Tatiana Barichello Editor Blood-Brain Barrier N EUROMETHODS

Total Page:16

File Type:pdf, Size:1020Kb

Tatiana Barichello Editor Blood-Brain Barrier N EUROMETHODS Neuromethods 142 Tatiana Barichello Editor Blood-Brain Barrier N EUROMETHODS Series Editor Wolfgang Walz University of Saskatchewan Saskatoon, SK, Canada For further volumes: http://www.springer.com/series/7657 Blood-Brain Barrier Edited by Tatiana Barichello Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil Editor Tatiana Barichello Department of Psychiatry & Behavioral Sciences The University of Texas Health Science Center at Houston (UTHealth) Houston, TX, USA Graduate Program in Health Sciences University of Southern Santa Catarina (UNESC) Criciu´ma, SC, Brazil ISSN 0893-2336 ISSN 1940-6045 (electronic) Neuromethods ISBN 978-1-4939-8945-4 ISBN 978-1-4939-8946-1 (eBook) https://doi.org/10.1007/978-1-4939-8946-1 Library of Congress Control Number: 2018961703 © Springer Science+Business Media, LLC, part of Springer Nature 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Cover illustration: Image courtesy of Tatiana Barichello and Allan Collodel. This Humana Press imprint is published by the registered company Springer Science+Business Media, LLC, part of Springer Nature. The registered company address is: 233 Spring Street, New York, NY 10013, U.S.A. Preface to the Series Experimental life sciences have two basic foundations: concepts and tools. The Neuro- methods series focuses on the tools and techniques unique to the investigation of the nervous system and excitable cells. It will not, however, shortchange the concept side of things as care has been taken to integrate these tools within the context of the concepts and questions under investigation. In this way, the series is unique in that it not only collects protocols but also includes theoretical background information and critiques which led to the methods and their development. Thus it gives the reader a better understanding of the origin of the techniques and their potential future development. The Neuromethods publishing program strikes a balance between recent and exciting developments like those concerning new animal models of disease, imaging, in vivo methods, and more established techniques, including, for example, immunocytochemistry and electrophysiological technologies. New trainees in neurosciences still need a sound footing in these older methods in order to apply a critical approach to their results. Under the guidance of its founders, Alan Boulton and Glen Baker, the Neuromethods series has been a success since its first volume published through Humana Press in 1985. The series continues to flourish through many changes over the years. It is now published under the umbrella of Springer Protocols. While methods involving brain research have changed a lot since the series started, the publishing environment and technology have changed even more radically. Neuromethods has the distinct layout and style of the Springer Protocols program, designed specifically for readability and ease of reference in a laboratory setting. The careful application of methods is potentially the most important step in the process of scientific inquiry. In the past, new methodologies led the way in developing new dis- ciplines in the biological and medical sciences. For example, physiology emerged out of anatomy in the nineteenth century by harnessing new methods based on the newly discov- ered phenomenon of electricity. Nowadays, the relationships between disciplines and meth- ods are more complex. Methods are now widely shared between disciplines and research areas. New developments in electronic publishing make it possible for scientists that encounter new methods to quickly find sources of information electronically. The design of individual volumes and chapters in this series takes this new access technology into account. Springer Protocols makes it possible to download single protocols separately. In addition, Springer makes its print-on-demand technology available globally. A print copy can therefore be acquired quickly and for a competitive price anywhere in the world. Saskatoon, SK, Canada Wolfgang Walz v Preface The Blood-Brain Barrier (BBB) Methods and Protocols book is focused on experimental research with relevant models to study physiology, biochemistry, and molecular biology of the BBB. The chapters were written by world-renowned scientists who depict their knowl- edge about BBB and its functional measurement. The BBB book offers straightforward guidance for both young and experienced investigators to perform studies using classical and innovative models permitting translational approaches for BBB investigations. The BBB methods and protocols book is organized into six subjects contemplating (1) an overview about the physiology of the BBB; (2) in vitro cell models to investigate the BBB; (3) in vivo and ex vivo techniques to evaluate BBB including Drosophila melanogaster, zebrafish (Danio rerio), and rodent models; (4) techniques to evaluate permeability, influx and efflux trans- portation, and drug delivery through the BBB; (5) invasive and noninvasive imaging techniques to evaluate the BBB such as intravital microscopy, magnetic resonance imaging (MRI), and positron emission tomography (PET); and (6) molecular biomarkers to evaluate the integrity or dysfunction of the BBB. The BBB methods and protocols book brings together many of the specialized methods for evaluating BBB in 20 important chapters with transparency and technical excellence providing practical solutions in the laboratory. We hope that you enjoy this detailed scientific journey about the BBB and this book becomes a great collaborator to unravel the mysteries of the BBB and apply your findings from basic science to enhancing human health and well-being. Houston, TX, USA Tatiana Barichello Criciu´ ma, SC, Brazil vii Contents Preface to the Series ........................................................... v Preface . ................................................................... vii Contributors................................................................. xi 1 An Overview of the Blood-Brain Barrier ................................... 1 Tatiana Barichello, Allan Collodel, Rodrigo Hasbun, and Rodrigo Morales 2 Methods of Delivering Molecules Through the Blood-Brain Barrier for Brain Diagnostics and Therapeutics ............................. 9 Brian M. Kopec, Kavisha R. Ulapane, Mario E. G. Moral, and Teruna J. Siahaan 3 Culturing of Rodent Brain Microvascular Endothelial Cells for In Vitro Modeling of the Blood-Brain Barrier ........................... 45 Malgorzata Burek and Carola Y. Fo¨rster 4 In Vitro BBB Models: Working with Static Platforms and Microfluidic Systems................................................. 55 Mohammad A. Kaisar, Vinay V. Abhyankar, and Luca Cucullo 5 In Vitro Cell Models of the Human Blood-Brain Barrier: Demonstrating the Beneficial Influence of Shear Stress on Brain Microvascular Endothelial Cell Phenotype . ....................... 71 Keith D. Rochfort and Philip M. Cummins 6 Transepithelial/Transendothelial Electrical Resistance (TEER) to Measure the Integrity of Blood-Brain Barrier ............................ 99 Balaji Srinivasan and Aditya Reddy Kolli 7 Cell-Penetrating Peptides as Theranostics Against Impaired Blood-Brain Barrier Permeability: Implications for Pathogenesis and Therapeutic Treatment of Neurodegenerative Disease ................... 115 Swapna Bera and Anirban Bhunia 8 Microbial Translocation of the Blood-Brain Barrier . ....................... 137 Charles T. Spencer and Mireya G. Ramos Muniz 9 Transport Across the Choroid Plexus: How to Culture Choroid Plexus Cells and Establish a Functional Assay System . ....................... 163 Sen Takeda and Keishi Narita 10 Drosophila as a Model to Study the Blood-Brain Barrier ..................... 175 Cameron R. Love and Brigitte Dauwalder 11 Zebrafish (Danio rerio) as a Viable Model to Study the Blood-Brain Barrier................................................................. 187 Tianzhi Yang and Shuhua Bai 12 Evans Blue-Albumin as a Marker to Evaluate Blood-Brain Barrier Integrity in Neonatal and Adult Rodents .................................. 197 Fabricia Petronilho, Julia L. Goldman, and Tatiana Barichello ix x Contents 13 Experimental Tools to Study the Regulation
Recommended publications
  • The Rights and Wrongs of Blood-Brain Barrier Permeability Studies: a Walk Through 100 Years of History
    REVIEW ARTICLE published: 16 December 2014 doi: 10.3389/fnins.2014.00404 The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history Norman R. Saunders 1*, Jean-Jacques Dreifuss 2, Katarzyna M. Dziegielewska 1, Pia A. Johansson 3, Mark D. Habgood 1, Kjeld Møllgård 4 and Hans-Christian Bauer 5,6 1 Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia 2 Department of Neuroscience, University of Geneva, Geneva, Switzerland 3 Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany 4 Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark 5 Institute of Tendon and Bone Regeneration, Paracelsus Medical University, Salzburg, Austria 6 Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria Edited by: Careful examination of relevant literature shows that many of the most cherished concepts Lester R. Drewes, University of of the blood-brain barrier are incorrect. These include an almost mythological belief in Minnesota Medical School Duluth, its immaturity that is unfortunately often equated with absence or at least leakiness in USA the embryo and fetus. The original concept of a blood-brain barrier is often attributed to Reviewed by: Britta Engelhardt, University of Bern, Ehrlich; however, he did not accept that permeability of cerebral vessels was different Switzerland from other organs. Goldmann is often credited with the first experiments showing dye Daniela Virgintino, Sensory Organs - (trypan blue) exclusion from the brain when injected systemically, but not when injected Bari University School of Medicine, directly into it. Rarely cited are earlier experiments of Bouffard and of Franke who showed Italy methylene blue and trypan red stained all tissues except the brain.
    [Show full text]
  • (BBB) Model for Drug Permeability Studies, and Application to Natural Product
    Establishment and validation of an immortalized in vitro human blood-brain barrier (BBB) model for drug permeability studies, and application to natural product derived leads Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Daniela Elisabeth Eigenmann aus Waldkirch, St. Gallen Basel, 2016 Original document stored on the publication server of the University of Basel edoc.unibas.ch This work is licenced under the agreement „Attribution Non-Commercial No Derivatives – 3.0 Switzerland“ (CC BY-NC-ND 3.0 CH) The complete text may be reviewed here: creativecommons.org/licenses/by-nc-nd/3.0/ch/deed.en Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Matthias Hamburger Prof. Dr. Laurent A. Decosterd Basel, den 08.12.2015 Prof. Dr. Jörg Schibler Dekan Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz (CC BY-NC-ND 3.0 CH) Sie dürfen: Teilen — den Inhalt kopieren, verbreiten und zugänglich machen Unter den folgenden Bedingungen: Namensnennung — Sie müssen den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. Keine kommerzielle Nutzung — Sie dürfen diesen Inhalt nicht für kommerzielle Zwecke nutzen. Keine Bearbeitung erlaubt — Sie dürfen diesen Inhalt nicht bearbeiten, abwandeln oder in anderer Weise verändern. Wobei gilt: Verzichtserklärung — Jede der vorgenannten Bedingungen kann aufgehoben werden, sofern Sie die ausdrückliche Einwilligung des Rechteinhabers
    [Show full text]
  • The Rights and Wrongs of Blood-Brain Barrier Permeability Studies
    The rights and wrongs of blood-brain barrier permeability studies a walk through 100 years of history Saunders, Norman R; Dreifuss, Jean-Jacques; Dziegielewska, Katarzyna M; Johansson, Pia A; Habgood, Mark D; Møllgård, Kjeld; Bauer, Hans-Christian Published in: Frontiers in Neuroscience DOI: 10.3389/fnins.2014.00404 Publication date: 2014 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Saunders, N. R., Dreifuss, J-J., Dziegielewska, K. M., Johansson, P. A., Habgood, M. D., Møllgård, K., & Bauer, H-C. (2014). The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Frontiers in Neuroscience, 8, 1-26. [404]. https://doi.org/10.3389/fnins.2014.00404 Download date: 25. sep.. 2021 REVIEW ARTICLE published: 16 December 2014 doi: 10.3389/fnins.2014.00404 The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history Norman R. Saunders 1*, Jean-Jacques Dreifuss 2, Katarzyna M. Dziegielewska 1, Pia A. Johansson 3, Mark D. Habgood 1, Kjeld Møllgård 4 and Hans-Christian Bauer 5,6 1 Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia 2 Department of Neuroscience, University of Geneva, Geneva, Switzerland 3 Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany 4 Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark 5 Institute of Tendon and Bone Regeneration, Paracelsus Medical University, Salzburg, Austria 6 Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria Edited by: Careful examination of relevant literature shows that many of the most cherished concepts Lester R.
    [Show full text]
  • The Rights and Wrongs of Blood-Brain Barrier Permeability Studies
    The rights and wrongs of blood-brain barrier permeability studies a walk through 100 years of history Saunders, Norman R; Dreifuss, Jean-Jacques; Dziegielewska, Katarzyna M; Johansson, Pia A; Habgood, Mark D; Møllgård, Kjeld; Bauer, Hans-Christian Published in: Frontiers in Neuroscience DOI: 10.3389/fnins.2014.00404 Publication date: 2014 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Saunders, N. R., Dreifuss, J-J., Dziegielewska, K. M., Johansson, P. A., Habgood, M. D., Møllgård, K., & Bauer, H-C. (2014). The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Frontiers in Neuroscience, 8, 1-26. [404]. https://doi.org/10.3389/fnins.2014.00404 Download date: 01. Oct. 2021 REVIEW ARTICLE published: 16 December 2014 doi: 10.3389/fnins.2014.00404 The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history Norman R. Saunders 1*, Jean-Jacques Dreifuss 2, Katarzyna M. Dziegielewska 1, Pia A. Johansson 3, Mark D. Habgood 1, Kjeld Møllgård 4 and Hans-Christian Bauer 5,6 1 Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia 2 Department of Neuroscience, University of Geneva, Geneva, Switzerland 3 Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany 4 Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark 5 Institute of Tendon and Bone Regeneration, Paracelsus Medical University, Salzburg, Austria 6 Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria Edited by: Careful examination of relevant literature shows that many of the most cherished concepts Lester R.
    [Show full text]
  • Liposome-Based Strategies for Effective Drug Delivery Across the Blood–Brain Barrier
    Journal name: International Journal of Nanomedicine Article Designation: Review Year: 2016 Volume: 11 International Journal of Nanomedicine Dovepress Running head verso: Vieira and Gamarra Running head recto: Liposomal strategies for effective drug delivery across the BBB open access to scientific and medical research DOI: http://dx.doi.org/10.2147/IJN.S117210 Open Access Full Text Article REVIEW Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier Débora B Vieira1 Abstract: This review summarizes articles that have been reported in literature on Lionel F Gamarra1,2 liposome-based strategies for effective drug delivery across the blood–brain barrier. Due to their unique physicochemical characteristics, liposomes have been widely investigated for 1Hospital Israelita Albert Einstein, São Paulo, Brazil; 2Faculdade de Ciências their application in drug delivery and in vivo bioimaging for the treatment and/or diagnosis of Médicas da Santa Casa de São Paulo, neurological diseases, such as Alzheimer’s, Parkinson’s, stroke, and glioma. Several strategies São Paulo, Brazil have been used to deliver drug and/or imaging agents to the brain. Covalent ligation of such macromolecules as peptides, antibodies, and RNA aptamers is an effective method for receptor- targeting liposomes, which allows their blood–brain barrier penetration and/or the delivery of their therapeutic molecule specifically to the disease site. Additionally, methods have been For personal use only. employed for the development of liposomes that can respond to external stimuli. It can be concluded that the development of liposomes for brain delivery is still in its infancy, although these systems have the potential to revolutionize the ways in which medicine is administered.
    [Show full text]
  • The Rights and Wrongs of Blood-Brain Barrier Permeability Studies: a Walk Through 100 Years of History
    REVIEW ARTICLE published: 16 December 2014 doi: 10.3389/fnins.2014.00404 The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history Norman R. Saunders 1*, Jean-Jacques Dreifuss 2, Katarzyna M. Dziegielewska 1, Pia A. Johansson 3, Mark D. Habgood 1, Kjeld Møllgård 4 and Hans-Christian Bauer 5,6 1 Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia 2 Department of Neuroscience, University of Geneva, Geneva, Switzerland 3 Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany 4 Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark 5 Institute of Tendon and Bone Regeneration, Paracelsus Medical University, Salzburg, Austria 6 Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria Edited by: Careful examination of relevant literature shows that many of the most cherished concepts Lester R. Drewes, University of of the blood-brain barrier are incorrect. These include an almost mythological belief in Minnesota Medical School Duluth, its immaturity that is unfortunately often equated with absence or at least leakiness in USA the embryo and fetus. The original concept of a blood-brain barrier is often attributed to Reviewed by: Britta Engelhardt, University of Bern, Ehrlich; however, he did not accept that permeability of cerebral vessels was different Switzerland from other organs. Goldmann is often credited with the first experiments showing dye Daniela Virgintino, Sensory Organs - (trypan blue) exclusion from the brain when injected systemically, but not when injected Bari University School of Medicine, directly into it. Rarely cited are earlier experiments of Bouffard and of Franke who showed Italy methylene blue and trypan red stained all tissues except the brain.
    [Show full text]
  • Original a Brief Biography of Alois Alzheimer
    Received: 20 December 2012 / Accepted: 24 May 2013 © 2013 Sociedad Española de Neurología Original Neurosciences and History 2013; 1(3): 125-136 A Brief Biography of Alois Alzheimer J.M. Pérez-Trullén Department of Neurology Hospital Royo Villanova. Zaragoza, Spain. ABSTRACT Although we are often aware of a few events in the private lives of specific doctors, we tend to express far more interest in their professional lives. Nevertheless, we should recognise that doctors' biographies often reveal the clues that led them to their discoveries and findings. While this is not always the case, we should also recognise the interest of looking beyond scientific research to gain a better understanding of a scientist as a person. Alzheimer is one of the most commonly-used eponyms in the field of neurology, but we rarely stop to ask ourselves who this doctor was, how he described the illness that still bears his name, and under what circumstances these events took place. The purpose of this article is to find answers to these questions. KEYWORDS Alois Alzheimer, biography, history, professional career, teaching Alois Alzheimer was born on 14 June 1864 in his family's fun-loving, and expansive, in contrast to the obsessive- home at Würzburger Strasse 273, Marktbreit-am-Main. compulsive tendencies of his good friend and colleague His family was deeply Catholic. His father Eduard had Nissl. 7 As a scientist, he was remarkably thoughtful and three wives; the first was Eva-Maria Busch who died critical, mainly of himself, but also of those around him. young, and the second was her sister eresia Busch, His descriptions and research reveal the precision and Alois's mother.
    [Show full text]
  • Max Lewandowsky (1876–1918)
    Journal of Neurology (2020) 267:1223–1224 https://doi.org/10.1007/s00415-019-09393-y PIONEERS IN NEUROLOGY Max Lewandowsky (1876–1918) Filip Marcinowski1 Received: 5 May 2019 / Revised: 15 May 2019 / Accepted: 20 May 2019 / Published online: 27 May 2019 © The Author(s) 2019 In the frst two decades of the twentieth century, there was recognition. Today, Lewandowsky’s handbook is credited as probably no European neurologist who was not familiar the frst venture of this kind [3]. Lewandowsky himself was with the name of Max Lewandowsky, German-Jewish neu- an author of more than 20 chapters of this work, covering rologist, author of numerous works, including a handbook such topics as the anatomy of the sympathetic system, gen- of neurology, and the editor of the neurological journal eral physiology of the central nervous system, ataxia, brain Zeitschrift für die gesamte Neurologie und Psychiatrie. trauma, brain abscesses, psychiatric disorders, myasthenia, Today, he is rarely remembered, except mostly in the context tetanus, hysteria etc., which give an overview of his broad of his research on the blood–brain barrier. scientifc interests. Max Heinrich Lewandowsky was born on June 28, 1876 As a researcher, Lewandowsky was particularly interested in Berlin, the son of Hermann Lewandowsky and Rose née in experimental work. His Ph.D. dissertation dealt with Heymann. He attended Friedrichsgymnasium in Berlin, vagal control of lung function [4]. Under the supervision of graduating in 1893. Then he studied medicine in Marburg, Oskar Vogt (1870–1959), he investigated brainstem path- Berlin and Halle. Among his teachers were Theodor Engel- ways.
    [Show full text]
  • Das Leben Von Prof. Dr. Fritz Jakob Heinrich Lewy (1885 – 1950)
    Aus dem medizinischen Zentrum für Nervenheilkunde Geschäftsführender Direktor: Prof. Dr. W. H. Oertel Aus der Klinik für Neurologie Direktor: Prof. Dr. W. H. Oertel des Fachbereichs Medizin der Philipps-Universität Marburg in Zusammenarbeit mit dem Universitätsklinikum Gießen und Marburg GmbH, Standort Marburg Das Leben von Prof. Dr. Fritz Jakob Heinrich Lewy (1885 – 1950) INAUGURAL-DISSERTATION zur Erlangung des Doktorgrades der gesamten Humanmedizin dem Fachbereich Medizin der Philipps-Universität Marburg vorgelegt von Antonio Manuel Rodrigues e Silva aus Dortmund Marburg/Lahn, 2013 II Angenommen vom Fachbereich Humanmedizin der Philipps-Universität Marburg am 04.12.2014: Gedruckt mit Genehmigung des Fachbereiches Dekan: Prof. Dr. med. H. Schäfer Referent: Prof. Dr. med. R. Dodel Korreferent: Prof. Dr. med. I. Sahmland III Inhaltsverzeichnis 1 Einleitung .................................................................................................... 1 1.1 Stand der Forschung ............................................................................ 2 1.1.1 Publikationsliste ............................................................................ 2 1.1.2 Leben ............................................................................................ 2 1.1.3 Bewertung der wissenschaftlichen Tätigkeit ............................... 11 1.1.4 Zusammenfassung ..................................................................... 14 1.2 Ziel der Arbeit ....................................................................................
    [Show full text]
  • 5 Psychiatrie Und Hirnforschung
    5 Psychiatrie und Hirnforschung: Zu den interstitiellen Übergängen des städtischen Wissenschaftsraums im Labor der Berliner Metropole – Oskar und Cécile Vogt, Korbinian Brodmann, Kurt Goldstein Frank W. Stahnisch Zusammenfassung Eine Analyse der Durchlässigkeiten, Austauschverhältnisse und Parallelentwicklungen in der medizinischen Forschung macht deutlich, dass das Verhältnis zwischen Psychiatrie und Hirnforschung – hier im Labor der Berliner Metropole – kaum als Geschichte von Universi­ tätsmedizin allein beschreiben werden kann. Stattdessen hat eine Reihe bedeutender Ent­ wicklungen in diesem interdisziplinären Arbeitsbereich gerade außerhalb der Universität stattgefunden, und der nötige Nexus zwischen Psychiatrie, Neurologie und grundlagenbe­ zogener Hirnforschung wurde auf wichtige Weise entlang der Interstitien des städtischen Wissenschaftsraums hergestellt. Diesen Schnittstellen zwischen diversen Laboratorien, Pri­ vatpraxen und Kliniken wird im vorliegenden Beitrag am Beispiel dreier ausgewählter Ein­ zelbiografien von Oskar Vogt (1870-1959), Korbinian Brodmann (1868-1918) und Kurt Goldstein (1878-1965) nachgegangen. Hierbei sollen einzelne der zu Grunde liegenden Konstellationen herausgearbeitet werden, die konstitutiv für die hirnforschungsorientierte Berliner Psychiatrie zwischen 1910 und 1940 waren und zugleich zu ihrer Weltgeltung bei­ getragen haben. „Die Elektrische Nr. 68 fährt über den Rosenthaler Platz, Wittenau, Nord­ bahnhof, Heilanstalt, Weddingplatz, Stettiner Bahnhof, Rosenthaler Platz, Alexanderplatz, Straußberger
    [Show full text]
  • ``Receptive Substances'': John Newport Langley (1852±1925) And
    Medical History, 2004, 48: 153±174 ``Receptive Substances'': John Newport Langley $1852±1925) and his Path to a Receptor Theory of Drug Action ANDREAS-HOLGER MAEHLE* Introduction The concept of specific receptors that bind drugs or transmitter substances onto the cell, thereby either initiating biological effects or inhibiting cellular functions, is today a corner- stone of pharmacological research and pharmaceutical development. Yet, while the basic ideas of this concept were first explicitly formulated in 1905 by the Cambridge physiologist John Newport Langley $1852±1925), drug receptors remained hypothetical entities at least until the end of the 1960s. Without doubt, the development of receptor-subtype specific pharmaceuticalsÐespecially the beta-adrenergic receptor antagonist propranolol $intro- duced in 1965)Ðpromoted the acceptance of the receptor concept in pharmacology. It was only in the 1970s, however, that receptors began to be isolated as specific proteins of the cell membrane and that their composition and conformation began to be explored. During the last twenty years the modern techniques of molecular biology have helped to determine the genetic basis of receptor proteins, to identify their amino acid sequences, and to further elucidate their remarkable structural diversity as well as their similarities and evolutionary relationships. Numerous receptor types and subtypes have since been characterized.1 Unsurprisingly therefore, the origins of the receptor theory have attracted the interest of historians of medicine and science. In particular, John Parascandola has traced the beginnings of the receptor idea in the work of Paul Ehrlich $1854±1915) and J N Langley.2 More recently, the roots of the receptor concept in Ehrlich's immunological research, i.e.
    [Show full text]
  • Copyrighted Material a Istorica __, Ictiona of a HISTORICAL DICTIONARY of Psychiatry This Page Intentionally Left Blank a HISTORICAL
    Copyrighted Material A istorica __, ictiona OF A HISTORICAL DICTIONARY OF Psychiatry This page intentionally left blank A HISTORICAL DICTIONARY OF Psychiatry EDWARD SHORTER 3 2005 3 Oxford University Press, Inc., publishes works that further Oxford University’s objective of excellence in research, scholarship, and education. Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 2005 by Edward Shorter Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data Shorter, Edward A historical dictionary of psychiatry / Edward Shorter. p. cm. Includes bibliographical references and index. ISBN-13 978-0-19-517668-1 ISBN 0-19-517668-5 1. Psychiatry—History—Dictionaries. I. Shorter, Edward. [DNLM: 1. Psychiatry—history—Dictionary—English. WM 13 H673 2005] RC438.H524 2005 616.89'003—dc22 2004049507 987654321 Printed in the United States of America on acid-free paper This page intentionally left blank For Tom Ban from one of his students This page intentionally left blank Preface This is the first-ever historical dictionary of psychiatry.
    [Show full text]