Technical Note Template
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UAT-ARC Final Report
Unleaded AVGAS Transition Aviation Rulemaking Committee FAA UAT ARC Final Report Part I Body Unleaded AVGAS Findings & Recommendations 17 February 2012 UAT ARC Final Report – Part I Body February 17, 2012 Table of Contents List of Figures …………………………………………………………………………… 6 Executive Summary……………………………………………………………………… 8 1. Background …………………..……………………………………………………. 11 1.1. Value of General Aviation………………………………………………… 11 1.2. History of Leaded Aviation Gasoline…………………………………….. 13 1.3. Drivers for Development of Unleaded Aviation Gasoline……………… 14 2. UAT ARC Committee ……………………………………………………………… 16 2.1. FAA Charter……………………………………………………………….. 16 2.2. Membership ………………..…………………………………………….. 17 2.3. Meetings, Telecons, & Deliberations…………….……………………… 17 3. UAT ARC Assessment of Key Issues…………………………………………… 18 3.1. Summary of Key Issues Affecting Development & Transition to an Unleaded AVGAS…………………………………………………………….. 18 3.1.1. General Issues……………………………………………………… 18 3.1.2. Market & Economic Issues………………………………………… 18 3.1.3. Certification & Qualification Issues……………………………….. 18 3.1.4. Aircraft & Engine Technical Issues………………………………. 19 3.1.5. Production & Distribution Issues………………………………….. 19 3.1.6. Environment & Toxicology Issues………………………………… 19 3.2. General Issues – Will Not Be A Drop-In…………………………….……. 20 3.2.1. Drop-In vs. Transparent……………..……………………………. 20 3.2.2. Historic Efforts Focused on Drop-In…………………………….. 21 3.2.3. No Program to Support Development of AVGAS………………. 21 3.3. Market & Economic Issues…………………….. …………………………. 22 3.3.1. Market Forces……………………………………………………… 22 3.3.2. Aircraft Owner Market Perspective……………………………….. 23 3.3.3. Fleet Utilization …………..…………………………………………. 24 3.3.4. Design Approval Holder (DAH) Perspective ……………………. 25 3.4. Certification & Qualification Issues…………………………………………. 26 3.4.1. FAA Regulatory Structure…….……………………………………. 26 3.4.2. ASTM and FAA Data Requirements………………..……………. 27 3.4.3. FAA Certification Offices…………………………………………… 28 3.4.4. -
General Aviation Aircraft Propulsion: Power and Energy Requirements
UNCLASSIFIED General Aviation Aircraft Propulsion: Power and Energy Requirements • Tim Watkins • BEng MRAeS MSFTE • Instructor and Flight Test Engineer • QinetiQ – Empire Test Pilots’ School • Boscombe Down QINETIQ/EMEA/EO/CP191341 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Contents • Benefits of electrifying GA aircraft propulsion • A review of the underlying physics • GA Aircraft power requirements • A brief look at electrifying different GA aircraft types • Relationship between battery specific energy and range • Conclusions 2 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Benefits of electrifying GA aircraft propulsion • Environmental: – Greatly reduced aircraft emissions at the point of use – Reduced use of fossil fuels – Reduced noise • Cost: – Electric aircraft are forecast to be much cheaper to operate – Even with increased acquisition cost (due to batteries), whole-life cost will be reduced dramatically – Large reduction in light aircraft operating costs (e.g. for pilot training) – Potential to re-invigorate the GA sector • Opportunities: – Makes highly distributed propulsion possible – Makes hybrid propulsion possible – Key to new designs for emerging urban air mobility and eVTOL sectors 3 RAeS Light Aircraft Design Conference | 18 Nov 2019 | © QinetiQ UNCLASSIFIED UNCLASSIFIED Energy conversion efficiency Brushless electric motor and controller: • Conversion efficiency ~ 95% for motor, ~ 90% for controller • Variable pitch propeller efficiency -
Diesel and Fuel-Oil Engines
HdiiUiiat uuioTAt* VI i nPicrence moK not to do AUG 2 ^ : , CuKCH JlUili lilO L, iDi slil CS102E-42 Jf' Engines, Diese! and fuei-oil (export classifications) U. S. DEPARTMENT OF COMMERCE JESSE H. JONES, Secretary NATIONAL BUREAU OF STANDARDS LYMAN J. BRIGGS, Director DIESEL AND FUEL-OIL ENGINES (Export Classifications) COMMERCIAL STANDARD CS102E-42 Effective Date for New Production from October 30, 1942 A RECORDED VOLUNTARY STANDARD OF THE TRADE UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1942 For sale by the Superintendent of Documents, Washington, D. C. Price 10 cents . U. S. Department of Commerce National Bureau of Standard? PROMULGATION of COMMERCIAL STANDARD CS102E-42 for DIESEL AND FUEL-OIL ENGINES (Export Classifications) On January 30, 1942, at the instance of the Diesel Engine Manu- facturers’ Association, a conference of representative manufacturers adopted a recommended commercial standard for Diesel and fuel -oil engines (export classifications). Those concerned have since accepted and approved the standard as shown herein for promulgation by the U. S. Department of Commerce, through the National Bureau of Standards. The standard is effective for new production from October 30, 1942. Promulgation recommended I. J. Fairchild, Chieff Division of Trade Standards, Promulgated. Lyman J. Briggs, Director^ National Bureau of Standards, Promulgation approved. Jesse H. Jones, Secretary of Commerce. II DIESEL AND FUEL-OIL ENGINES (Export Classifications) COMMERCIAL STANDARD CS102E-42 PARTS Page 1. Nomenclature and definitions.. ' 1 2. Slow- and medium-speed stationary Diesel engines 7 3. Slow- and medium-speed marine Diesel engines 13 4. Small, medium- and high-speed stationary, marine, and portable Diesel engines 19 5. -
FCM Aircraft Operations That Generated Complaints July 2015
FCM Aircraft Operations that Generated Complaints July 2015 Complaints FCM FCM FCM Helicopter FCM Regarding Complaints Complaints Aircraft Types Nighttime FCM Submitted Submitted via Complaints Complaints Complaints Run-ups via Internet Phone Unknown 184 6 7 2 184 0 Beechcraft King Air 200 46 0 30 0 46 0 Raytheon Beechjet 400 15 0 9 0 15 0 Cessna Citation Jet 560XL 15 1 4 0 15 0 Beechcraft King Air 90 13 1 6 1 13 0 Cirrus SR-22 9 0 2 0 9 0 Cessna Skyhawk 172 8 0 0 0 8 0 Cessna Citation Jet 525 7 0 3 0 7 0 Beechcraft King Air 350 6 0 2 0 6 0 Learjet 45 6 0 1 0 6 0 Cessna 310 Twin 5 0 0 0 5 0 Cessna Skywagon 185 5 0 0 0 4 1 Piper Malibu Meridian 4 0 0 0 4 0 Hawker 125 Jet 4 0 1 0 4 0 Piper Malibu 4 0 1 0 4 0 Pilatus PC-12 4 0 1 0 4 0 Cessna Citation Jet 560 4 0 1 0 4 0 Cessna 340 Twin 3 0 0 0 3 0 Beechcraft King Air 300 3 0 2 0 3 0 Cessna Corsair 425 2 0 0 0 2 0 Cessna 206 2 0 0 0 2 0 Experimental 2 0 1 0 2 0 Cessna Citation Jet 750 2 0 2 0 2 0 Socata TBM 700 2 0 0 0 2 0 Cessna Golden Eagle 421 2 0 0 0 2 0 Cessna Centurion 210 2 0 0 0 2 0 Cessna Skylane 182 2 0 0 0 2 0 Piper Cherokee 2 0 0 0 2 0 T-6 TEXAN 2 0 0 0 2 0 Rockwell Turbo Commander 900 2 0 0 0 2 0 Cessna Citation Mustang 2 0 0 0 2 0 Boeing 737-900 1 0 1 0 1 0 Report Generated: 09/30/2015 15:36 Page 1 Complaints FCM FCM FCM Helicopter FCM Regarding Complaints Complaints Aircraft Types Nighttime FCM Submitted Submitted via Complaints Complaints Complaints Run-ups via Internet Phone Piper Navajo Twin 1 0 0 0 1 0 Mitsubishi MU-2 1 0 0 0 1 0 Beechcraft Debonair/Bonanza 1 0 1 0 1 0 -
Top Turboprop Series: We Compare Popular Pre-Owned Models
FOR THE PILOTS OF OWNER-FLOWN, CABIN-CLASS AIRCRAFT SEPTEMBER 2019 $3.95 US VOLUME 23 NUMBER 9 Top Turboprop Series: We Compare Popular Pre-Owned Models Five Questions The Latest on One Pilot’s with Corporate the Cessna Denali Introduction Angel Network & SkyCourier to Aerobatics Jet It US One year $15.00, two years $29.00 Canadian One year $24.00, two years $46.00 Overseas One Year $52.00, Two Years $99.00 Single copies $6.50 PRIVATE. FAST. SMART. EDITOR Rebecca Groom Jacobs SEPTEMBER2019 • VOL. 23, NO. 9 (316) 641-9463 Contents [email protected] EDITORIAL OFFICE 2779 Aero Park Drive 4 Traverse City, MI 49686 Editor’s Briefing Phone: (316) 641-9463 E-mail: [email protected] 2 A Career Shaped by Turboprops PUBLISHER by Rebecca Groom Jacobs Dave Moore PRESIDENT Position Report Dave Moore 4 What Makes a Turboprop CFO Safer? Answer: You Rebecca Mead PRODUCTION MANAGER by Dianne White Mike Revard PUBLICATIONS DIRECTOR Jake Smith GRAPHIC DESIGNER Marci Moon 6 TWIN & TURBINE WEBSITE 6 Top Turboprop Series: www.twinandturbine.com Pre-Owned Piper Meridian ADVERTISING DIRECTOR and Daher TBM 700C2 John Shoemaker Twin & Turbine by Joe Casey 2779 Aero Park Drive Traverse City, MI 49686 12 Five on the Fly with Phone: 1-800-773-7798 Corporate Angel Network Fax: (231) 946-9588 [email protected] by Rebecca Groom Jacobs ADVERTISING ADMINISTRATIVE COORDINATOR & REPRINT SALES 14 The Latest on the Betsy Beaudoin Cessna Denali and Phone: 1-800-773-7798 [email protected] SkyCourier ADVERTISING ADMINISTRATIVE by Rich Pickett ASSISTANT Jet It Erika Shenk 22 Intro to Aerobatics Phone: 1-800-773-7798 by Jared Jacobs [email protected] SUBSCRIBER SERVICES Rhonda Kelly Diane Smith Jamie Wilson Molly Costilow 22 Kelly Adamson P.O. -
! National Advisory Committee for Aeronautics
! . \ i NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE No. 1374 EXPERIMENTAL STUDIES OF THE KNOCK - LIlvITTED BLENDIDG CHARACTERISTICS OF AVIATION FUELS II - INVESTIGATION OF LEADED PARAFFINIC FUELS IN AN AIR-COOLED CYLrnDER By Jerrold D. Wear and Newell D. Sanders Flight Propulsion Research Laboratory Cleveland, Ohio Washington July 1947 , \ I NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TN 1374 EXPERIMENTAL STUDIES OF THE KNOCK-LIMITED BLENDING CH.~~ACTERISTICS OF AVIATION FUELS II - INVESTIGATION OF LEADED PARAFFINIC FUELS IN ~~ AIR-COOLED CYLINDER By Jerrold D. Wear and. Newell D. Sanders SUMMARY The relation between knock limit and blend composition of selected aviation fuel components individually blended with virgin base and ''lith alkylate was determined in a full-scale air-cooled aircraft-·engine cylinder. In addition the follow ing correlations were examined: (a) The knock-·limited performance of a full -scale engine at lean-mixture operation plotted against the knock-limited perform ance of the engine at rich-mixture operation for a series of fuels (b) The knock-limited performance of a full-scale engine at rich-mixture operation plotted against the knock-limited perform ance at rich-mixture operation of a small-scale engine for a series of fuels In each case the following methods of specifying the knock limi ted perfOl'IDanCe of the engine were investigated: (l) Knock·-limited indicated mean effective pressure (2) percentage of S-4 plus 4 ml T~~ per gallon in M-4 plus 4 ml TEL per gallon to give an equal knock-limited indicated mean effective pressure (3) Ratio of indicated mean effective pressure of test fuel ~o indicated mean effective pressure of clear S-4 reference fuel, all other conditions being the same . -
MT Propeller
mt-propeller Installationlist Edition Report No.: E-546 Entwicklung GMBH 01st July 2009 EMP Min Blade Max Blade Max R- Counter- Aircraft Engine Propeller Spinner Assy Governor STC Angle Angle Reverse Station Weight TC [ ° ] [ ° ] [ ° ] [ cm ] [ ° ] EASA/FAA A-150Luftschiff Lyc.IO-360 MTV-25-1-D-C-R(M)/CR165-06 P-492 P-480-1 7 22 -18 58 CWT+27 EASA A-1Husky Lyc.IO-360-A1P MTV-14-B/183-301a P-238-A P-860-4 10,5 30 68,5 A-1Husky Lyc.O-360-C1G MTV-12-B/180-17 P-208-X P-860-4 13 30 63 EASA/FAA A-1Husky Lyc.IO-360-A1P/-C1G MTV-15-B/210-58 P-277-B P-860-4 9 24 79 EASA AA-200 Lyc.IO-360-() MTV-18-B/LD178-17 P-246 P-120-U/2700-24V 14 35 63 CWT+35 FAA ACA SCOUT 8GCBC Lyc. O-360- MTV-9-B/190-18a P-282-1-A P-860-4 9 28 71 FAA ACA SCOUT 8GCBC Lyc. O-360- MTV-15-B/203-58 P-271-2-C P-860-4 9 28 76 EASA/FAA ACA Scout 9GCBC Lyc. IO-540- MTV-9-B/198-58 P-810-1 P-860-3 8,5 28 74 Accord 201 SR-305-230 MTV-9-B-C-F-R(M)/CFR198-58B P-907 P-980-() 14,5 81 -18 74 CWT+3 ACRO Lyc.AEIO-360-A1B MTV-9-B-C/C190-11 P-208 P-880-4 9,5 34 70 CWT+26 ACRO Lyc.AEIO-540-C4B5 MTV-9-B-C/C200-15 P-208 P-880-3 10,5 34 70 CWT+26 Acrobatic Aircraft Chevy V8 550 hp MTV-16-1-E-C/C250-27 P-542 9,5 36 87,5 CWT+26 ACRO-MONOPLANE Lyc.AEIO-540-L1B5D MTV-9-B-C/C200-15 P-208 P-880-3 10,5 34 70 CWT+26 ACROZENITHCH-180 Lyc.IO-360-A1B6D MTV-2-B-C/193-02 P-029 P-860-4 9,5 34 67,5 CWT+30 ACV 120PS MTE-176/RD113-23 - - 22,2 - 43 ACV BMW MTE-106/LD119-10 - - 20 - 45 ACV ROBIN EC-60-PL MTE-176/LD113-23 - - 22,2 - 43 ACV Rotax503(2:1) MTE-176/RD91-37 - - 21 - 32 AEASATROSS 4 UACL PT6A-15AG MTV-27-1-E-C-F-R(P)/CFR208-15c -
Lancair Tigress
Lancair Tigress We found one dictionary with English definitions that includes the word lancair tigress: Click on the first link on a line below to go directly to a page where "lancair tigress" is defined. General (1 matching dictionary). Lancair Tigress: Wikipedia, the Free Encyclopedia [home, info]. ▸ Words similar to lancair tigress. ▸ Words that often appear near lancair tigress. ▸ Rhymes of lancair tigress. ▸ Invented words related to lancair tigress. Search for lancair tigress on Google or Wikipedia. Manufacturing the Lancair MAKO, a new 4-seat aircraft from a legendary company. Explore Preowned Lancair Kits. Genuine. Lancair Parts & Accessories. FACTORY PARTS. Meet the Lancair Family of Aircraft. Over 3 Decades of Aviation Innovation. Lancair 320-360. The Lancair Tigress was an American homebuilt aircraft that was designed by Lance Neibauer and intended for production by Lancair of Redmond, Oregon. Introduced in mid-late 1990s, it was essentially a Lancair IV with a much more powerful engine. When the engine was cancelled just as it was entering production, the Tigress project ended with it. Only prototypes were produced.[1]. For faster navigation, this Iframe is preloading the Wikiwand page for Lancair Tigress. Home. News. Category:Lancair Tigress. From Wikimedia Commons, the free media repository. Jump to: navigation, search. Media in category "Lancair Tigress". This category contains only the following file. The Civil Aerospace Medical Institute.jpg 1,200 × 795; 1.02 MB. Retrieved from "https://commons.wikimedia.org/w/index.php? title=Category:Lancair_Tigress&oldid=208852982". Lancair Tigress. Model year. Production years. Format You get all formats when you buy the drawing. -
An Experimental Study on Performance and Emission Characteristics of a Hydrogen Fuelled Spark Ignition Engine
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace@IZTECH Institutional Repository International Journal of Hydrogen Energy 32 (2007) 2066–2072 www.elsevier.com/locate/ijhydene An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine Erol Kahramana, S. Cihangir Ozcanlıb, Baris Ozerdemb,∗ aProgram of Energy Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey bDepartment of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey Received 2 August 2006; accepted 2 August 2006 Available online 2 October 2006 Abstract In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effective pressure, exhaust gas temperature, and emissions of NOx, CO, CO2, HC, and O2 versus engine speed are compared for a carbureted SI engine operating on gasoline and hydrogen. Energy analysis also has studied for comparison purpose. The test results have been demonstrated that power loss occurs at low speed hydrogen operation whereas high speed characteristics compete well with gasoline operation. Fast burning characteristics of hydrogen have permitted high speed engine operation. Less heat loss has occurred for hydrogen than gasoline. NOx emission of hydrogen fuelled engine is about 10 times lower than gasoline fuelled engine. -
July - August 2014
publication agreement number 40050880 July - August 2014 Recreational Aircraft Association Canada www.raa.ca The Voice of Canadian Amateur Aircraft Builders $6.95 From The President’s Desk features Gary Wolf RAA 7379 Prop Man When you can't find the one you want, make it / by Mike Shave and Gary Wolf ......................................4 Foo Foo and Me ANOTHER WINNIPEG CHAPTER in Canada by Toronto Aerosport at been sold but the sewing operations Memories in a C-152 / by Barry Meek ....................................................................................................8 PLANE Baldwin Ontario. They have pro- are available to someone who would Jill Oakes of Winnipeg has really vided supporting documentation to like to continue manufacturing their Getting It Straight started something. She donated a Transport Canada for inclusion in the aircraft covers and interiors. Tips on wheel alignment / by Wayne Hadath ........................................................................................10 Cessna 150 to be used by RAA mem- Advanced UL category. Gross weight bers for flight instruction and $20/ is 499 kg with Jabiru or Aerovee 80 SAM aircraft, a Quebec manufacturer D-Motor Comes To Canada hr rentals, sparking a large increase hp, and 521 kg with Jabiru 120 hp. of light sport and AULA aircraft has A new flat-head engine for builders / by Dave Hertner ..........................................................................14 in chapter and national membership. completed their development pro- Now they have had a donation of a Bushcaddy was bought by Tony gram and is offering the company to Winnipeg to Oshkosh Piper PA-28 from Bill Vandenberg and Wilkins several years ago and shortly someone who would like to continue The Lyncrest chapter flies to the Big One / by Jill Oakes .........................................................................19 Ken and Jerry Pennington. -
550 Series Avgas Engine
The 550 series includes 550 in3 models in either naturally aspirated or turbocharged configurations. With the right combination of thrust and efficiency, our 550-series engines are powering some of the most successful and high performing aircraft in general aviation history like the Cirrus® SR22T and Beechcraft® Baron/Bonanza, and Mooney®. With a powerful range of 280 to 350 HP at 2500 to 2700 RPM, you’ll be glad you fly a 550. THE 550 SERIES IS A FAMILY CERTIFIED FUELS: STROKE: TYPICAL WEIGHT: 100/100LL & 94UL 107.95 mm 207 to 317 kg OF AIR COOLED, NATURALLY AvGas (TSIO-550-K only) 4.25 in 456 to 699 lbs ASPIRATED, HORIZONTALLY DISPLACEMENT: COMPRESSION TIME BETWEEN OPPOSED, 6-CYLINDER, 9046 cm³ (COMP.) RATIO: OVERHAUL (TBO): 552 in3 7.5:1 1800 – 2200 hours GASOLINE, FUEL INJECTED, SPARK 8.5:1 IGNITION, FOUR-STROKE, DIRECT POWER: TURBO MODEL 209 to 261 kW HEIGHT: AVAILABILITY: DRIVE, RIGHT (CW) ROTATING, 280 to 350 HP 501.7 to 933.2 mm Yes AIRCRAFT ENGINE WITH MANUAL 19.75 to 36.74 in MAXIMUM ENGINE CONTROLS FOR FIXED RATED RPM: WIDTH: 2500 to 2700 r/min 852.4 to 1076.7 mm WING AIRCRAFT. THE TURBO 2500 to 2700 rpm 33.56 to 42.39 in SERIES IS TURBOCHARGED FOR BORE: LENGTH: FIXED WING AIRCRAFT. 133.35 mm 933.2 to 1215.6 mm 5.25 in 36.74 to 47.86 in WWW.CONTINENTAL.AERO # RATED DRY CERTIFIED COMP. TIME BETWEEN FAA MODEL 1 BORE × STROKE DISPLACEMENT 2 FUEL OVERHAUL CYL POWER WEIGHT GRADE RATIO (TBO) TCDS 224 kW @ 2700 133.35 x 107.95 mm 9046 cm³ 206.8 kg IO-550-A 6 100/ 100LL 8.5:1 1900 hours E3SO 300 HP @ 2700 5.25 x 4.25 in 552 in³ 455.9 -
Une Histoire Méconnue Du Broussard
Une histoire méconnue du Broussard Vous connaissez l’histoire étonnante du Broussard et de son concepteur Max Holste ?... Non ?... Lisez donc ceci ! Le Broussard MH 1521 fut conçu par l’ingénieur Français Max Holste (1913-1998). Personnage inventif et passionné, Max Holste décide, à 26 ans, de concevoir des avions légers et des planeurs. La guerre 39-45 ne favorise guère ses ambitions et si quelques prototypes voient le jour, ce n’est que dans les années 50 que le projet d’un avion de brousse polyvalent se concrétise. Inspiré du Beaver canadien, le Broussard sera équipé du même moteur : le Pratt et Whitney R.985 de 450 CV, conçu dans les années 30 et produit à plus de 50000 exemplaires. L’avion sera optimisé pour les pistes sommaires : train à lames, maintenance aisée, rusticité des systèmes, il vise l’immense territoire de nos colonies africaines, le Beaver, qui sera construit à 1631 exemplaires ayant déjà pris une large part du reste du marché mondial. L’Etat français sera le premier et principal client de Max Holste. L’appareil sera vendu à l’armée de l’air (289 ex), l’Aviation légère de l’Armée de terre (46 ex), et la Marine (3 ex). Ces commandes massives gêneront indirectement le marché civil en raison des cadences de production limitées, en dépit d’un partage des tâches entre la SECA (Société d’étude et de construction aéronautique), la SIPA (Société industrielle pour l’Aéronautique) et la Société des Avions Max Holste. 45 modèles seront malgré tout vendus à l’étranger (Haute-Volta, Argentine, Gabon, Madagascar, Maroc et Portugal notamment).