jarosite, specifically a K-bearing jarosite (KFe - Available online 17 July 2009 3 (SO4)2(OH)6). Terrestrial jarosite is formed through the oxidation of iron sulfides in acidic environments or from basaltic precursor minerals with the addition of sulfur. Previously identified phyllosilicates in the Keywords: Mawrth Vallis layered terrains include a basal sequence of layers containing Fe–Mg smectites and an Mars upper set of layers of hydrated silica and aluminous phyllosilicates.
    [Show full text]