Geologic Map of the Circleville Quadrangle, Beaver, Piute, Iron, and Garfield Counties, Utah

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Map of the Circleville Quadrangle, Beaver, Piute, Iron, and Garfield Counties, Utah GEOLOGIC MAP OF THE CIRCLEVILLE QUADRANGLE, BEAVER, PIUTE, IRON, AND GARFIELD COUNTIES, UTAH By John J. Anderson and Peter D. Rowley U.S. Geological Survey UTAH GEOLOGICAL AND MINERAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES MAP82 1986 STATE OF UTAH Norman H. Bangerter, Governor DEPARTMENT OF NATURAL RESOURCES Dee C. Hansen, Executive Director UTAH GEOLOGICAL AND MINERAL SURVEY Genevieve Atwood, Director BOARD James H. Gardner, Chairman ................................................. University of Utah Kenneth R. Poulson . Brush Wellman, Inc. Jo Brandt .................................................................... Public-at-Large Robert L. Haffner ......................................... American Gilsonite/Chevron Resources Samuel C. Quigley ....................................................... Tower Resources, Inc. Lawrence Reaveley . Reaveley Engineers & Associates Ralph A. Miles, Director, Division of State Lands .................................. ex officio member UGMS EDITORIAL AND ILLUSTRATIONS STAFF J. Stringfellow ........................................................................ Editor Leigh M. MacManus, Carolyn M. Olsen ............................................. Editorial Staff Kent D. Brown, James W. Parker, Patricia H. Speranza ................................ Cartographers UTAH GEOLOGICAL AND MINERAL SURVEY 606 Black Hawk Way Salt Lake City, Utah 84108-1280 THE UTAH GEOLOGICAL AND MINERAL SURVEY is one of eight divisions in the Utah Department of Natural Resources. The UGMS inventories the geologic resources of Utah (including metallic, nonmetallic, energy, and ground-water sources); identifies the state's geologic and topographic hazards (including seismic, landslide, mudflow, lake level fluctuations, rockfalls, adverse soil conditions, high groundwater); maps geology and studies the rock formations and their structural habitat; provides and disseminates educational materials concerning the geology of Utah; and provides information to decisionmakers at local, state, and federal levels. THE UGMS is organized into five programs. Administration provides support to the programs. The Econom­ ic Geology Program undertakes studies to map mining districts, to monitor the brines of the Great Salt Lake, to identify coal, geothermal, uranium, petroleum and industrial minerals resources, and to develop computerized resource data bases. The Applied Geology Program responds to requests from local and state governmental entities for site investigations of critical facilities, documents, responds to and seeks to understand geologic hazards, and compiles geologic hazards information. The Geologic Mapping Program maps the bedrock and surficial geology of the state at a regional scale by county and at a more detailed scale by quadrangle. THE INFORMATION PROGRAM distributes publications, and answers inquiries from the public and man­ ages the UGMS library. The UGMS Library is open to the public and contains many reference works on Utah geology and many unpublished documents about Utah geology by UGMS staff and others. The UGMS has begun several computer data bases with information on mineral and energy resources, geologic hazards, and bibliographic references. Most files are not available by direct access but can be obtained through the library. THE UGMS PUBLISHES the results of its investigations in the form of maps, reports, and compilations of data that are accessible to the public. For future information on UGMS publications, contact the UGMS Sales Office, 606 Black Hawk Way, Salt Lake City, Utah 84108-1280. GEOLOGIC MAP OF THE CIRCLEVILLE QUADRANGLE, BEAVER, PIUTE, IRON, AND GARFIELD COUNTIES, UTAH By John J. Anderson 1 and Peter D. Rowley 2 U.S. Geological Survey INTRODUCTION logic mapping has been done to the north of the mapped area by Callaghan and Parker (1962) and Cunningham and others (1979, 1983), to the west by Anderson (1986), to The western half of the Circleville quadrangle is in the the east by Rowley (1968), and to the south by Anderson southeastern Tushar Mountains, the eastern half in the (1965). Sevier River ("Long") valley. These areas are in the High Plateaus subprovince which is structurally transitional be­ STRATIGRAPHY tween the block-faulted Basin and Range Province to the west and the more stable Colorado Plateaus of which it is a Rocks exposed in the Circleville quadrangle total nearly part. 5,000 feet 0524 m) in thickness and range in age from Oli­ The Marysvale volcanic field, one of the largest eruptive gocene to Holocene. Most belong to central-vent stratovol­ piles in the western United States, straddles the High Pla­ canos of the Oligocene and Miocene Mount Dutton Forma­ teaus and extends into the Basin and Range Province. The tion; rock types such as lava flows, autoclastic flow breccia, quadrangle contains part of one of the most voluminous and volcanic mudflow breccia make up the bulk of this and extensive accumulations of this volcanic field, the unit. Other volcanic units are intertongued with and overlie Mount Dutton Formation. It consists of rock erupted from the Mount Dutton Formation. The Osiris Tuff is a regional a series of clustered stratovolcanos distributed in a crudely ash-flow tuff high in the Mount Dutton section. Overlying defined east-trending zone (Rowley and others, 1978) units include the mafic lava flows of Circleville Mountain across the southern Tushar Mountains. The formation ex­ and the mafic gravels of Gunsight Flat, local units that tends from just east and southeast of the area of this map, have not been formally named. During late Tertiary and in the southwestern Sevier Plateau, to the northern Black Quaternary block faulting activity, down thrown blocks lo­ Mountains, about 30 miles (48 km) to the west. Because of cally filled with elastic sediments derived from nearby up­ repetition by numerous high-angle dip-slip faults and be­ thrown blocks. Circle Valley is the largest of these grabens, cause of the resistant nature of the rocks, a significant part and it was partially filled with poorly consolidated upper of this volcanic vent complex is well exposed in the Tertiary sedimentary strata of the Sevier River Formation quadrangle, particularly on the imposing east-facing scarp and by unconsolidated Quaternary sediments assigned to west of Oak and Cottonwood Basins in the northwestern several informal units. part of the quadrangle and in road cuts along highway U.S. 89 in Circleville Canyon. The Osiris Tuff, a regional ash­ TERTIARY SYSTEM flow tuff interbedded high in the Mount Dutton section, Mount Dutton Formation and. minor accumulations of volcanic rocks of local origin that post-date the Mount Dutton Formation also occur in The most commonly exposed rocks in the Circleville the quadrangle. General discussions of the geology in and quadrangle are volcanic units of intermediate (dacite to near the Circleville quadrangle may be found in Rowley (1968), Anderson and others (197 5), Rowley and Ander­ 1 Currently: Department of Geology, Kent State University, Kent, Ohio son (1975), Rowley and others (1978, 1979), Shawe and 44242 Rowley (1978), and Steven and others (1978, 1979). Geo- 2 Geologist, U.S. Geological Survey, Denver, Colorado 80225 2 Utah Geological and Mineral Survey andesite) composition interbedded locally with felsic and mostly sparse small phenocrysts of hornblende in a mi­ mafic volcanic rock and tuffaceous sandstone. These rocks crocrystalline and largely devitrified glass groundmass. The belong to the Mount Dutton Formation of Oligocene and predominant mudflow breccia is characterized by sub­ Miocene age. In accordance with the concepts of Parsons rounded to angular clasts of volcanic rock identical to that (1965, 1969) and Smedes and Prostka (1973), the forma­ of the vent facies, most commonly suspended in a muddy tion has been subdivided into a vent facies and an alluvial to sandy matrix. The ratio of clasts to matrix varies greatly facies, both the products of a series of stratovolcanos trend­ in different mudflows, and the thickness of the flows ing more-or-less eastward across what today comprises the ranges from a foot to several tens of feet. A largely fluvial southernmost Tushar Mountains. Vent facies rocks, the conglomerate, and the tuffaceous sandstone of partly fluvial near-source products of the stratovolcanos, consist of lava and partly eolian origin, consist almost exclusively of flows and autoclastic flow breccia and subordinate volcanic reworked volcanic detritus, much of which doubtlessly was mudflow breccia, conglomerate, and sandstone. They also derived from the Mount Dutton volcanic units. Con­ include all volcanic strata that exhibit primary dips resulting glomerate and sandstone occur as local channel fillings and from their emplacement by an active volcano onto the as lenses ranging from a few feet to a few tens of feet thick. flanks of its growing edifice. Vent facies rocks grade out­ Intertonguing with the vent facies, the alluvial facies has no ward into, and intertongue with, the alluvial facies, which complete section exposed in this quadrangle where its forms a broad apron of volcanic mudflow breccia and thickness is at least 1,000 feet (305 m). It thickens east­ subordinate conglomerate, sandstone, lava flows, and flow ward; along the west-facing scarp of the southern Sevier breccia. The map units, originally defined by Anderson and Plateau, about 5 miles (8 km) to the southeast, it is about Rowley ( 197 5), are described separately below. 3,000 feet (915 m) thick. Vent facies:
Recommended publications
  • Hydrothermal Uranium Deposits Containing Molybdenum and Fluorite in the Marysvale Volcanic Field, West-Central Utah
    Mineralium Deposita (199K) 33 : 4774'14 ( . srl'lllt!~r-V~rlag 199X ARTICLE C. G. Cunningham' J. D. Rasmussen' T. A. Stcycn R. O. Rye' P. D. Rowley S. B. Romberger' J. Selverstone Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah Received: 23 June 1997 I Accepted: 15 October 1997 Abstract Uranium deposits containing molybdenum \9-1 ~ Ma in a I km2 area. above a cupola of a com­ and fluorite occur in the Central Mining Area. near posite, recurrent. magma chamber at least 24 x 5 km Marysvale, Utah. and formed in an epithermal vein across that fed a sequence of 21- to 14-Ma hypabyssal system that is part of a volcanic/hypabyssal complex. granitic stocks. rhyolite lava flows. ash-flow tuffs. and They represent a known. but uncommon. type of de­ volcanic domes. Formation of the Central Mining Area posit; relative to other commonly described volcanic­ began when the intrusion of a rhyolite stock. and re­ related uranium deposits. they are young. well-exposed lated molybdenite-bearing, uranium-rich. glassy rhyolite and well-documented. Hydrothermal uranium-bearing dikes, lifted the fractured roof above the stock. A quartz and fluorite veins are exposed over a 300 m breccia pipe formed and relieved magmatic pressures. vertical range in the mines. Molybdenum. as jordisite and as blocks of the fractured roof began to settle back (amorphous MoS2), together with fluorite and pyrite, in place, flat-lying, concave-downward. "pull-apart" increase with depth. and uranium decreases with depth. fractures were formed. Uranium-bearing, quartz and The veins cut 23-Ma quartz monzonite, 20-Ma granite.
    [Show full text]
  • Quaternary Tectonics of Utah with Emphasis on Earthquake-Hazard Characterization
    QUATERNARY TECTONICS OF UTAH WITH EMPHASIS ON EARTHQUAKE-HAZARD CHARACTERIZATION by Suzanne Hecker Utah Geologiral Survey BULLETIN 127 1993 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES 0 STATE OF UTAH Michael 0. Leavitt, Governor DEPARTMENT OF NATURAL RESOURCES Ted Stewart, Executive Director UTAH GEOLOGICAL SURVEY M. Lee Allison, Director UGSBoard Member Representing Lynnelle G. Eckels ................................................................................................... Mineral Industry Richard R. Kennedy ................................................................................................. Civil Engineering Jo Brandt .................................................................................................................. Public-at-Large C. Williatn Berge ...................................................................................................... Mineral Industry Russell C. Babcock, Jr.............................................................................................. Mineral Industry Jerry Golden ............................................................................................................. Mineral Industry Milton E. Wadsworth ............................................................................................... Economics-Business/Scientific Scott Hirschi, Director, Division of State Lands and Forestry .................................... Ex officio member UGS Editorial Staff J. Stringfellow .........................................................................................................
    [Show full text]
  • Detrital Zircon U-Pb Provenance of the Colorado River: a 5 M.Y
    Research Paper THEMED ISSUE: CRevolution 2: Origin and Evolution of the Colorado River System II GEOSPHERE Detrital zircon U-Pb provenance of the Colorado River: A 5 m.y. record of incision into cover strata overlying the GEOSPHERE; v. 11, no. 6 doi:10.1130/GES00982.1 Colorado Plateau and adjacent regions David L. Kimbrough1, Marty Grove2, George E. Gehrels3, Rebecca J. Dorsey4, Keith A. Howard5, Oscar Lovera6, Andres Aslan7, P. Kyle House8, 19 figures; 5 tables; 1 supplemental file and Philip A. Pearthree9 1Department of Geological Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA CORRESPONDENCE: [email protected] 2School of Earth, Energy & Environmental Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, California 94305, USA 3Department of Geosciences, University of Arizona, 1040 4th Street, Tucson, Arizona 85721, USA CITATION: Kimbrough, D.L., Grove, M., Gehrels, 4Department of Geological Sciences, 1272 University of Oregon, Eugene, Oregon 97403-1272, USA G.E., Dorsey, R.J., Howard, K.A., Lovera, O., Aslan, 5U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025-3591, USA A., House, P.K., and Pearthree, P.A., 2015, Detrital 6Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, 595 Charles Young Drive East, Los Angeles, California 90095, USA zircon U-Pb provenance of the Colorado River: A 7Colorado Mesa University, 1100 North Avenue, Grand Junction, Colorado 81501, USA 5 m.y. record of incision into cover strata overlying the 8U.S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA Colorado Plateau and adjacent regions: Geosphere, 9Arizona Geological Survey, 416 W.
    [Show full text]
  • Interim Geologic Map of the Southwestern Quarter of the Beaver 30' X 60' Quadrangle Utah Department of Natural Resources
    Plate 1 UTAH GEOLOGICAL SURVEY Utah Geological Survey Open-File Report 686DM a division of Interim Geologic Map of the Southwestern Quarter of the Beaver 30' x 60' Quadrangle Utah Department of Natural Resources 113°00'00" 112°52'30" 112°45'00" 112°37'30" 112°30'00" b E E E E E ! ! E ! E ! E E ! ! E E ! ! ! ! F ! E ! 38°15'00" ! ! 38°15'00" ! ! ! ! ! ! ! ! ! ! ! ! ! ! Tm (Ticl) QTs Qms *c ! Qal1 1 Ppk ! Qat ! Tm (Jn) E QTs Qal1 ! Qaf1 Qaf3 Tm (Tdv) Qat1 ! E ! E Qal1 Tm (Tlk) ! Pt M Tm (Tdv) ! Qaf ! E E 4 ! Qaf2 ! Qat1 E Qms A ! ! E ! E ! Qal1 Tm ! ! R ! Qal1 ! ! Tm ! E ! ! Qat1 ! Qaf1 31 K ! ! ! ! ! ! ^m ! ! A ! Pp ! 1 ! ! Qat ! (Tda) G ! ! ! ! ! (Tdv) ! E ! E ! E ! U ! ! ! E 1 E ! ! Qat ! ! ! N ! ! Tm (Tdv) ! ! ! ! E ! ! ! ! T ! ! QTs ! ! Qat2 2 ! Qaf ! ! Tm ! E E ! ! Qaf2 Tm (Tdv) ! ! ! Qaf1 Qat1 ! ! ! Tm (Tlk) ! E E ! ! E Tm (Ticl) ! ! Qat1 ! ! E ! ! ! ! ! ! (Tda) b ! Qat1 ! E ! ! Qaf3 ! ! ! Qaf1 ! ! E ! 7 ! E ! E ! ! ! ! Qaf3 Pt E 1 ! ! Qaf ! ! Tm (Tin) Tb Qat2 ! ! ! ! ^cm ! ! E E 1 ! ! ! Qaf ! Qaf2 Qaf3 ! ! ! E Qaf3 ! E ! Tm (Tlk) ! ! ! ! ! ! ! ! Ppk E ! ! E ! ! ! ! ! ! ! E 3 ! Qaf E Qaf3 ! ! 1 ! E Qaf ! ! E ! ! ! ! ! ! E ! ! ! ! Qaf1 ! ! ! ! ! ! ! ! Tm (Tlb) ! ! ! ! ! E ! Tm (Tdb) ! ! ! ! E Tm ! ! ! E Qaf2 ! E ! ! Tm (Tda) E ! ! ! ! 2 ! ! Qaf Pq ! E ! ! ! E E ! ! E ! ! ! ! ! ! ! ! Tm (Tdv) E Qaf3 ! ! ! (Tin) ! Qaf2 ! ! ! E ! E ! Qaf2 E ! ! ! ! ! ! Qaf2 ! Tm (Tdv) ! ! ! ! ! E ! ! ! Tm E ! ! Qat1 ! ! Tm (Tdv) ! Qaf1 ! ! E ! ! ! ! E ! E ! Qal ! 2 ! ! ! E E! ! Tm (Tda) ! ! ! ! ! Tm (Tdv) ! ! ! ! ! ! E E E ! ! E ! ! ! ! Tm (Tdv) ! !
    [Show full text]
  • Geology of the Northern Portion of the Fish Lake Plateau, Utah
    GEOLOGY OF THE NORTHERN PORTION OF THE FISH LAKE PLATEAU, UTAH DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State - University By DONALD PAUL MCGOOKEY, B.S., M.A* The Ohio State University 1958 Approved by Edmund M." Spieker Adviser Department of Geology CONTENTS Page INTRODUCTION. ................................ 1 Locations and accessibility ........ 2 Physical features ......... _ ................... 5 Previous w o r k ......... 10 Field work and the geologic map ........ 12 Acknowledgements.................... 13 STRATIGRAPHY........................................ 15 General features................................ 15 Jurassic system......................... 16 Arapien shale .............................. 16 Twist Gulch formation...................... 13 Morrison (?) formation...................... 19 Cretaceous system .............................. 20 General character and distribution.......... 20 Indianola group ............................ 21 Mancos shale. ................... 24 Star Point sandstone................ 25 Blackhawk formation ........................ 26 Definition, lithology, and extent .... 26 Stratigraphic relations . ............ 23 Age . .............................. 23 Price River formation...................... 31 Definition, lithology, and extent .... 31 Stratigraphic relations ................ 34 A g e .................................... 37 Cretaceous and Tertiary systems . ............ 37 North Horn formation. ..........
    [Show full text]
  • Memorial to John J. Anderson 1930–2017 PETER D
    Memorial to John J. Anderson 1930–2017 PETER D. ROWLEY Geologic Mapping Inc., New Harmony, Utah 84757, USA HARRY F. FILKORN Pierce College, Woodland Hills, California 91371, USA PETER L. LASSEN Architect, Los Angeles, California 90012, USA JOHN C. SPURNEY Independent Geological Consultant, Kent, Ohio 44240, USA John J. (Jerome) Anderson died on 30 October 2017, at his home in Seattle, Washington, from heart failure. He is survived by his wife, Linda Jones Anderson, his daughters, Janet Eulalia Anderson and Kathryn Anderson Wellen, and his grandchil- dren, Mary Hadley Simmons, Anneke Roos Wellen, and Lydia Jasmijn Wellen. John was predeceased by his older brother, Poul Anderson, a prolific author of science-fiction books. Linda was the love of John’s life, and she and their two daughters were the source of a happy marriage and family, of whom he never ceased boasting. John met Linda Jones during his first season (1963) of field work (mapping) on his Ph.D. dissertation, when in a major stroke of luck he needed a bar of soap and happened into Bulloch’s Drug Store in Cedar City, Utah, where Linda Jones, then a coed at the University of Utah, had a summer job. They married on 25 July 1964. John was born in Port Arthur, Texas, on 10 October 1930, to Astrid and Anthon William (Will) Anderson. Astrid Hertz had emigrated from Denmark, whereas Will was born in Pennsylvania but educated in Denmark; they were married in Port Arthur. Will died in an auto accident in Port Arthur, and widow Astrid W. Anderson and her two children moved to Northfield, Minnesota, to be near her brother Jakob Hertz, who lived there.
    [Show full text]
  • GEOLOGY of the MOAB REGION Introduction
    GEOLOGY OF THE MOAB REGION (Arches, Dead Horse Point and Canyonlands) Annabelle Foos Geology Department, University of Akron Introduction The geology of Arches National Park, porphyry laccolith that was intruded during the Dead Horse Point State Park and the “Island in Oligocene, 30 million years ago and the Sky” section of Canyonlands National Park experienced glaciation during the Pleistocene. is very similar. They occur in the Canyonlands Melting snow which accumulates in the section of the Colorado Plateau, in the vicinity mountains during winter months, replenishes of the confluence between the Green and streams and recharges bedrock aquifers Colorado Rivers. The same stratigraphic units providing a valuable source of fresh water to outcrop in all three parks (figure 1) plus salt this region. (Doelling and others, 1987) tectonic features can be found in both Arches and Canyonlands. While in the Moab region you will become familiar with some of the stratigraphic units we will see throughout the Colorado Plateau, observe salt tectonic features, arch formation and in the distance you can view the La Sal Mountains. Cryptogamic Soils While in these three parks (and throughout this trip) you will be required to STAY ON THE DESIGNATED TRAILS. This rule is especially important at these parks in order to preserve the fragile cryptogamic soils (figure 2). Cryptogamic soils are a complex of lichens, algae, moss and fungus that occurs as a black coating on the ground surface and as small mounds where it is well developed. It plays an extremely important role in the desert ecology. It binds the soil together and inhibits wind erosion and erosion by sheet wash.
    [Show full text]
  • Preliminary Geologic Map of the Enterprise Quadrangle, Washington and Iron Counties, Utah
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY PRELIMINARY GEOLOGIC MAP OF THE ENTERPRISE QUADRANGLE, WASHINGTON AND IRON COUNTIES, UTAH By H. Richard Blank U.S. Geological Survey, Denver, CO Open-File Report 93-203 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. 1993 PRELIMINARY GEOLOGIC MAP OF THE ENTERPRISE QUADRANGLE, WASHINGTON AND IRON COUNTIES, UTAH INTRODUCTION This map is the first to be released of 4 contiguous l:24,000-scale geologic map sheets comprising the area known informally as the Bull Valley district of the eastern Bull Valley Mountains. The district contains abundant low-grade contact metasomatic and jaspillitic sediment-hosted iron deposits, and less abundant but higher-grade vein-iron deposits. All are associated with monzonitic hypabyssal magmatism of early Miocene age, including emplacement of the Big Mountain intrusion, which cores the Big Mountain structural and topographic dome in the southeast corner of the Enterprise quadrangle. Numerous iron mining claims in the district were patented in years past but intensive exploration, including diamond drilling, had ceased by about 1960 and no ore has ever been shipped from the district on a commercial basis. Mineral resources of the eastern Bull Valley Mountains and vicinity include gold and silver in addition to iron. The Goldstrike district, about 18 km southwest of the Enterprise quadrangle, is currently an active gold producer; and until recently the Escalante mine, located a few km north of the quadrangle, was an important primary producer of silver. Ground water is doubtless the most significant non-mineral resource in the quadrangle, sustaining a flourishing agricultural industry in the southern Escalante Valley.
    [Show full text]
  • The Great Basin-Colorado Plateau Transition in Central Utah
    Utah Geological Association Publication 30 - Pacific Section American Association of Petroleum Geologists Publication GB78 1 GREAT BASIN-COLORADO PLATEAU TRANSITION IN CENTRAL UTAH: AN INTERFACE BETWEEN ACTIVE EXTENSION AND STABLE INTERIOR PHILIP E. WANNAMAKER1, JOHN M. BARTLEY2, ANNE F. SHEEHAN3, CRAIG H. JONES3, ANTHONY R. LOWRY4, TREVOR A. DUMITRU5, TODD A. EHLERS2, W. STEVEN HOLBROOK6, G. LANG FARMER3, MARTYN J. UNSWORTH7, DARRELL B. HALL2, DAVID S. CHAPMAN2, DAVID A. OKAYA8, BARBARA E. JOHN6, AND JACK A. WOLFE9 ABSTRACT A fundamental tectonic boundary appears to have existed below the site of the present-day Colorado Plateau to Great Basin Transition Zone since Precambrian times. The Plateau proper has seen little deformation since Middle Proterozoic conti- nental assembly apart from Cenozoic uplift and limited thick-skinned contraction and calc-alkaline plutonism. In contrast, the Great Basin region has been subject to repeated episodes of both contractional and extensional tectonism, and extensional activity continues into the modern day. Evidence exists that the Colorado Plateau at its western margin is being converted to lithosphere with rifted Great Basin properties. Some models for migrating extension call upon progressive gravitational collapse of thicker crust of the plateau margin as it warms, possibly aided by hardening of the previously rifted lithosphere (i.e., Great Basin interior) via crustal thinning and cooling. However, this rather homogeneous and temporally gradual model of deformation has only partial applicability to evolu- tion of the western Colorado Plateau and eastern Great Basin. On the one hand, the limited degree of block style faulting, high elevation, and high apparent elastic thickness of the Transition Zone resemble properties of the Colorado Plateau.
    [Show full text]
  • Igneous Dikes of the Eastern Uinta Mountians Utah and Colorado
    IGNEOUS DIKES OF THE EASTERN UINTA MOUNTAINS, UTAH AND COLORADO By Howard R. Ritzma UTAH GEOLOGICAL AND MINERAL SURVEY a di vision of Utah Department of Natural Resources Special Studies 56 August 1983 STATE OF UTAH Scott M. Matheson, Governor DEPARTMENT OF NATURAL RESOURCES Temple A. Reynolds, Executive Director UTAH GEOLOGICAL AND MINERAL SURVEY Genevieve Atwood, Director BOARD Kenneth R. Poulson, Chairman. .. Brush Wellman, Incorporated Laurence H. Lattman, Vice Chairman. .. University of Utah James H. Gardner ............................................. University of Utah Ro bert P. Blanc . Getty Oil Jo Brandt. .. Public-at-Large Elliot Rich. .. Utah State University E. Peter Matthies ....................................... Sharon Steel Corporation Ralph A. Miles, Director, Division of State Lands .................... ex officio member UGMS EDITORIAL AND ILLUSTRATIONS STAFF Klaus D. Gurgel ........................................................ Editor Nancy A. Close, L. Angeloff Sapienza ................................. Editorial Staff James W. Parker, Kent D. Brown, Jessie S. Roy. .. Cartographers IGNEOUS DIKES OF THE EASTERN UINTA MOUNTAINS Sentinel Rock, large dike outcrop, seen from above with view to east into Gilbert Creek Basin. Fault zone into which dike is intruded is marked by line of vegetation to left (north) oflake (proposed name, Steppingstone Lake). IGNEOUS DIKES OF THE EASTERN UINTA MOUNTAINS, UTAH AND COLORADO By Howard R. Ritzma UTAH GEOLOGICAL AND MINERAL SURVEY a division of Utah Department of Natural Resources
    [Show full text]
  • A History of the Copper Globe, Lucky Strike, Tomsich Butte, Hidden Splendor, and Little Susan Mines Within the San Rafael Swell
    A History of the Copper Globe, Lucky Strike, Tomsich Butte, Hidden Splendor, and Little Susan Mines within the San Rafael Swell Mining District Based on Oral Interviews | Emery County, Utah Brigham Young University Museum of Peoples and Cultures TECHNICAL SERIES NO. 11-13 A History of the Copper Globe, Lucky Strike, Tomsich Butte, Hidden Splendor and Little Susan Mines within the San Rafael Swell Mining District Based on Oral Interviews, Emery County, Utah by Michael T. Searcy Office of Public Archaeology Museum of Peoples and Cultures Brigham Young University Provo, Utah 84602 prepared for URS Corporation Salt Lake City March 2012 Federal Antiquities Permit Number 11-UT-54624 (3/30/12) 1 ADMINISTRATIVE SUMMARY Project Title: San Rafael Swell Mining Oral History Project Agencies: Utah Division of Oil, Gas and Mining; Bureau of Land Management Report Title: A History of the Copper Globe, Lucky Strike, Tomsich Butte, Hidden Splendor and Little Susan Mines within the San Rafael Swell Mining District Based on Oral Interviews, Emery County, Utah Project Description: The project consisted of recording the oral histories of six interviewees who were associated with mining in the San Rafael Swell region of central Utah. Four of the interviewees worked as uranium miners or prospectors, one was the wife of a miner, and another was a retired compliance officer for the Bureau of Land Management who was familiar with the area and with the history of Copper Globe mine, in particular. The goal was to record personal accounts and general histories related to five abandoned mine sites on the San Rafael Swell that are considered Areas of Critical Environmental Concern (ACEC): Copper Globe, Lucky Strike, Tomsich Butte, Hidden Splendor, and Little Susan.
    [Show full text]
  • Mount Belknap and Red Hills Marysvale Volcanic Field
    Mount Belknap and Red Hills Calderas and Associated Rocks, Marysvale Volcanic Field, West-Central Utah GEOLOGICAL SURVEY BULLETIN 1468 Mount Belknap and Red Hills Calderas and Associated Rocks, Marysvale Volcanic Field, West-Central Utah By C. G. CUNNINGHAM and T.A. STEVEN GEOLOGICAL SURVEY BULLETIN 1468 Description of the rocks, eruptive history, and inferred subvolcanic environment associated with the formation of the J1ount Belknap and Red Hills calderas UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1979 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Cunningham, C. G. Mount Belknap and Red Hills calderas and associated rocks, Marysvale volcanic field, west-central Utah. (Geological Survey Bulletin 1468) Bibliography: p. Supt. of Docs. no.: I 19.3:1468 1. Calderas-Utah-Marysvale region. 2. Volcanic ash, tuff, etc.-Utah-Marysvale region. I. Steven, Thomas August, 191 7-joint author. II. Title. III. Series: United States Geological Survey Bulletin 1468 QE75.B9 No. 1468 ( QE461] 557.3'08s 78-21191 [551.2'1'0979246) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock No. 024-001-03175-2 CONTENTS Page Abstract_ 1 Introduction _________ _ 2 Acknowledgments_ 4 Geologic setting __________ _ 4 Mount Belknap Volcanics ____ _ 6 Outflow facies ___________________ _ 7 Lower heterogeneous member _ 7 Joe Lott 'iliff Member 9 Red Hills 'fuff Member 11 Crystal-rich tuff member
    [Show full text]