CW Ndryag LASER Martin David Dawson, B.Sc

Total Page:16

File Type:pdf, Size:1020Kb

CW Ndryag LASER Martin David Dawson, B.Sc CHARACTERISATION AND APPLICATION OF A MODE-LOCKED (MODE-LOCKED/Q-SWITCHED) C.W. NdrYAG LASER Martin David Dawson, B.Sc., A.R.C.S. A Thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Membership of Imperial College Optics Group Blackett Laboratory Imperial College of Science and Technology M a r c h 1985 London SW7 2BZ DEDICATION To Mam, Dad and Pam ABSTRACT A synchronously operated (Synchroscan) picosecond streak camera has been used in a direct time-resolved study of laser emission from a GaAs/(GaAl)As double heterostructure laser pumped by 514-nm Ar ion laser pulses of duration close to the ^ 60ps Fourier-transform limit. Semiconductor laser pulsewidths as short as 20ps were recorded and the dependence of the temporal characteristics of these pulses on average pump power was investigated. Optical pulses of similar wavelength (532nm) to those obtained from the Ar ion laser, but having considerably shorter duration (^30ps), have been generated by frequency doubling the output of a mode-locked continuous wave (c.w.) Nd:YAG laser using Type II phase­ matching in a KTiOPOi* (K.T.P.) crystal. High doubling efficiencies (a.10/6 average power conversion) were achieved. These pulses have been used to synchronously pump a Rhodamine 6G jet-stream dye laser, whose performance is compared to its Ar ion 514nm-pumped counterpart. The mode-locked c.w. Nd:YAG laser itself has been thoroughly characterised and various changes made to improve the short and long term stability of the output. Simultaneous Q-switching of this laser at repetition rates ^ 1kHz, both with and without prelasing, has been investigated in detail using streak cameras. In addition to single-shot streak camera measurements, the usefulness of the Synchroscan camera as a ,,real-timen diagnostic of the Q-switched/mode-locked (QSML) pulses has been demonstrated and has allowed the optimum regime of short pulse, high peak power operation to be clearly established. The QSML c.w. Nd:YAG laser has been used to generate a forward­ travelling picosecond phase conjugate (at 1,06um) by degenerate four- wave mixing in a silicon wafer and organic dye saturable absorber solutions (DNTPC, 97^0). Efficiencies of up to a few percent were achieved and the temporal characteristics of the conjugate beam quantitatively determined. CONTENTS INTRODUCTION Introduction 1 R e f e r e n c e s 5 ULTRASHORT PULSE GENERATION AND MEASUREMENT 2.1 Laser Action in Nd:YAG, Organic Dyes and 7 Semiconductors i) N d 3 + :YAG 7 ii) Organic Dyes 8 iii) Semiconductors 10 2.2 Ultrashort Pulse Generation 11 2.3 Ultrashort Pulse Measurement 14 i) Nonlinear Methods - SHG Autocorrelation 15 ii) Linear Methods - The Electron-Optical 18 Streak Camera R e f e r e n c e s 24 SHORT PULSE GENERATION IN AN OPTICALLY PUMPED GaAs/(GaAl)As LASER 3.1 Introduction 27 3.2 The Mode-Locked Ar Ion Laser Pumping Source 29 3.3 The Semiconductor Laser Structure and 32 M o u n t i n g 3.4 Continuous Wave Optical Pumping of the 34 Semiconductor Laser 3.5 Short Pulse Generation from the GaAs Laser 37 3.6 Discussion 3.7 Conclusions R e f e r e n c e s P a g e No CHAPTER IV: THE MODE-LOCKED C.W. Nd:YAG LASER 4.1 Introduction 51 4.2 The Neodymium in YAG Laser 53 4.3 The Commercial NdrYAG Laser - Description 55 4.4 The Acousto-Optic Modulator 57 4.5 Characteristics of the NdrYAG Laser 61 4.6 Improvements to the NdrYAG Laser 69 4.7 3rd Harmonic Mode-locking and the 72 Anti-resonant Ring 4.8 Conclusions 78 References 79 CHAPTER V: THE NdrYAG LASER-PUMPED SYNCHRONOUSLY MODE-LOCKED C.W. DYE LASER 5.1 Introduction 83 5.2 Extracavity Frequency Doubling in KTiOPO^ 85 (KTP) 5.3 Design of the Doubler Unit 87 5.4 Characteristics of the Second Harmonic 89 G e n e r a t i o n i) Phase Matching and Angle-tuning 89 ii) Power and Pulsewidth Characteristics 92 5.5 The Rhodamine 6G Synchronously Pumped c.w. 97 Dye L a s e r 5.6 Discussion 102 5.7 Conclusions 103 Refer e n c e s 104 CHAPTER VI: THE Q-SWITCHED/MODE-LOCKED C.W. Nd:YAG LASER 6.1 Introduction 107 6.2 Q-Switching of Pulsed- and c.w.- Pumped 108 L a s e r s 6.3 The Travelling Wave Acousto-Optic Q-switch 111 6.4 Q-Switched (un-Mode-locked) operation 113 6.5 Simultaneous Q-Switching and Mode-locking 116 6.6 Conclusions 128 References 131 CHAPTER VII: PICOSECOND PHASE CONJUGATION IN THE FORWARD DIRECTION 7.1 Introduction 133 7.2 Phase Conjugation by Degenerate Four-Wave 133 M i x i n g 7.3 The Experimental Set-Up 137 7.4 Picosecond DFWM in Silicon 139 7.5 Picosecond DFWM in Organic Dyes at 1.06um 150 7.6 Streak Camera Results 155 7.7 Conclusions 165 A p p e n d i x I 167 Appendix II 169 Appendix III 171 References 177 CHAPTER VIII: GENERAL CONCLUSIONS General Conclusions 179 References 184 ACKNOWLEDGEMENTS 185 PUBLICATIONS 1 C H A P T E R I INTRODUCTION Ultrashort light pulses, of duration a few tens of picoseconds and below, are being increasingly used in many areas of both pure and applied scientific research. The texts edited by Shapiro (1977)0), Shank et al (1978)(2), Hochstrasser et al (1980)(3), Eisenthal et al (1982)(4) and Auston and Eisenthal 0984)(5), illustrate the wide- ranging interest shown in ultrafast pulse techniques and their application in areas such as carrier kinetics in semiconductors, molecular dynamics in photochemistry and photobiology, laser fusion and high speed electronics and communications. The latter two texts, in particular, document the recent extension of these techniques into the (tens of) femtosecond time domain. Generation of picosecond and sub­ picosecond laser pulses is most commonly achieved by '’mode-locking", where the oscillating longitudinal modes of a laser resonator are forced into fixed phase and amplitude relationships. This results in a repetitive train of discrete optical pulses (of duration ^ 1/bandwidth of the laser) temporally separated by the laser cavity round-trip time (typically a few nanoseconds). A comprehensive review of laser mode­ locking has recently been given by New (6). The major methods of achieving mode-locked operation in a large variety of laser systems have now been identified and are quite well understood theoretically. In particular, they involve externally applied loss/gain modulation synchronised to the laser cavity round- trip frequency - so called "active" techniques, "passive" techniques utilising an intra-cavity saturable absorber without external intervention, and "hybrid" combinations of the two. As a result it is - 2 - now possible (6) to reliably generate Fourier-transform limited pulses down to a few picoseconds duration from pulsed mode-locked lasers and picosecond and shorter duration pulses from mode-locked continuous wave (c.w.) laser systems, advanced versions of both of which are now commercially available. The shortest pulses (o,1ps and below) have typically been provided (either directly, or indirectly using nonlinear optical frequency- shifting techniques) by mode-locked c.w. organic dye lasers pumped by noble gas ion lasers. Most commonly, these have involved the 5l4nm wavelength line of an Argon ion laser to pump either a synchronously (7) or passively (8) mode-locked c.w. Rhodamine 6G (R6G) dye laser. Recently, an alternative laser system has become available - the mode- locked c.w. neodymium in YAG laser - which has been shown to be capable of producing pulses of similar duration via a variety of techniques. This laser can be acousto-optically mode-locked, using an intracavity active loss modulator, to produce optical pulses of 'v 100 picoseconds duration at the fundamental wavelength (1.06 ym)(9), suitable for synchronous mode-locking of dye (10) and colour centre (11) lasers operating at wavelengths beyond 1ym. Incorporation of a length of single mode polarisation preserving optical fibre into the feedback loop of a Nd:YAG laser-synchronously pumped colour centre laser, operating at ^ 1.5ym wavelength, has recently led to the first demonstration of soliton laser action (12). Fourier-transform limited pulses of duration as short as 130 femtoseconds at this wavelength have been produced in this manner. The mode-locked Nd:YAG laser output can also be frequency doubled (to 532nm), using the nonlinear optical crystal KTiOPO4 (KTP), with high enough efficiency for synchronous pumping of visible-wave length dye lasers. Mourou and coworkers have claimed the generation of 70fs pulses by YAG laser-pumped synchronous mode-locking of a R6G/DQ0CI hybrid dye laser (13). - 3 - The development of optical fibre/diffraction grating pulse compression techniques has further extended the versatility of short pulse generation using mode-locked c.w. Nd:YAG lasers (and other types of mode-locked laser). Johnson et al have produced 0.4lps duration 532nm pulses by compressing the second harmonic of the Nd:YAG laser using the fibre/grating method (14). These pulses were of suitable average power (150mW at 100MHz) for synchronous mode-locking of a R6G dye laser and allowed direct generation (i.e. without the use of a saturable absorber) of 300fs dye laser pulses. Kafka et al have similarly compressed the YAG pulses at the fundamental wave length to 1.8ps (15). An additional attractive feature of the c.w. Nd:YAG laser is its facility to be simultaneously mode-locked and Q-switched (16).
Recommended publications
  • Restricted Energy Transfer in Laser Desorption of High Molecular Weight Biomolecules
    Scanning Microscopy Volume 5 Number 2 Article 3 4-20-1991 Restricted Energy Transfer in Laser Desorption of High Molecular Weight Biomolecules Akos Vertes University of Antwerp, Belgium, [email protected] Renaat Gijbels University of Antwerp, Belgium Follow this and additional works at: https://digitalcommons.usu.edu/microscopy Part of the Biology Commons Recommended Citation Vertes, Akos and Gijbels, Renaat (1991) "Restricted Energy Transfer in Laser Desorption of High Molecular Weight Biomolecules," Scanning Microscopy: Vol. 5 : No. 2 , Article 3. Available at: https://digitalcommons.usu.edu/microscopy/vol5/iss2/3 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Scanning Microscopy, Vol. 5, No. 2, 1991 (Pages 317-328) 0891-7035/91$3.00+ .00 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA RESTRICTED ENERGY TRANSFER IN LASER DESORPTION OF HIGH MOLECULAR WEIGHT BIOMOLECULES Akos Vertes* and Renaat Gijb els Departm ent of Chemistry, University of Antwerp (U.I.A.), Universiteitsplein 1, B-2610 Wilrijk (Belgium) (Received for publication November 15, 1990, and in revised form April 20, 1991) Abstract Introdu ction Producing ions from large molecules is of distin­ With the growing importan ce of biomedical investi­ guished importance in mass spectrometry. In our present gations in organic analysis the emphasis has been shift­ study we survey different laser desorption methods in ing to the detection and structure determination of ever view of their virtues and drawbacks in volatilization and larg er and more complex molecules.
    [Show full text]
  • Wavelength-Tunable Ion Laser Systems
    38Ch_AirCooledIonLsrs_f_v3.qxd 6/8/2005 11:19 AM Page 38.4 Diode-Pumped Solid-State Lasers Wavelength-Tunable Ion Laser Systems $ Selectable wavelengths ranging from violet to red SPECIFICATIONS: Air-Cooled Ion Lasers Air-Cooled $ Output power to 195 mW WAVELENGTH-TUNABLE ION LASER SYSTEMS $ Highest output power for its size Transverse Mode : TEM00 (except as noted) Longitudinal Mode Spacing : $ Switching power supplies with power-factor correction 35 (X)AP 321: 469 MHz $ CE, IEC, and CDRH compliant 35 (X)AP 431: 349 MHz These air-cooled ion laser systems are compact devices that pro- Coherence Length : ~10 cm duce high-quality, linearly polarized output that can be tuned over Polarization : Linear (vertical85°) with >250:1 extinction ratio a wide variety of wavelengths. The 35 LAP 321 and 35 MAP 321 are Pointing Stability : <30 mrad°C extremely compact argon-ion lasers, less than 15 inches in length Power Stability : 80.5% over a 2-hour period (excluding cables). The somewhat longer 35 LAP 431 and Optical Noise (%p-p @ <100 kHz / <1 MHz) : 35 MAP 431 are argon-ion lasers that produce as much as 195 mW Argon: 488 nm, 4 / 6; 514 nm, 4 / 6 Helium Cadmium Lasers multimode and up to 130 mW with a clean Gaussian TEM00 mode. Argon/Krypton: 488 nm, 5 / 7; 514 nm, 6 / 10; The model 35 KAP 431 is a mixed-gas (argon/krypton) laser with 568 nm, 3 / 6; 647 nm, 5 / 8 nine selectable wavelengths ranging from 476 nm (violet) to 676 nm Warm-up Time : <15 minutes from cold start (red).
    [Show full text]
  • Argon-Ion and Helium-Neon Lasers
    Argon-Ion and Helium- Neon Lasers The one source for gas lasers What makes Lumentum the choice for argon-ion and helium-neon (HeNe) lasers? Whether you are involved in medical research, semiconductor manufacturing, high-speed printing, or Your Source for another demanding application, we have the expertise, commitment, and technology to ensure you get the best solution for your need. With more than 35 years of experience, we have an unmatched Successful gas laser production requires extraordinary care understanding of the gas laser market. That understanding has during the manufacturing process. Every individual throughout led us to devote extensive resources to help establish a premier, each production stage, from engineering and procurement to Gas Lasers high-volume manufacturing facility. Located in Thailand, the manufacturing and quality control, is attuned to the highly facility produces lasers of the highest standard. And we maintain sensitive nature of the applications for which these products are that standard through regional quality management, on-site used. Consequently, we can assure the steady supply of quality supplier quality engineering, and regular quality audits. products to our customers around the globe. Our products are being used in customers’ new systems and as replacement components in the large installed base of existing systems. 2 3 Key Gas Laser Applications Known for their longevity and predictable electrical and optical performance characteristics, our lasers are being used in a wide variety of applications. Medical Research University, medical, and government laboratories on the cusp of new discoveries rely on instruments designed with Lumentum argon-ion and HeNe lasers for cell mapping, genome analysis, and DNA sequencing.
    [Show full text]
  • Book of Abstracts
    Russian Academy of Sciences Institute of Problems of Chemical Physics RAS Joint Institute for High Temperatures RAS XIII International Conference on Physics of Non-Ideal Plasmas September 13 | 18, 2009, Chernogolovka, Russia Book of Abstracts Chernogolovka 2009 The book consists of the abstracts of oral and poster contributions to the XIII International Conference on Physics of Non-Ideal Plasmas (September 13 | 18, 2009, Chernogolovka, Russia). The Conference continues a tradi- tional series of meetings devoted to new theoretical and experimental results on the physics of dense non-ideal plasmas: Martzlow-Garwitz, 1980; Wus- trow, 1982; Biesenthal, 1984; Greifswald, 1986; Wustrow, 1988; Gosen, 1991; Markgrafenheide, 1993; Binz, 1995; Rostock, 1998; Greifswald, 2000; Valen- cia, 2003; Darmstadt, 2006. The following questions are covered: statistical physics and mathematical modeling (including simulation) of strongly cou- pled Coulomb systems, equilibrium properties and equation of state of dense plasmas, kinetics, transport and optical properties of dense Coulomb systems, dense hydrogen, laser and heavy-ion-produced plasmas, dense astrophysical plasmas, phase transitions in plasmas and fluids, dusty plasmas. The conference is held under financial support of the Russian Academy of Sciences, Russian Foundation for Basic Research (grant No. 09 { 02 { 06154Γ), and Dynasty Foundation. Contents 1 Statistical physics and mathematical modeling of strongly cou- pled Coulomb systems 16 1.1 Mathematical simulation of kinetic processes in the non-ideal nuclear-excited dust plasma of the noble gases Budnik A.P., Deputatova L.V., Fortov V.E., Kosarev V.A., Rykov V.A., Vladimirov V.I., JIHT RAS . 16 1.2 Diagnosics of dense plasmas via transport and optical proper- ties Reinholz H., Raitza T., R¨opke G., Wierling A., Winkel M., U.
    [Show full text]
  • Micro-Cavity Fluidic Dye Lasers
    Micro-Cavity Fluidic Dye Lasers M.Sc. Thesis Bjarne Helbo Student Number: c960336 Supervisors: Anders Kristensen and Aric Menon Mikroelektronik Centret (MIC) Technical University of Denmark (DTU) November 2002 Abstract i Abstract The work described in this masters thesis deals with development, fabrication, and optical characterization of micro-cavity fluidic dye lasers. The wide band fluorescence of organic dyes make them suitable as the active gain media for tunable dye lasers. Decreasing the laser cavity size down to the micron level makes dye lasers suitable for integration with existing bio/chemical microsystems. Theory for organic dyes is presented together with basic laser theory. The theory is used for explaining the behavior of the fabricated devices. Two types of micro-cavity fluidic dye laser devices were fabricated based on two dif- ferent micro-fabrication schemes. The devices were vertical emitting with fixed lasing wavelength. The initial device was a microfluidic channel defined with an KOH etch of silicon. The bottom (100) plane of the etched silicon channel was used as a deposition surface for a gold/chromium mirror. The etched surface was not smooth enough for mirror purpose and the following anodic bonding of a glass lid on the top made the surface even more rough. Due to thermal heating from the anodic bonding process the metals diffused into the silicon substrate and left the surface dull and rough, not suitable for optical mirrors. A cw argon ion laser (488 nm) was used for optical pumping of a Rhodamine 110 dye dissolved in ethanol, which was pumped through the microfluidic laser cavity.
    [Show full text]
  • Air-Cooled Argon-Ion Laser Heads in Cylindrical Package 2213 Series
    Air-Cooled Argon-Ion Laser Heads in Cylindrical Package 2213 Series www.lumentum.com Data Sheet Air-Cooled Argon-Ion Laser Heads in Cylindrical Package Lumentum’s air-cooled argon lasers are designed for complex, high-resolution OEM applications such as flow cytometry, DNA sequencing, graphic arts, and semiconductor inspection. Symmetric design and axial airflow in the cylindrical argon ion Key Features laser heads provide the best mechanical package to ensure • Integral-mirror, metal-ceramic construction optimum beam-pointing stability and fast warm-up. Both initial • Hands-off operation installation and routine maintenance are straightforward due to • Ultralow noise tight production control of optical and mechanical tolerances. Blower-induced mechanical vibration is virtually eliminated • Fast warm-up through the use of flexible ducting between the laser head and • Rugged construction blower assembly. • Vibration isolation • Ultrastable resonator and beam pointing Applications • DNA sequencing • Flow cytometry • Confocal microscopy • Semiconductor inspection • Hematology • High-speed printing • Photo processing Compliance • CE per specification EN55011 and EN50082-2 • UL 1950 and 1262 • CDRH 21 CFR 1040.10 • CUL • EN60825-2 • EN60950, IEC 950 and EN61010 www.lumentum.com 2 Air-Cooled Argon-Ion Laser Heads in Cylindrical Package 2213 Series Cylindrical Head (Specifications in inches unless otherwise noted. E-vector is aligned with the umbilical cable.) 11.5 5.37 72.0 MOUNTING AIR INTAKE AREAS 3.88 BEAM AIR .50 OUTPUT EXHAUST 1.0 4X 4-40
    [Show full text]
  • Solid State Laser
    SOLID STATE LASER Edited by Amin H. Al-Khursan Solid State Laser Edited by Amin H. Al-Khursan Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Iva Simcic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Solid State Laser, Edited by Amin H.
    [Show full text]
  • Part 2: Laser in Pulsed Operation
    Part 2: Laser in pulsed operation 1 Theoretical principles 1.1 Generation of short laser pulses The output power of existing continuous wave laser systems is between a few milliwatts (He-Ne lasers) and a few hundred watts (Nd or CO2 lasers). However, there is a possibility to increase the output power of the laser for a small period of time by pulsed laser operation. Solid-state lasers are particularly suitable for this purpose, as they can achieve pulse peak output powers of up to 1012 W. This value corresponds approximately to the average electrical energy generation of the entire world. The difference, however, lies in the period in which this performance is achieved. While all the power plants together reach this value continuously, a single laser produces this high output power only for a duration of 10−13 s. In this case, the extremely short pulse duration appears to be disadvantageous, but there are also applications which exactly require this. One example is laser ablation, which is a method in material processing. Here, a small volume of material at the surface of a work piece can be evaporated if it is heated high enough in a very short amount of time. On the other hand, supplying the energy gradually would allow the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature above the evaporation point of the material. Other applications rely on the very high peak pulse power to obtain strong non-linear optical effects, like it is necessary for efficient second-harmonic generation or for optical parametric oscillators (OPO) which converts an input laser wave into two output waves of lower frequencies.
    [Show full text]
  • A Laser (From the Acronym Light Amplification by Stimulated Emission of Radiation) Is an Optical Source That Emits Photons in a Coherent Beam
    LASER A laser (from the acronym Light Amplification by Stimulated Emission of Radiation) is an optical source that emits photons in a coherent beam. The verb to lase means "to produce coherent light" or possibly "to cut or otherwise treat with coherent light", and is a back- formation of the term laser. Laser light is typically near-monochromatic, i.e. consisting of a single wavelength or color, and emitted in a narrow beam. This is in contrast to common light sources, such as the incandescent light bulb, which emit incoherent photons in almost all directions, usually over a wide spectrum of wavelengths. Laser action is explained by the theories of quantum mechanics and thermodynamics. Many materials have been found to have the required characteristics to form the laser gain medium needed to power a laser, and these have led to the invention of many types of lasers with different characteristics suitable for different applications. The laser was proposed as a variation of the maser principle in the late 1950's, and the first laser was demonstrated in 1960. Since that time, laser manufacturing has become a multi- billion dollar industry, and the laser has found applications in fields including science, industry, medicine, and consumer electronics. Contents [hide] 1 Physics 2 History 2.1 Recent innovations 3 Uses 3.1 Popular misconceptions 3.2 "LASER" 3.3 Scientific misconceptions 4 Laser safety 5 Categories 5.1 By type 5.2 By output power 6 See also 7 Further reading 7.1 Books 7.2 Periodicals 8 References 9 External links [edit] Physics See also: Laser science Principal components: 1.
    [Show full text]
  • Amplified Spontaneous Emission Properties of Semiconducting Organic Materials
    Int. J. Mol. Sci. 2010, 11, 2546-2565; doi:10.3390/ijms11062546 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 http://www.mdpi.com/journal/ijms/ Review Amplified Spontaneous Emission Properties of Semiconducting Organic Materials Eva M. Calzado 1, Pedro G. Boj 2 and María A. Díaz-García 3,* 1 Departamento Física, Ingeniería de Sistemas y Teoría de la Señal and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante-03080, Spain; E-Mail: [email protected] 2 Departamento Óptica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante-03080, Spain; E-Mail: [email protected] 3 Departamento Física Aplicada, Unidad asociada UA-CSIC and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante-03080, Spain * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-965903543; Fax: +34-965909726. Received: 7 May 2010 / Accepted: 10 June 2010 / Published: 18 June 2010 Abstract: This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N´-bis(3-methylphenyl)-N,N´-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature.
    [Show full text]
  • A Convenient Mode Locking Method of an Ion Laser December 1984
    (702) A Convenient Mode Locking Method of an Ion Laser December 1984 Laser Technical Note A Convenient Mode Locking Method of an Ion Laser Shunsuke NAKANISHI*, Hiroshi ITOH*, Koji KONDO* and Yukio FUKUDA** (Received November 19, 1984) This note shows convenient and low cost method for obtaining the mode locked pulses in any commercially available ion laser without the rearrangement of the cavity. In contrast to the usual cases, this mode-locker system consists of two Brewster-cut fused quartz crystals, one of which acts as the acousto-optic modulator and the other as the compensator of the displacement of the laser beam at the acousto-optic modulator. Recentry the picosecond laser has become not be used as the A. O. modulator or such a indispensable to the investigation of the ultrafast modification is very troublesome 3), a home- dynamics in solids, liquids and gases. The designed A.O. modulator should be inserted in generation methods of the picosecond laser the cavity, for example between the laser tube pulses have been developed by using various and the output mirror 4). In this method, means 1,2). A synchronously pumped mode however, it becomes necessary to remove the locked cw dye laser is the most versatile and output mirror from the cavity holder in order to reliable for the generation of the tunable pico- construct the laser cavity because the path of second pulses and easily applicable to obtaining the laser beam suffers the displacement (walk subpicosecond or high power picosecond pulses. off) at the A.O. modulator and the diameter of In the case of the synchronous pumping by an the output mirror is usually too small compared ion laser, it is necessary to achieve the active with the displacement.
    [Show full text]
  • The Future Is Light
    IVA- JSPS Seminar The Future is Light The Blue Laser and its Application in Modern Technologies Fredrik Laurell KTH - Royal Institute of Technology 21st Century – the Century of the Photon Photonics – the physical science of light Mastering of the photon relies on scientific progress and innovation in: optics, material science, electrical engineering, nanotechnology, physics, chemistry and biology Where is Photonics important? • Information and Communication Technologies (ICT) • Manufacturing & quality control • Lighting, displays and solar energy • Life Science and healthcare • Security, metrology and sensors • Food safety and production Photonics is everywhere! Photonics is a Key Enabling Technology for Europe as acknowledged by the European Commision in 2009 One of the most important industries for the future with substanitial leverage effect on our economy, workforce and welfare Photonics - scientific progress and innovation in: optics, material science, electrical engineering, nanotechnology, physics and chemistry Lasers • What ? A 50+ old light bulb • How ? •Why should they be blue ? Where ? Basic Laser • Laser medium • Resonator • Pump Atoms in a matrix Energy diagram for a laser stimulated emission a ruby rod mirrors deposited on its end-faces and a flash lamp pump Maiman had to fabricate everything himself Absorption and emission for Cr3+ Laser History • 60-ties laser invented and most effects discovered • 70-ties a solution looking for a problem ... • 80-ties problems discovered! • 90-ties commercial success!! • 00-ties everybodies toy!!! Gas lasers – Diode lasers Diode Pumped Solid-state lasers Fiber lasers 2 kW CO2 Laser The first blue laser Ar-ion laser 0.1 % efficient … The diode laser the smallest and most frequently used laser The diode laser and the optical fiber are the backbone of telecommunication Nobel prize 2000 Zhores I.
    [Show full text]