Enumerative Geometry of Quot Schemes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Utah: J. Willard Marriott Digital Library ENUMERATIVE GEOMETRY OF QUOT SCHEMES by Thomas Goller A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics The University of Utah May 2017 Copyright c Thomas Goller 2017 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Thomas Goller has been approved by the following supervisory committee members: Aaron Bertram , Chair(s) 1 Mar 2017 Date Approved Renzo Cavalieri , Member 1 Mar 2017 Date Approved Tommaso de Fernex , Member 1 Mar 2017 Date Approved Christopher Hacon , Member 1 Mar 2017 Date Approved Domingo Toledo , Member 1 Mar 2017 Date Approved by Peter Trapa , Chair/Dean of the Department/College/School of Mathematics and by David B. Kieda , Dean of The Graduate School. ABSTRACT The main object of study in this thesis is the Grothendieck Quot scheme. Let X be a projective variety over C, let V be a coherent sheaf on X, and let r be a cohomology class on X. The Quot scheme Quot(V, r) is a projective scheme that parametrizes coherent sheaf quotients V F where F has Chern character r. Choosing r and the Chern character of V to satisfy a certain orthogonality condition, Quot(V, r) is expected to be a finite collection of points. One can ask whether Quot(V, r) is indeed finite when V is general in moduli.
[Show full text]