Revision of the Genus Complex Gibbula

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Org Divers Evol DOI 10.1007/s13127-017-0343-5 ORIGINAL ARTICLE Revision of the genus complex Gibbula: an integrative approach to delineating the Eastern Mediterranean genera Gibbula Risso, 1826, Steromphala Gray, 1847, and Phorcus Risso, 1826 using DNA-barcoding and geometric morphometrics (Vetigastropoda, Trochoidea) Susanne Affenzeller 1,2 & Nicole Haar1 & Gerhard Steiner1 Received: 19 December 2016 /Accepted: 5 September 2017 # The Author(s) 2017. This article is an open access publication Abstract The trochoid genus, Gibbula, is abundant and di- morphometrics not only effectively delineated the sister gen- verse in the Mediterranean Sea but problematic to identify and era Steromphala and Phorcus but also delineated all analysed delineate. This is due to highly variable shell morphology, species in the Gibbula-Steromphala-Phorcus genus complex. vague original descriptions, and missing or unspecific type The additional use of geometric morphometrics enables re- material. In recent studies, COI barcoding yielded satisfactory searchers to compare barcoded material with fossil specimens results for species delineation. In the present study, a combi- or dry collections in an objective way. nation of geometric shell morphometric methods and COI barcoding was used to assess the most abundant species of Keywords Gibbula . Phorcus . Steromphala . Barcoding . the Eastern Mediterranean. All relevant identification charac- Geometric morphometrics . Species delineation ters were captured via standardised images of the shells in both lateral and ventral views. Agreeing with previous studies, Gibbula was recovered as paraphyletic in the molecular anal- ysis and thus is restricted to the clade encompassing the type Introduction species Gibbula magus (Linnaeus, 1758). The geometric mor- phometric analyses and the barcoding approach clearly distin- Gastropod taxonomy is traditionally shell-based. Methodology guish the remaining species into two groups: the genus in recent years using genetic data has revealed cryptic spe- Steromphala Gray, 1847 and the genus Phorcus Risso, cies and questionable species delineation in several gastro- 1826. Type material was used for the geometric morphometric pod taxa (e.g. Delicado and Ramos 2012; Weigand et al. analyses whenever possible. Based on re-examination of the 2013). Therefore, species identification and delineation by original type descriptions, lectotypes were designated. The shell morphology alone is often mistrusted if not supported joint application of DNA-barcoding and geometric by additional lines of evidence, such as DNA-barcoding or morphometric data. However, external characteristics (e.g. shell characters) remain the most straight forward way of identification of snails by scientists from related fields such Electronic supplementary material The online version of this article as ecology or palaeontology and especially by amateurs. (https://doi.org/10.1007/s13127-017-0343-5) contains supplementary Reliable species identifications and delineations of even material, which is available to authorized users. cryptic lineages not only are significant for taxonomic pur- * Gerhard Steiner poses but also impact the assessment of biodiversity, eco- [email protected] logical niche differentiation, and conservation measure- ments (e.g. Bálint et al. 2011; Feckler et al. 2014). Thus, 1 Department of Integrative Zoology, University of Vienna, it is of paramount importance—particularly for common Althanstraße 14, 1090 Vienna, Austria taxa—to re-evaluate the usefulness of shell morphology 2 Department of Geobiology, Georg-August-University Göttingen, for species delineation and identification, based on inde- Goldschmidtstraße 3, 37077 Göttingen, Germany pendent molecular markers. Mediterranean trochid S. Affenzeller et al. gastropods provide a suitable platform for re-evaluating et al. 2016) introducing several subgenera (e.g. Steromphala earlier hazy species descriptions and delineations in a con- Gray, 1847, Phorcus Risso, 1826, Gibbulastra Monterosato, temporary context. 1884) which later were discarded or revised again. Risso’s The systematics and phylogenetic relationships of the tro- (1826) original species allocations to the two genera, Gibbula choid families Trochidae and Turbinidae and the subfamily and Phorcus, were later re-established (Thiele 1929-35; Cantharidinae are only partly resolved (Williams and Ozawa Nordsieck 1968; Gofas and Jabaud 1997). Phylogenetic and 2006; Williams et al. 2008, 2010). Although molecular data systematic relationships remain unresolved. support the monophyly of the Cantharidinae (Williams et al. 2010; Uribe et al. 2016), relationships within the subfamily Shell morphometrics remain ambiguous. One of the subfamily’s most problematic groups contains Morphometric methods have been successful in identifying Gibbula Risso, 1826 and Phorcus Risso, 1826. Problems with certain species of gastropods via analysis of shell form correctly identifying Gibbula and Phorcus species are main (Kirchner et al. 2016). Since the classical morphometric mea- reasons for this unresolved status. An umbilicated shell, black sures like lengths and angles introduced by Thompson (1917) and white striped epipodial tentacles, a non-calcified opercu- are insufficient to capture shape differences in the present taxa, lum, and a turbinate shell form currently characterise both geometric morphometric approaches utilising landmark-based genera. Species differ in spiral height, umbilicus size and algorithms are a valuable alternative. Mathematically, they are shape, and overall shell form. Shell sculpture is diagnostic increasingly applied to assess form and shape as well as vari- for a few species, and even coloration is sometimes used in ation and intended as an objective means of comparison (Rohlf the literature. However, all these characters show such a wide 1998). Landmarks and semi-landmarks offer the possibility to range of variation that reliable identification of species to analyse objects without losing their geometrical form in the Gibbula and Phorcus is difficult and depends on subjective, process (Bookstein 1991; Mitteroecker and Gunz 2009). personal experience (e.g. Barco et al. 2013). Gastropod shells offer only few useful morphological land- Among the reasons for the confusing status of some of marks as defined by Bookstein (1991). Thus, it is necessary these species are their vague original descriptions, mostly to use semi-landmarks on outlines, which are processed later based on dry and empty shells. To exacerbate the situation, on in the sliding landmark algorithm, allowing for the land- some of the type collections have been destroyed or lost mark to slide on a tangent connection between neighbouring (Table 1), making re-descriptions impossible. Other type col- landmarks in order to optimise the Procrustes fit (Bookstein lections contain many syntypes, some of which do not show 1997; Mitteroecker and Gunz 2009). Cartesian coordinates consistent morphology. The vagueness of original descrip- gained from landmarks and semi-landmarks are aligned in a tions leads to problems in recent literature used for identifica- generalised Procrustes fit. Through a stepwise process, the tion, e.g. for the identification of G. varia, G. rarilineata and original landmark configuration of each individual is scaled juvenile G. divaricata (Gofas et al. 2011; Nordsieck 1968), as and rotated in a way to gain a group of landmark configura- well as G. umbilicaris and G. nebulosa (Barco et al. 2013; tions showing the least possible difference. In this process, Oliverio pers. comm.). each resulting landmark configuration therefore, independent In the comprehensive phylogenetic study by Donald et al. of size, orientation, and position, only comprises shape in the (2012), the monophyly of Gibbula, represented by G. magus, end (Bookstein 1996). The resulting Procrustes coordinates G. fanulum, G. cineraria, G. pennanti, G. rarilineata, define the shape of an object in the Kendall shape space G. umbilicalis,andG. varia, is disrupted by species of (Kendall 1981, 1984). Although its surface is curved, Osilinus, a junior synonym of Phorcus (Donald et al. 2012), Procrustes distances can be approximated by Euclidean dis- and Williams et al. (2010)byJujubinus ( See Table 1 for taxon tances in the tangent space and can thus be analysed statisti- authorities). In the most recent molecular study based on six cally through multivariate methods like principal components different genes (both mitochondrial and nuclear) by Uribe analyses (Mitteroecker and Gunz 2009). Geometric morpho- et al. (2016), the monophyly of Gibbula is disrupted by both metrics, thus, offers the possibility of analysing and comparing Phorcus and Jujubinus. In the most comprehensive molecular complex shapes of shells of different sizes in a single sample study on the genus Gibbula, Barco et al. (2013) resolved the (Mitteroecker and Gunz 2009). dilemma by using Phorcus species as outgroup and omitted other cantharidinid genera such as Jujubinus, whereby Aims of the study Gibbula was recovered monophyletic. The morphological and phylogenetic problems in Gibbula The genera Gibbula and Phorcus have undergone consider- and Phorcus (Philippi 1836-44, 1849;Thiele1929-35; able changes in their 190 years of history. The rather vague Nordsieck 1968) and their taxonomic implications were ad- morphological diagnosis of Gibbula and Phorcus left ample dressed by different authors (e.g. Williams et al. 2010,Uribe room for species assignment to these
Recommended publications
  • Laboratory Reference Module Summary Report LR22

    Laboratory Reference Module Summary Report LR22

    Laboratory Reference Module Summary Report Benthic Invertebrate Component - 2017/18 LR22 26 March 2018 Author: Tim Worsfold Reviewer: David Hall, NMBAQCS Project Manager Approved by: Myles O'Reilly, Contract Manager, SEPA Contact: [email protected] MODULE / EXERCISE DETAILS Module: Laboratory Reference (LR) Exercises: LR22 Data/Sample Request Circulated: 10th July 2017 Sample Submission Deadline: 31st August 2017 Number of Subscribing Laboratories: 7 Number of LR Received: 4 Contents Table 1. Summary of mis-identified taxa in the Laboratory Reference module (LR22) (erroneous identifications in brackets). Table 2. Summary of identification policy differences in the Laboratory Reference Module (LR22) (original identifications in brackets). Appendix. LR22 individual summary reports for participating laboratories. Table 1. Summary of mis-identified taxa in the Laboratory Reference Module (LR22) (erroneous identifications in brackets). Taxonomic Major Taxonomic Group LabCode Edits Polychaeta Oligochaeta Crustacea Mollusca Other Spio symphyta (Spio filicornis ) - Leucothoe procera (Leucothoe ?richardii ) - - Scolelepis bonnieri (Scolelepis squamata ) - - - - BI_2402 5 Laonice (Laonice sarsi ) - - - - Dipolydora (Dipolydora flava ) - - - - Goniada emerita (Goniadella bobrezkii ) - Nebalia reboredae (Nebalia bipes ) - - Polydora sp. A (Polydora cornuta ) - Diastylis rathkei (Diastylis cornuta ) - - BI_2403 7 Syllides? (Anoplosyllis edentula ) - Abludomelita obtusata (Tryphosa nana ) - in mixture - - Spirorbinae (Ditrupa arietina ) - - - -
  • Phylum MOLLUSCA

    Phylum MOLLUSCA

    285 MOLLUSCA: SOLENOGASTRES-POLYPLACOPHORA Phylum MOLLUSCA Class SOLENOGASTRES Family Lepidomeniidae NEMATOMENIA BANYULENSIS (Pruvot, 1891, p. 715, as Dondersia) Occasionally on Lafoea dumosa (R.A.T., S.P., E.J.A.): at 4 positions S.W. of Eddystone, 42-49 fm., on Lafoea dumosa (Crawshay, 1912, p. 368): Eddystone, 29 fm., 1920 (R.W.): 7, 3, 1 and 1 in 4 hauls N.E. of Eddystone, 1948 (V.F.) Breeding: gonads ripe in Aug. (R.A.T.) Family Neomeniidae NEOMENIA CARINATA Tullberg, 1875, p. 1 One specimen Rame-Eddystone Grounds, 29.12.49 (V.F.) Family Proneomeniidae PRONEOMENIA AGLAOPHENIAE Kovalevsky and Marion [Pruvot, 1891, p. 720] Common on Thecocarpus myriophyllum, generally coiled around the base of the stem of the hydroid (S.P., E.J.A.): at 4 positions S.W. of Eddystone, 43-49 fm. (Crawshay, 1912, p. 367): S. of Rame Head, 27 fm., 1920 (R.W.): N. of Eddystone, 29.3.33 (A.J.S.) Class POLYPLACOPHORA (=LORICATA) Family Lepidopleuridae LEPIDOPLEURUS ASELLUS (Gmelin) [Forbes and Hanley, 1849, II, p. 407, as Chiton; Matthews, 1953, p. 246] Abundant, 15-30 fm., especially on muddy gravel (S.P.): at 9 positions S.W. of Eddystone, 40-43 fm. (Crawshay, 1912, p. 368, as Craspedochilus onyx) SALCOMBE. Common in dredge material (Allen and Todd, 1900, p. 210) LEPIDOPLEURUS, CANCELLATUS (Sowerby) [Forbes and Hanley, 1849, II, p. 410, as Chiton; Matthews. 1953, p. 246] Wembury West Reef, three specimens at E.L.W.S.T. by J. Brady, 28.3.56 (G.M.S.) Family Lepidochitonidae TONICELLA RUBRA (L.) [Forbes and Hanley, 1849, II, p.
  • Marine Snails of the Genus Phorcus: Biology and Ecology of Sentinel Species for Human Impacts on the Rocky Shores

    Marine Snails of the Genus Phorcus: Biology and Ecology of Sentinel Species for Human Impacts on the Rocky Shores

    DOI: 10.5772/intechopen.71614 Provisional chapter Chapter 7 Marine Snails of the Genus Phorcus: Biology and MarineEcology Snails of Sentinel of the Species Genus Phorcusfor Human: Biology Impacts and on the EcologyRocky Shores of Sentinel Species for Human Impacts on the Rocky Shores Ricardo Sousa, João Delgado, José A. González, Mafalda Freitas and Paulo Henriques Ricardo Sousa, João Delgado, José A. González, MafaldaAdditional information Freitas and is available Paulo at Henriques the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.71614 Abstract In this review article, the authors explore a broad spectrum of subjects associated to marine snails of the genus Phorcus Risso, 1826, namely, distribution, habitat, behaviour and life history traits, and the consequences of anthropological impacts, such as fisheries, pollution, and climate changes, on these species. This work focuses on discussing the ecological importance of these sentinel species and their interactions in the rocky shores as well as the anthropogenic impacts to which they are subjected. One of the main anthro- pogenic stresses that affect Phorcus species is fisheries. Topshell harvesting is recognized as occurring since prehistoric times and has evolved through time from a subsistence to commercial exploitation level. However, there is a gap of information concerning these species that hinders stock assessment and management required for sustainable exploi- tation. Additionally, these keystone species are useful tools in assessing coastal habitat quality, due to their eco-biological features. Contamination of these species with heavy metals carries serious risk for animal and human health due to their potential of biomag- nification in the food chain.
  • Erminlo Caprotti F) L Avole Propriamente Nei Vasti Ammassi Di

    Erminlo Caprotti F) L Avole Propriamente Nei Vasti Ammassi Di

    \ \ Erminlo Caprotti MOLLUSCHI DEL TABIANIANO (PLIOCENE INFERIORE) DELLA VAL D'ARDA. LORO CONNESSIONI TEMPORALI E SPAZIALI. Gebun und GÈb, Èir cwias Mc.r. - F'n we.-hselnd W€hén Èin slUhcnd t2ben: So schatf ich .m sausendeù WcE sruhl de. z.n Und{i.ke dér Gonhéir lebendig.s (W. C@thé, Faust, I, Nacht) A) Introduzione B) Composizione della fauna e comparazioni - Le associazioni , dominanti C) Origine e divenire D) Descrizioni paleontologiche E) Nota bibliografica F) l avole A) INTRODUZIONE Questo lavoro studia i molluschi reperiti dall'Autore con sue per- sonali ricerche nel Tabianiano (Pliocene inferiore) della Val d'Arda, in provincia di Piacenza. La ricerca e la raccolta del materiale è stata ef- fettuata sulla riva destra dell'Arda nei pressi di Lugagnano, e Piir propriamente nei vasti ammassi di argille azzure che si stendono dall'Arda verso il paese di Vernasca (Foglio I.G.M. n. 72 II N.E.). In particolare le due zone di raccolta, oggetto di questo studio, sono topograficamente racchiuse tm quota 208 (Case Micelli presso la riva destra dell'Arda) e quota 300 circa. Si tratta di un grande ammasso di argille azzurre, situato ad Est ed a Sud-Est della fornace per late- rizi di Lugagnano. Topograficamente sovrapposte a queste argille si trovano sabbie basali del Pliocene inferiore variate con intercalazioni marmose, sab- bie medie e grossolane, marne grigio chiare, sabbie argillo§e, argille marmoso-sabbiose. Da esse non sono stati prelevati che scarsi fram_ menti di molluschi e pertanto queste non fanno oggetto di questo Iavoro. Queste sabbie sooo stratigraficamente sottoposte alle argille prese qui in esame, mentre dal punto di vista topografico esse si e' stcndono fin quasi al paese di Veanasca.
  • From the Cape Verde Islands

    From the Cape Verde Islands

    © Sociedad Española de Malacología Iberus, 30 (2): 89-96, 2012 A new species of Phorcus (Vetigastropoda, Trochidae) from the Cape Verde Islands Una nueva especie de Phorcus (Vetigastropoda, Trochidae) del archi- piélago de Cabo Verde José TEMPLADO* and Emilio ROLÁN** Recibido el 13-III-2012. Aceptado el 24-V-2012 ABSTRACT A recent molecular study has shown that the well-known intertidal Cape Verde topshell, previ- ously identified as Osilinus punctulatus, O. tamsi or O. atratus, is a distinct undescribed species (DONALD,PRESTON,WILLIAMS,REID,WINNER,ALVAREZ,BUGE,HAWKINS,TEMPLADO &SPENCER, 2012). Therefore we describe it here as new for science and compare it to the closest species. RESUMEN Un estudio reciente basado en técnicas moleculares ha demostrado que la especie intermareal de las islas de Cabo Verde previamente identificada como Osilinus punctulatus, O. tamsi u O. atratus, es en realidad una especie diferente no descrita (DONALD,PRESTON,WILLIAMS, REID,WINNER,ALVAREZ,BUGE,HAWKINS,TEMPLADO &SPENCER, 2012). Por lo tanto, la des- cribimos aquí como nueva para la ciencia y la comparamos con las especies más próximas. INTRODUCTION The more important and common al- logically (HICKMAN &MCLEAN, 1990) gal grazers of intertidal rocky sea-shores and genetically (DONALD,KENNEDY AND of the northeastern Atlantic Ocean and SPENCER, 2005) distinct from Monodonta Mediterranean Sea are limpets (of the and, based on molecular evidence, Osili- genera Patella and Cymbula), winkles (of nus has recently been moved into the the genera Littorina, Melarhaphe and subfamily Cantharidinae, separate from Echinolittorina) and topshells (of the gen- the Monodontinae and Trochinae (WI- era Gibbula and Phorcus).
  • The Foocal Pellets of the Trochidoo

    The Foocal Pellets of the Trochidoo

    [ 235 ] The Foocal Pellets of the Trochidoo. By Hilary B. Moore, B.Se., Zoologist at the Marine Station, Port Erin, I.a.M. With 12 Figures in the Text. FlECALPELLETSof the following species are described :- Gibbula cineraria (Linn.). G. umbilicalis (Da Costa). G. tumida (Montagu). G. magus (Linn.). Oantharus (Jujubinus) clelandi (Wood). Oalliostomazizyphinum (Linn.). Of the various molluscan frecalpellets so far described, none have shown a very high degree either of internal differentiation, or of external sculp- turing. In the latter respect the most complicated are perhaps those of the Nuculidre (Moore, 1) and the Pectinidre (Moore,2). In neither of these groups is there any trace of internal localisation of different types of material, but in the Mytilidre (Moore, 2) there is, in some species, a sorting of the finer material to the lateral regions of the frecal ribbon, and of the courser material to the centre. There is not however any clear-cut line of demarcation between the two regions. In the present group there is, in all the species described except Oalliostomazizyphinum, a localisation of the constituent materials accord- ing to their grade into certain definite regions of the pellet; and there is further, in all except Calliostoma, a very complex system of surface sculpturing. The pellets of Gibbula umbilicalis and G. cineraria may frequently be seen on the shore, where their peculiar shape makes them easily recognis- able. Moorhouse (3), speaking of Trochus niloticus from Low Isles, on the Great Barrier Reef, says: "Feeding appears to proceed at every opportunity, so that the amount of frecal matter deposited is very great.
  • Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of Central Chile

    Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of Central Chile

    Journal of South American Earth Sciences 17 (2004) 73–88 www.elsevier.com/locate/jsames Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of central Chile Sven N. Nielsena,*, Daniel Frassinettib, Klaus Bandela aGeologisch-Pala¨ontologisches Institut und Museum, Universita¨t Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany bMuseo Nacional de Historia Natural, Casilla 787, Santiago, Chile Abstract Species of Vetigastropoda (Fissurellidae, Turbinidae, Trochidae) and one species of Neritimorpha (Neritidae) from the Navidad area, south of Valparaı´so, and the Arauco Peninsula, south of Concepcio´n, are described. Among these, the Fissurellidae comprise Diodora fragilis n. sp., Diodora pupuyana n. sp., two additional unnamed species of Diodora, and a species resembling Fissurellidea. Turbinidae are represented by Cantrainea sp., and Trochidae include Tegula (Chlorostoma) austropacifica n. sp., Tegula (Chlorostoma) chilena n. sp., Tegula (Chlorostoma) matanzensis n. sp., Tegula (Agathistoma) antiqua n. sp., Bathybembix mcleani n. sp., Gibbula poeppigii [Philippi, 1887] n. comb., Diloma miocenica n. sp., Fagnastesia venefica [Philippi, 1887] n. gen. n. comb., Fagnastesia matanzana n. gen. n. sp., Calliostoma mapucherum n. sp., Calliostoma kleppi n. sp., Calliostoma covacevichi n. sp., Astele laevis [Sowerby, 1846] n. comb., and Monilea riorapelensis n. sp. The Neritidae are represented by Nerita (Heminerita) chilensis [Philippi, 1887]. The new genus Fagnastesia is introduced to represent low-spired trochoideans with a sculpture of nodes below the suture, angulated whorls, and a wide umbilicus. This Miocene Chilean fauna includes genera that have lived at the coast and in shallow, relatively warm water or deeper, much cooler water. This composition therefore suggests that many of the Miocene formations along the central Chilean coast consist of displaced sediments.
  • Research Paper Commerce Fisheries Mehmet Culha Izmir Katip Celebi

    Research Paper Commerce Fisheries Mehmet Culha Izmir Katip Celebi

    Volume-4, Issue-1, Jan-2015 • ISSN No 2277 - 8160 Commerce Research Paper Fisheries Marine Mollusk Fauna of Kastamonu and Sinop Provinces: A Compiled list of Black Sea Mollusks of Turkey Izmir Katip Celebi University, Fisheries Faculty, Department of Hydrobiology, Mehmet Culha 35620, Balatcık Campus, Cigli, Izmir, Turkey ABSTRACT The study was carried out to determine Mollusca fauna of Kastamonu and Sinop coasts. A seasonal sampling procedure was performed in the area from a variety of biotops in 0-0.5 and 5m depths at 4 stations between July 2007 and May 2008. A total of 11 species and 16823 specimens belonging to Bivalvia; 15 species and 5482 specimens belonging to Gastropoda and 1 species and 1 specimens belonging to Polyplacophora classes were encountered during the study. The presence of the cosmopolitan Bivalve, Pholas dactylus Linnaeus, 1758 was remarked for the first time in this study. Also, in this context, a list of Mollusca fauna of the Black Sea coasts of Turkey is compiled based on various studies carried out in Turkish coasts of the Black Sea. KEYWORDS : Turkey coast, Central Black Sea (Kastamonu, Sinop), Marine Mollusca, Distribution Introduction by Ozturk et al. (2004), 33 by Demirci (2005), 14 by Culha et al. (2007), The Black Sea, 420 000 km2 in area and 2200 m deep, is the largest 15 species by Culha et al. (2007) were reported. As a result of the enclosed sea in the world (Zenkevich, 1963; Ross, 1977). The distin- studies in Turkish coasts of the Black Sea carried out up to now, 183 guishing features of the Black Sea is the shallow (150-200 m deep), Mollusca species have been identified.
  • Across the Antarctic Polar Front C.A

    Across the Antarctic Polar Front C.A

    Contrasting biogeographical patterns in Margarella (Gastropoda: Calliostomatidae: Margarellinae) across the Antarctic Polar Front C.A. González-Wevar, N.I. Segovia, S. Rosenfeld, Dominikus Noll, C.S. Maturana, M. Hüne, J. Naretto, K. Gérard, A. Díaz, H.G. Spencer, et al. To cite this version: C.A. González-Wevar, N.I. Segovia, S. Rosenfeld, Dominikus Noll, C.S. Maturana, et al.. Contrast- ing biogeographical patterns in Margarella (Gastropoda: Calliostomatidae: Margarellinae) across the Antarctic Polar Front. Molecular Phylogenetics and Evolution, Elsevier, 2021, 156, pp.107039. 10.1016/j.ympev.2020.107039. hal-03102696 HAL Id: hal-03102696 https://hal.archives-ouvertes.fr/hal-03102696 Submitted on 7 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Molecular Phylogenetics and Evolution (2021) 156: 107039. DOI: 10.1016/j.ympev.2020.107039 Contrasting biogeographical patterns in Margarella (Gastropoda: Calliostomatidae: Margarellinae) across the Antarctic Polar Front C.A. González-Wevar a, b,c, N.I. Segovia b, S. Rosenfeld b,d, D. Noll b, C.S. Maturana b, M. Hüne b, J. Naretto , K. Gerard´ , A.d Díaz , eH.G. Spencer , fT. Saucède , J.-P.g Féral´ , S.A.
  • Marine Ecology Progress Series 372:265–276 (2008)

    Marine Ecology Progress Series 372:265–276 (2008)

    The following appendix accompanies the article Foraging ecology of loggerhead sea turtles Caretta caretta in the central Mediterranean Sea: evidence for a relaxed life history model Paolo Casale1,*, Graziana Abbate1, Daniela Freggi2, Nicoletta Conte1, Marco Oliverio1, Roberto Argano1 1Department of Animal and Human Biology, University of Rome 1 ‘La Sapienza’, Viale dell’Università 32, 00185 Roma, Italy 2Sea Turtle Rescue Centre WWF Italy, Contrada Grecale, 92010 Lampedusa, Italy *Email: [email protected] Marine Ecology Progress Series 372:265–276 (2008) Appendix 1. Caretta caretta. Taxa identified in gut and fecal samples of 79 loggerhead turtles. Habitat: pelagic (P) or benthic (B). Catch mode: T: Trawl; L: Longline; O: Other (see ‘Materials and meth- ods’ in the main text). N: number of turtles in which the taxon was found. *New record in loggerhead prey species. Notes: (a) size range of the sponge; (b) diameter of the polyp; (c) mean adult size; (d) adult size range; (e) adult size range (tube length); (f) colony size range; (g) adult size range (spines excluded); (h) egg case size range; (i) frond length range; (j) leaf length range; na: not applicable. Phylum, Kingdom, (Subclass) (Suborder) Species Habitat Catch N Frequency Common name Size (cm) Class Order Family mode of prey (notes) (%) ANIMALIA Porifera B O 1 1.3 Sponges na Demospongiae Hadromerida Chondrosiidae Chondrosia reniformis B T 7 8.9 Kidney sponge na Demospongiae Hadromerida Suberitidae Suberites domuncula* B T, O 9 11.4 Hermit crab sponge 5–20 (a) Demospongiae Halichondrida Axinellidae Axinella sp. B L, T 2 2.5 Sponges na Demospongiae Dictyoceratida Spongiidae Spongia officinalis* B L 1 1.3 Bath sponge 10–40 (a) Cnidaria Anthozoa Madreporaria Dendrophyllidae Astroides calycularis* B T 1 1.3 Orange coral 1–2 (b) Anthozoa Madreporaria Favidae Cladocora cespitosa B T 1 1.3 Stony coral 0.5–1 (b) Anthozoa Actinaria Hormathiidae Calliactis parasitica* B T 2 2.5 Hermit crab anemone 2–5 (b) Anthozoa Actinaria Actiniidae Anemonia sp.
  • Mollusc Fauna of Iskenderun Bay with a Checklist of the Region

    Mollusc Fauna of Iskenderun Bay with a Checklist of the Region

    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 12: 171-184 (2012) DOI: 10.4194/1303-2712-v12_1_20 SHORT PAPER Mollusc Fauna of Iskenderun Bay with a Checklist of the Region Banu Bitlis Bakır1, Bilal Öztürk1*, Alper Doğan1, Mesut Önen1 1 Ege University, Faculty of Fisheries, Department of Hydrobiology Bornova, Izmir. * Corresponding Author: Tel.: +90. 232 3115215; Fax: +90. 232 3883685 Received 27 June 2011 E-mail: [email protected] Accepted 13 December 2011 Abstract This study was performed to determine the molluscs distributed in Iskenderun Bay (Levantine Sea). For this purpose, the material collected from the area between the years 2005 and 2009, within the framework of different projects, was investigated. The investigation of the material taken from various biotopes ranging at depths between 0 and 100 m resulted in identification of 286 mollusc species and 27542 specimens belonging to them. Among the encountered species, Vitreolina cf. perminima (Jeffreys, 1883) is new record for the Turkish molluscan fauna and 18 species are being new records for the Turkish Levantine coast. A checklist of Iskenderun mollusc fauna is given based on the present study and the studies carried out beforehand, and a total of 424 moluscan species are known to be distributed in Iskenderun Bay. Keywords: Levantine Sea, Iskenderun Bay, Turkish coast, Mollusca, Checklist İskenderun Körfezi’nin Mollusca Faunası ve Bölgenin Tür Listesi Özet Bu çalışma İskenderun Körfezi (Levanten Denizi)’nde dağılım gösteren Mollusca türlerini tespit etmek için gerçekleştirilmiştir. Bu amaçla, 2005 ve 2009 yılları arasında sürdürülen değişik proje çalışmaları kapsamında bölgeden elde edilen materyal incelenmiştir.
  • (Gastropoda: Trochidae: Fossarininae) to Wave-Swept Rock Reef Habitats

    (Gastropoda: Trochidae: Fossarininae) to Wave-Swept Rock Reef Habitats

    Morphological and ecological adaptation of limpet-shaped top Title shells (Gastropoda: Trochidae: Fossarininae) to wave-swept rock reef habitats Author(s) Yamamori, Luna; Kato, Makoto Citation PLOS ONE (2018), 13(8) Issue Date 2018-08-22 URL http://hdl.handle.net/2433/234086 © 2018 Yamamori, Kato. This is an open access article distributed under the terms of the Creative Commons Right Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Type Journal Article Textversion publisher Kyoto University RESEARCH ARTICLE Morphological and ecological adaptation of limpet-shaped top shells (Gastropoda: Trochidae: Fossarininae) to wave-swept rock reef habitats Luna Yamamori*, Makoto Kato Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Flattening of coiled shells has occurred in several gastropod lineages, while the evolutionary process of shell flattening is little known. The subfamily Fossarininae of the top shell family (Trochidae) is unique, because it includes four genera at various stages of shell flattening. Broderipia and Roya, have zygomorphic shells that has lost coiling, while the sister genera, OPEN ACCESS Fossarina and Synaptocochlea, have respectively turbiniform and auriform shells. There- Citation: Yamamori L, Kato M (2018) fore, comparisons of biology, habitats and detailed morphology among these four genera Morphological and ecological adaptation of limpet- shaped top shells (Gastropoda: Trochidae: may help us to detect selection pressure driving shell flattening and loss of coiling. Although Fossarininae) to wave-swept rock reef habitats. Broderipia has recently been identified as living symbiotically in the pits of sea urchins, the PLoS ONE 13(8): e0197719.