Positivity of Direct Images and Projective Varieties with Nonnegative Curvature Juanyong Wang

Total Page:16

File Type:pdf, Size:1020Kb

Positivity of Direct Images and Projective Varieties with Nonnegative Curvature Juanyong Wang Positivity of direct images and projective varieties with nonnegative curvature Juanyong Wang To cite this version: Juanyong Wang. Positivity of direct images and projective varieties with nonnegative curvature. Al- gebraic Geometry [math.AG]. Institut Polytechnique de Paris, 2020. English. NNT : 2020IPPAX048. tel-02982921 HAL Id: tel-02982921 https://tel.archives-ouvertes.fr/tel-02982921 Submitted on 29 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Positivité des images directes et variétés projectives à courbure positive Thèse de doctorat de l’Institut Polytechnique de Paris préparée à l’École polytechnique École doctorale n◦574 École doctorale de mathématiques Hadamard (EDMH) Spécialité de doctorat : Mathématique fondamentale NNT : 2020IPPAX048 Thèse présentée et soutenue à Palaiseau, le 27 août 2020, par Juanyong Wang Composition du Jury : Claire Voisin Directrice de recherche, Sorbonne Université (IMJ-PRG) Présidente Benoît Claudon Professeur, Université de Rennes 1 (IRMAR) Rapporteur Thomas Peternell Professeur, Universität Bayreuth (Mathematisches Institut) Rapporteur Thomas Gauthier Professeur Monge, École polytechnique (CMLS) Examinateur Sébastien Boucksom Directeur de recherche, École polytechnique (CMLS) Directeur de thèse Junyan Cao Maître de conférence, Sorbonne Université (IMJ-PRG) Co-directeur de thèse 574 Positivity of direct images and projective varieties with nonnegative curvature Juanyong Wang under the supervision of Sébastien Boucksom & Junyan Cao Ma troisième maxime était de tâcher toujours plutôt à me vaincre que la fortune, et à changer mes désirs que l’ordre du monde : et généralement de m’accoutumer à croire qu’il n’y a rien qui soit entièrement en notre pouvoir que nos pensées. Discours de la méthode, René Descartes 一切有:法,如¦{áq,如2¦如 5,应\如/Â。 Sutra¯ du Diamant 1 2 Remerciements En tout premier lieu, je tiens à exprimer ma plus profonde gratitude à à mes directeurs de thèse Sébastien Boucksom et Junyan Cao, qui m’ont dirigé vers la voie de devenir un cher- cheur de mathématiques pendant ces quatre années. Leur expertise et intuition dans le domaine de géométrie complexe, en faisant ressortir les idées essentielles de théorèmes ou de notions, m’ont beaucoup aidé dans ma recherche, et les conversations enrichis- santes et divertissantes tout au long de cette thèse m’ont toujours proposé la bonne idée pour en résoudre les difficultés. Cette thèse n’aurait jamais vu le jour sans leurs sugges- tions et encouragements, qui m’ont soulevé des stresses et m’ont encouragé à continuer mon travail dans les moments les plus difficiles. C’est un grand honneur d’avoir été leur élève et c’est un autant grand regret qu’il y a encore énormément de choses que je n’ai pas pu apprendre d’eux. Je dois un grand merci à Benoît Claudon et Thomas Peternell d’avoir accepté d’être rapporteurs de cette thèse, j’ai beaucoup tiré profit de leurs travaux scientifiques pendant la préparation de cette thèse. En particulier, je voudrais remercier Benoît pour très genti- ment lire tout le manuscrit, m’aider à corriger toutes les petites typos et erreurs gramma- ticales, signaler une erreur dans une version précédente du manuscrit et m’a proposé la démonstration correcte du théorème pendant une discussion instructive. C’est en outre un grand honneur pour moi que Thomas Gauthier et Claire Voisin aient accepté de faire partie de mon jury. Le fameux ouvrage de Mme Voisin m’a répondu toujours les questions concernant la théorie de Hodge et bien d’autres. Je voudrais ensuite adresser mes reconnaissances aux mathématiciens qui se sont montrés disponibles pour des discussions profitables et pour des remarques sur mon travail; qu’il me soit permis de citer Hugues Auvray, Daniel Barlet, Nero Budur, Frédéric Campana, Jiang Chen, Ya Deng, Stéphane Druel, Lie Fu, Paul Gauduchon, Henri Gue- nancia, Vincent Guedj, Andreas Höring, Masataka Iwai, Sándor Kovács, Jie Liu, Shin-ichi Matsumura, Mihnea Popa, Xiaowei Wang, Zhiyu Tian, Chenyang Xu, Maciej Zdanowicz et De-Qi Zhang. Mes remerciements vont particulièrement à Xiaowei pour les conver- sations très instructives et pour tous ses conseils, à Stéphane pour signaler une erreur dans une version précédente du manuscrit, pour répondre mes questions parfois stupide avec la patience et pour m’aider à rédiger une partie de cette thèse, et à Shin-ichi pour un travail en commun avec lui qui généralise un résultat principal de cette thèse et pour beaucoup de choses qu’il m’a apprises pendant nos discussions (surtout quand j’était trop optimistique). Je remercie cordialement Charles Favres qui m’a très gentiment offert une bourse qui m’a permis de faire ma quatirème année de thèse au CMLS sans tâche d’enseignement, sans l’aide duquel je n’aurais pas pu me concentrer sur la rédaction de cette thèse. Je dois aussi un grand merci à Mihai Păun, Andreas Höring et Javier Fresán pour écrire des lettres de recommandation pour mes candidatures aux postes postdoc. Et je remercie Frédéric Paulin pour toutes ses aides sur l’administration de l’école doctorale. Cette thèse a été préparée au CMLS, et je tiens à remercier vivement les camarades du labo : Aymeric Baradat, Nicolas Brigouleix, Nguyen-Bac Dang, Vincent de Daruvar, René Mboro, Tien-Vinh Nguyen, The-Hoang Nguyen, Yichen Qin et Xu Yuan. En particulier, 3 je remercie Vincent pour les enseignements que l’on a fait ensemble. Je remercie tous les amis pendant mon étude de Master à Paris-Sud : Marco d’Addezio, Fabio Bernasconi, Cheng Shu, Yanbo Fang, Zhizhong Huang, Mirko Mauri, Jiacheng Xia, Songyan Xie, Xiaoqi Xu, Ruotao Yang, Shengyuan Zhao, Xiaoyu Zhang et Kefu Zhu. Je voudrais surtout remercier Marco pour les projets que nous avons faits ensemble ainsi que les choses qu’il m’a apprises pendant nos discussions (c’étaient vraiment de très bons moments mathématiques). Je voudrais remercier Jean-Benoît Bost pour sa direction de mon mémoire de M1, j’en ai tiré beaucoup de profit. Je remercie Dawei Yang, qui était mon professeur en licence à Jilin et qui m’a recom- mandé d’aller en France pour poursuivre mes études. Je le rendais visite chaque fois il faisait un séjour académique à Paris-Sud et nous avons toujours passé de très bons mo- ments. Je tiens à remercier Haijun Wang, qui était mon professeur en licence, pour son en- couragement continu qui m’a conduit à la voie académique. Pendant la préparation de cette thèse, j’ai organisé un groupe de travail avec Xiaozong Wang sur le programme des modèles minimaux (MMP). Merci beaucoup, Xiaozong! Et c’est un grand plaisir de connaître des amis qui y ont participé : Xindi Ai, Zhangchi Chen, Nicolina Istrati, Louis Ioos, Mingchen Xia, Zhixin Xie et Zhiyu Zhang. Un grand merci pour eux. Il me semble également important de souligner ici la qualité des conditions de tra- vail offertes par le laboratoire ainsi que celle du travail fourni par les secrétaires Marine Amier, Pascale Fuseau et Carole Juppin. Mon remerciement va particulièrement à Pascale pour toutes ses aides qui rendent les choses administratives beaucoup plus simples. Je voudrais aussi remercier les secrétaires de l’École polytechnique qui m’ont aidé à mettre en place les enseignements, parmi eux je voudrais exprimer toutes mes reconnaissances à Mme Linda Guével qui était en charge du tutorat (c’était une grande tristesse d’ap- prendre son décès, R.I.P.). Pendant la préparation de cette thèse, j’ai été partiellement soutenu par le projet ANR « GRACK ». Tous mes remerciements à ma famille et ma belle-famille pour leur soutien and leur accompagnement. Ça fait plus de huit ans que ma femme Ruidan est entrée dans ma vie. Comme l’aurore dissipant les ténèbres, elle m’a soulevé du chagrin et du pessimisme. C’est elle qui me fait connaître le sens du bonheur et qui me fournit la motivation constante pour finir la thèse, que de mots simples ne sauraient exprimer ... Ruidan, merci. Cette thèse lui est dédiée. 4 Contents Introduction 9 Methodology....................................... 12 On the Iitaka conjecture Cn;m for Kähler fibre spaces................ 13 On the structure of klt projective varieties with nef anticanonical divisors.... 18 Organization of the thesis............................... 20 Introduction (Français) 21 Méthodologie...................................... 24 Sur la conjecture Cn;m d’Iitaka pour les fibrations kählériennes.......... 25 Sur la structure des variétés projectives klt à diviseur anticanonique nef..... 30 Organisation de la thèse................................ 32 1 Preliminary results 35 1.1 An analytic geometry toolkit........................... 35 1.2 Negativity Lemma in analytic geometry.................... 37 1.3 Reflexive hull of the direct image of line bundles............... 38 1.4 Singular Hermitian metrics over vector bundles................ 43 1.5 Albanese map of quasi-projective varieties................... 45 1.6 Horizontal divisors and base changes...................... 47 2 Main tools 49 2.1 Ohsawa-Takegoshi type extension theorems.................. 49 2.2 Positivity of the twisted relative pluricanonical bundles and their direct images....................................... 50 2.2.1 Positivity of the relative m-Bergman kernel metrics.......... 51 2.2.2 Positivity of the canonical L2 metric on the direct images...... 53 2.2.3 Positivity of direct images of twisted relative pluricanonical bundles 60 2.2.4 Generalizations.............................. 62 2.3 Numerically flat vector bundles and locally constant fibrations....... 64 2.4 Holomorphic foliations on normal varieties.................. 66 2.4.1 General results on holomorphic foliations..............
Recommended publications
  • Arxiv:1508.07277V3 [Math.AG] 4 Dec 2018 H Aia Ubro Oe Naqatcdul Oi.Mroe,Pr Moreover, Solid
    WHICH QUARTIC DOUBLE SOLIDS ARE RATIONAL? IVAN CHELTSOV, VICTOR PRZYJALKOWSKI, CONSTANTIN SHRAMOV Abstract. We study the rationality problem for nodal quartic double solids. In par- ticular, we prove that nodal quartic double solids with at most six singular points are irrational, and nodal quartic double solids with at least eleven singular points are ratio- nal. 1. Introduction In this paper, we study double covers of P3 branched over nodal quartic surfaces. These Fano threefolds are known as quartic double solids. It is well-known that smooth three- folds of this type are irrational. This was proved by Tihomirov (see [32, Theorem 5]) and Voisin (see [34, Corollary 4.7(b)]). The same result was proved by Beauville in [3, Exemple 4.10.4] for the case of quartic double solids with one ordinary double singu- lar point (node), by Debarre in [11] for the case of up to four nodes and also for five nodes subject to generality conditions, and by Varley in [33, Theorem 2] for double covers of P3 branched over special quartic surfaces with six nodes (so-called Weddle quartic surfaces). All these results were proved using the theory of intermediate Jacobians introduced by Clemens and Griffiths in [9]. In [8, §8 and §9], Clemens studied intermediate Jacobians of resolutions of singularities for nodal quartic double solids with at most six nodes in general position. Another approach to irrationality of nodal quartic double solids was introduced by Artin and Mumford in [2]. They constructed an example of a quartic double solid with ten nodes whose resolution of singularities has non-trivial torsion in the third integral cohomology group, and thus the solid is not stably rational.
    [Show full text]
  • Arxiv:1609.05543V2 [Math.AG] 1 Dec 2020 Ewrs Aovreis One Aiis Iersystem Linear Families, Bounded Varieties, Program
    Singularities of linear systems and boundedness of Fano varieties Caucher Birkar Abstract. We study log canonical thresholds (also called global log canonical threshold or α-invariant) of R-linear systems. We prove existence of positive lower bounds in different settings, in particular, proving a conjecture of Ambro. We then show that the Borisov- Alexeev-Borisov conjecture holds, that is, given a natural number d and a positive real number ǫ, the set of Fano varieties of dimension d with ǫ-log canonical singularities forms a bounded family. This implies that birational automorphism groups of rationally connected varieties are Jordan which in particular answers a question of Serre. Next we show that if the log canonical threshold of the anti-canonical system of a Fano variety is at most one, then it is computed by some divisor, answering a question of Tian in this case. Contents 1. Introduction 2 2. Preliminaries 9 2.1. Divisors 9 2.2. Pairs and singularities 10 2.4. Fano pairs 10 2.5. Minimal models, Mori fibre spaces, and MMP 10 2.6. Plt pairs 11 2.8. Bounded families of pairs 12 2.9. Effective birationality and birational boundedness 12 2.12. Complements 12 2.14. From bounds on lc thresholds to boundedness of varieties 13 2.16. Sequences of blowups 13 2.18. Analytic pairs and analytic neighbourhoods of algebraic singularities 14 2.19. Etale´ morphisms 15 2.22. Toric varieties and toric MMP 15 arXiv:1609.05543v2 [math.AG] 1 Dec 2020 2.23. Bounded small modifications 15 2.25. Semi-ample divisors 16 3.
    [Show full text]
  • Jingjun Han Johns Hopkins University 3400 N
    Department of Mathematics Jingjun Han Johns Hopkins University 3400 N. Charles Street, Baltimore, MD 21218 B [email protected] Curriculum Vitae Í https://sites.google.com/site/jingjunhan Employment 2018–Present J.J. Sylvester Assistant Professor, Johns Hopkins University. Education 2013–2018 Ph.D. in Mathematics, Peking University, Advisor: Gang Tian and Chenyang Xu. Dissertation: Singularities in birational geometry and the minimal model program. 2015–2016 Visiting Student Research Collaborator, Princeton University, Advisor: János Kollár. 2009–2013 B.S. in Mathematics, Peking University, Thesis advisor: Bican Xia. Thesis: Some notes on positive semi-definite polynomials. Research Interests { Birational geometry, e.g. MMP (Minimal Model Program), the theory of complements, and boundedness of varieties. { Symbolic computation, e.g. CAD (Cylindrical Algebraic Decomposition) and automated polynomial inequalities proving. Publications and Preprints 1. ? On local volumes and boundedness of singularities, with Yuchen Liu, and Lu Qi, preprint to appear. 2. Effective birationality for sub-pairs with real coefficients, with Jihao Liu, arXiv: 2007.01849, submitted. 3. On boundedness of divisors computing minimal log discrepancies for surfaces, with Yujie Luo, arXiv: 2005.09626, submitted. 4. Boundedness of (, n)-Complements for Surfaces, with Guodu Chen, arXiv: 2002.02246, 69 pages, submitted. 5. On a generalized canonical bundle formula for generically finite morphisms, with Wenfei Liu, arXiv:1905.12542, submitted. 6. Bounded deformations of (, δ)-log canonical singularities, with Jihao Liu, and Joaquín Moraga, arXiv:1903.07202, to appear in Journal of Mathematical Sciences (Tokyo). 7. ? ACC for minimal log discrepancies of exceptional singularities (with an Appendix by Yuchen Liu), with Jihao Liu, and V.V.
    [Show full text]
  • On Exceptional Quotient Singularities
    Geometry & Topology 15 (2011) 1843–1882 1843 On exceptional quotient singularities IVAN CHELTSOV CONSTANTIN SHRAMOV We study exceptional quotient singularities. In particular, we prove an exceptionality criterion in terms of the ˛–invariant of Tian, and utilize it to classify four-dimensional and five-dimensional exceptional quotient singularities. We assume that all varieties are projective, normal, and defined over C. 1 Introduction Let X be a smooth Fano variety (see Iskovskikh and Prokhorov [19]) of dimension n, and let g gi| be a Kähler metric with a Kähler form D N p 1 X ! gi| dzi dzj c1.X /: D 2 N ^ x 2 Definition 1.1 The metric g is a Kähler–Einstein metric if Ric.!/ ! , where Ric.!/ D is a Ricci curvature of the metric g. Let G Aut.X / be a compact subgroup. Suppose that g is G –invariant. x x Definition 1.2 Let P .X; g/ be the set of C 2 –smooth G –invariant functions ' such G x that x p 1 ! @@' > 0 C 2 x and sup ' 0. Then the G –invariant ˛–invariant of the variety X is the number X D x ˇ Z ˇ ' n 6 ˛G.X / sup Q ˇ C R such that e ! C for any ' PG.X; g/ : x D 2 9 2 X 2 x The number ˛G.X / was introduced by Tian [42] and Tian and Yau [44] and now it is called the ˛–invariantx of Tian. Published: 14 October 2011 DOI: 10.2140/gt.2011.15.1843 1844 Ivan Cheltsov and Constantin Shramov Theorem 1.3 [42] The Fano variety X admits a G –invariant Kähler–Einstein met- x ric if ˛G.X / > n=.n 1/.
    [Show full text]
  • Jingjun Han – Curriculum Vitae
    Department of Mathematics Jingjun Han Johns Hopkins University 3400 N. Charles Street, Baltimore, MD 21218 B [email protected] Curriculum Vitae Í https://sites.google.com/site/jingjunhan Employment 2018–Present J.J. Sylvester Assistant Professor, Johns Hopkins University. Education 2013–2018 Ph.D. in Mathematics, Peking University, Advisor: Gang Tian and Chenyang Xu. Dissertation: Singularities in birational geometry and the minimal model program. 2015–2016 Visiting Student Research Collaborator, Princeton University, Advisor: János Kollár. 2009–2013 B.S. in Mathematics, Peking University, Thesis advisor: Bican Xia. Thesis: Some notes on positive semi-definite polynomials. Research Interests { Birational geometry, e.g. MMP (Minimal Model Program) and boundedness of varieties. { Symbolic computation, e.g. CAD (Cylindrical Algebraic Decomposition) and automated inequality proving. Honors and Awards 2018 Valedictorian (speaker at the graduation ceremony), Peking University 2018 Outstanding Doctoral Dissertation, Peking University 2018 Outstanding Graduate, Peking University 2018 May 4th Medal (the highest honor for students in Peking University, awarded to no more than 10 students every two years), Peking University 2016,2017 Presidential Fellowship, Peking University 2015 Scholarship of China Telecom, E Surfing Prize (one of the 50 outstanding college students in China), The Central Committee of the Communist Young League 2014 National Scholarship, The Ministry of Education of the People’s Republic of China 2013 Outstanding Winner of Challenge Cup (May 4th Young Scientist Award), Peking University 2013 Excellence Research Award of the President’s Fund for Undergraduate Students, Peking University (one of the five recipients) Publications and Preprints 1. On nonvanishing and abundance for generalized polarized surfaces, with Wenfei Liu, arXiv:1808.06361.
    [Show full text]
  • February 2011
    THE LONDON MATHEMATICAL SOCIETY NEWSLETTER No. 400 February 2011 Society CREATING ORIGINAL AND ELEGANT Meetings MATHEMATICS and Events The Career of a De Morgan Medallist 2011 Inspiration has come from four years at the Courant Insti- Friday 25 February many sources for Professor Bill tute of Mathematical Sciences Mary Cartwright Morton (University of Oxford), (CIMS) in New York, USA where Lecture, Oxford the winner of this year’s De his early research in numerical [page 3] Morgan Medal ‘in recognition analysis produced several publi- of his seminal contributions to cations that are regularly cited 21-25 March the field of numerical analysis as landmarks. The CIMS was LMS Invited Lectures of partial differential equa- the successor to Hilbert’s insti- [page 5] tions and its applications, and tute at Göttingen, Germany, 3-8 April for services to his discipline’. A and Richard Courant, Peter Lax, LMS Short Course, hallmark of Morton’s work is Cathleen Morawetz and many Oxford [page 24] the creation of original, elegant others were key influences. Thursday 5 May mathematics for real-world Morton had gone to CIMS ini- LMS Spitalfields Day applications. tially on sabbatical leave from INI, Cambridge Morton’s long-standing inspi- the Atomic Energy Authority ration from one of the greats (AEA) at Harwell where he Friday 6 May in mathematics, David Hilbert, had worked on Monte Carlo Women in Mathematics started when he was first intro- methods for nuclear critical- Day, London [page 2] duced to Hilbert spaces by Jack ity. It was this that led to the Tuesday 17 May de Wet whilst studying quan- initial invitation to the CIMS, LMS–Gresham Lecture, tum mechanics as a mathemat- but then Courant invited him London [page 7] ics undergraduate at Oxford.
    [Show full text]
  • Log Minimal Models for Arithmetic Threefolds
    LOG MINIMAL MODELS FOR ARITHMETIC THREEFOLDS by Paul Andrew Egbert A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics The University of Utah May 2016 Copyright c Paul Andrew Egbert 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Paul Andrew Egbert has been approved by the following supervisory committee members: Christopher Hacon , Chair(s) 8 March 2016 Date Approved Mladen Bestvina , Member 8 March 2016 Date Approved Tommaso Defernex , Member 8 March 2016 Date Approved Yuan-Pin Lee , Member 15 March 2016 Date Approved Chenyang Xu , Member 16 March 2016 Date Approved by Peter Trapa , Chair/Dean of the Department/College/School of Mathematics and by David B. Kieda , Dean of The Graduate School. ABSTRACT I study the existence of log minimal models for a Kawamata log-terminal pair of relative dimension two over a Dedekind domain. This generalizes the semistable result of Kawamata. Also I prove a result on the invariance of log plurigenera for such pairs, generalizing the result of Suh. To extend the result from discrete valuation rings to Dedekind domains, some computability results are given for basepoint-freeness, vanishing of cohomology, and finite generation of log-canonical and adjoint rings on a mixed characteristic family of surfaces. To my wife Lifang and my dog Pigu. CONTENTS ABSTRACT :::::::::::::::::::::::::::::::::::::::::::::::::::::::: iii ACKNOWLEDGEMENTS ::::::::::::::::::::::::::::::::::::::::::: vi CHAPTERS :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 1. INTRODUCTION ::::::::::::::::::::::::::::::::::::::::::::::: 1 2. THE MINIMAL MODEL PROGRAM ::::::::::::::::::::::::::::: 5 2.1 Arithmetic Schemes . .5 2.2 Intersections and Positivity .
    [Show full text]
  • Boundedness Results for Singular Fano Varieties, and Applications to Cremona Groups 3
    BOUNDEDNESS RESULTS FOR SINGULAR FANO VARIETIES, AND APPLICATIONS TO CREMONA GROUPS STEFAN KEBEKUS Abstract. is survey paper reports on work of Birkar, who confirmed a long-standing conjecture of Alexeev and Borisov-Borisov: Fano varieties with mild singularities form a bounded family once their dimension is fixed. Following Prokhorov-Shramov, we explain how this boundedness result implies that birational automorphism groups of projective spaces satisfy the Jordan property, answering a question of Serre in the positive. Contents 1. Main results 1 2. Notation, standard facts and known results 5 3. b-Divisors and generalised pairs 7 4. Boundedness of complements 10 5. Effective birationality 13 6. Bounds for volumes 17 7. Bounds for lc thresholds 18 8. Application to the Jordan property 22 References 24 1. Main results roughout this paper, we work over the field of complex numbers. 1.1. Boundedness of singular Fano varieties. A normal, projective variety X is called Fano if a negative multiple of its canonical divisor class is Cartier and if the associated line bundle is ample. Fano varieties appear throughout geometry and have been studied intensely, in many contexts. For the purposes of this talk, we remark that Fanos with sufficiently mild singularities constitute one of the fundamental variety classes in bira- tional geometry. In fact, given any projective manifold X , the Minimal Model Programme arXiv:1812.04506v3 [math.AG] 9 Apr 2019 (MMP) predicts the existence of a sequence of rather special birational transformations, known as “divisorial contractions” and “flips”, as follows, (1) (2) (n) X = X (0) α ❴❴❴❴❴❴ / X (1) α ❴❴❴❴❴❴ / ··· α ❴❴❴❴❴❴ / X (n).
    [Show full text]
  • BOUNDEDNESS RESULTS for SINGULAR FANO VARIETIES, and APPLICATIONS to CREMONA GROUPS [Following Birkar and Prokhorov–Shramov]
    S´eminaireBOURBAKI Janvier 2019 71e ann´ee,2018{2019, no 1157 BOUNDEDNESS RESULTS FOR SINGULAR FANO VARIETIES, AND APPLICATIONS TO CREMONA GROUPS [following Birkar and Prokhorov{Shramov] by Stefan Kebekus Contents 1. Main results........................................................ 1 2. Notation, standard facts and known results......................... 6 3. b-Divisors and generalised pairs.................................... 9 4. Boundedness of complements....................................... 13 5. Effective birationality............................................... 17 6. Bounds for volumes................................................ 22 7. Bounds for lc thresholds............................................ 24 8. Application to the Jordan property................................. 29 References............................................................ 32 1. MAIN RESULTS Throughout this paper, we work over the field of complex numbers. 1.1. Boundedness of singular Fano varieties A normal, projective variety X is called Fano if a negative multiple of its canonical divisor class is Cartier and if the associated line bundle is ample. Fano varieties appear throughout geometry and have been studied intensely, in many contexts. For the purposes of this talk, we remark that Fanos with sufficiently mild singularities constitute one of the fundamental variety classes in birational geometry. In fact, given any projective manifold X, the Minimal Model Programme (MMP) predicts the existence of a sequence of rather special birational transformations, known as \divisorial contractions" and “flips”, as follows, α(1) α(2) α(n) X = X(0) / X(1) / ··· / X(n): birational birational birational Stefan Kebekus gratefully acknowledges support through a fellowship of the Freiburg Institute of Advanced Studies (FRIAS). 1157{02 The resulting variety X(n) is either canonically polarised (which is to say that a suitable power of its canonical sheaf is ample), or it has the structure of a fibre space whose general fibres are either Fano or have numerically trivial canonical class.
    [Show full text]
  • Which Quartic Double Solids Are Rational?
    WHICH QUARTIC DOUBLE SOLIDS ARE RATIONAL? IVAN CHELTSOV, VICTOR PRZYJALKOWSKI, CONSTANTIN SHRAMOV Abstract. We study the rationality problem for nodal quartic double solids. In par- ticular, we prove that nodal quartic double solids with at most six singular points are irrational, and nodal quartic double solids with at least eleven singular points are ratio- nal. 1. Introduction In this paper, we study double covers of P3 branched over nodal quartic surfaces. These Fano threefolds are known as quartic double solids. It is well-known that smooth threefolds of this type are irrational. This was proved by Tihomirov (see [23, Theorem 5]) and Voisin (see [25, Corollary 4.7(b)]). The same result was proved by Beauville in [2, Exemple 4.10.4] for the case of quartic double solids with one ordinary double singular point (node), by Debarre in [8] for the case of up to four nodes and also for five nodes subject to generality conditions, and by Varley in [24, Theorem 2] for double covers of P3 branched over special quartic surfaces with six nodes (so-called Weddle quartic surfaces). All these results were proved using the theory of intermediate Jacobians introduced by Clemens and Griffiths in [6]. In [5, §8 and §9], Clemens studied intermediate Jacobians of resolution of singularities of nodal quartic double solids with at most six nodes in general position. Another approach to irrationality of nodal quartic double solids was introduced by Artin and Mumford in [1]. They constructed an example of a quartic double solid with ten nodes whose resolution of singularities has non-trivial torsion in the third integral cohomology group, and thus the solid is not stably rational.
    [Show full text]
  • 2006-07 Report from the Mathematical Sciences Research Institute April 2008
    Mathematical Sciences Research Institute Annual Report for 2006-2007 I. Overview of Activities……………………………………………………........ 3 New Developments………………………………………………….. 3 Scientific Program and Workshops………………………………….. 5 Program Highlights………………………………………………….. 11 MSRI Experiences…………………………………………………… 15 II. Programs……………………………………………………………………….. 24 Program Participant List……………………………………………. 25 Participant Summary………………………………………………… 29 Publication List……………………………………………………… 30 III. Postdoctoral Placement……………………………………………………....... 35 IV. Summer Graduate Workshops………………………………………………… 36 Graduate Student Summary…………………………………………. 39 V. Undergraduate Program………………………………………………………… 40 Undergraduate Student Summary……………………………………. 41 VI. External Financial Support…………………………………………………….. 42 VII. Committee Membership……………………………………………………….. 47 VIII. Appendix - Final Reports…………………………………………………......... 49 Programs………………………………………………………………. 49 Geometric Evolution Equations and Related Topics…………... 49 Computational Applications of Algebraic Topology…………... 63 Dynamical Systems…………………………………………….. 70 Workshops……………………………………………………………… 80 Connections for Women: Computational Applications of Algebraic Topology…………………………………………….. 80 MSRI Short Course: An Introduction to Multiscale Methods….. 88 Connections for Women: Geometric Analysis and Nonlinear Partial Differential Equations…………………………... 90 Recent Developments in Numerical Methods and Algorithms for Geometric Evolution Equations….………………… 91 Lectures on String(y) Topology………………………………... 94 Introductory Workshop:
    [Show full text]
  • An Innovator Who Brings Order to an Infinitude of Equations
    Quanta Magazine An Innovator Who Brings Order to an Infinitude of Equations The mathematician Caucher Birkar was born on a subsistence farm and raised in the middle of the brutal war between Iran and Iraq. After fleeing to England, he has gone on to impose order on a wild landscape of mathematical equations. By Kevin Hartnett Photo by Philipp Ammon for Quanta Magazine; Illustration by Olena Shmahalo/Quanta Magazine Caucher Birkar in his home garden near Cambridge, England. This spring, not long after Caucher Birkar learned that he would be receiving the Fields Medal, the highest honor in mathematics, he shared a memory from his undergraduate years. Even by that time he had come a long way. Born and raised in a rural subsistence farming village in the Kurdish region of western Iran, Birkar had made his way to the University of Tehran, one of the pre-eminent https://www.quantamagazine.org/caucher-birkar-who-fled-war-and-found-asylum-wins-fields-medal-20180801/ August 1, 2018 Quanta Magazine universities in the country. There, at the math club, he recalled studying the pictures of Fields medalists lining the walls. “I looked at them and said to myself, ‘Will I ever meet one of these people?’ At that time in Iran, I couldn’t even know that I’d be able to go to the West.” There was a lot about his future that Birkar couldn’t have predicted at that time: his flight from Iran, his request for political asylum, the push to rekindle a nearly abandoned field of mathematics.
    [Show full text]