P-ADIC ÉTALE TATE TWISTS and ARITHMETIC DUALITY ✩
Ann. Scient. Éc. Norm. Sup., 4e série, t. 40, 2007, p. 519 à 588. p-ADIC ÉTALE TATE TWISTS AND ARITHMETIC DUALITY ✩ BY KANETOMO SATO ABSTRACT. – In this paper, we define, for arithmetic schemes with semi-stable reduction, p-adic objects playing the roles of Tate twists in étale topology, and establish their fundamental properties. © 2007 Published by Elsevier Masson SAS RÉSUMÉ. – Dans cet article, nous définissons, pour les schémas arithmétiques à réduction semi-stable, des objets p-adiques jouant les rôles de twists à la Tate pour la topologie étale, et nous établissons leurs propriétés fondamentales. © 2007 Published by Elsevier Masson SAS 1. Introduction Let k be a finite field of characteristic p>0, and let X be a proper smooth variety over Spec(k) of dimension d. For a positive integer m prime to p, we have the étale sheaf μm on X Z Z ⊗n consisting of m-th roots of unity. The sheaves /m (n):=μm (n 0), so-called Tate twists, satisfy Poincaré duality of the following form: There is a non-degenerate pairing of finite groups for any i ∈ Z i Z Z × 2d+1−i Z Z − −→ Z Z H´et X, /m (n) H´et X, /m (d n) /m . n On the other hand, we have the étale Hodge–Witt sheaf WrΩX and its logarithmic subsheaf n Z rZ n − WrΩX,log for r 1 and 0 n d ([6,27]). When we put /p (n):=WrΩX,log[ n],we have an analogous duality theorem due to Milne [46,47]. In this paper, for a regular scheme X which is flat of finite type over Spec(Z) and a prime r b r number p, we construct an object Tr(n)X playing the role of ‘Z/p Z(n)’inD (X´et, Z/p Z), the derived category of bounded complexes of étale Z/prZ-sheaves on X.
[Show full text]