Feinkartierung Und Kandidatengenanalyse Des Weaver-Syndroms Im Braunvieh

Total Page:16

File Type:pdf, Size:1020Kb

Feinkartierung Und Kandidatengenanalyse Des Weaver-Syndroms Im Braunvieh Feinkartierung und Kandidatengenanalyse des Weaver-Syndroms im Braunvieh von Elisabeth Maria Kunz Inaugural-Dissertation zur Erlangung der Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Feinkartierung und Kandidatengenanalyse des Weaver- Syndroms im Braunvieh von Elisabeth Maria Kunz aus Kaufbeuren München 2016 Aus dem Veterinärwissenschaftlichen Department der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Lehrstuhl für Tierzucht und Allgemeine Landwirtschaftslehre Arbeit angefertigt unter der Leitung von Priv.-Doz. Dr. Ivica Međugorac Mitbetreuung durch Dr. Sophie Rothammer Gedruckt mit Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Dekan: Univ.-Prof. Dr. Joachim Braun Berichterstatter: Priv.-Doz. Dr. Ivica Međugorac Korreferenten: Univ.-Prof. Dr. Bernhard Aigner Univ.-Prof. Dr. Gabriela Knubben-Schweizer Univ.-Prof. Dr. Kaspar Matiasek Univ.-Prof. Dr. Holm Zerbe Tag der Promotion: 16. Juli 2016 Meiner Familie, vor allem meinem Ururopa, der diesen Weg vor über einem Jahrhundert auch eingeschlagen hatte. Inhaltsverzeichnis I Inhaltsverzeichnis INHALTSVERZEICHNIS ................................................................................... I ABKÜRZUNGSVERZEICHNIS ....................................................................... VI ABBILDUNGSVERZEICHNIS/TABELLENVERZEICHNIS ............................... X ANHANGSÜBERSICHT ................................................................................. XII 1 EINLEITUNG ............................................................................................. 1 2 LITERATURÜBERSICHT .......................................................................... 3 2.1 Rassegeschichte Braunvieh ........................................................... 3 2.1.1 Charakteristika ...................................................................... 3 2.1.2 Anfänge der Rasse Braunvieh .............................................. 5 2.1.3 Brown Swiss ......................................................................... 5 2.1.4 Deutsches Braunvieh (Braunvieh × Brown Swiss) ................ 6 2.1.5 Original Braunvieh ................................................................ 8 2.2 Kartierung von Genen ................................................................... 10 2.2.1 Einteilung kartierter Merkmale ............................................ 10 2.2.2 Genetische Marker .............................................................. 10 2.2.2.1 Restriktionsfragment-Längenpolymorphismen ..... 11 2.2.2.2 Mikrosatelliten ...................................................... 12 2.2.2.3 Einzelbasenpolymorphismen ............................... 13 2.2.3 Genkarten ........................................................................... 15 2.2.3.1 Kopplung (Linkage) .............................................. 15 2.2.3.1.1 Kopplungsgleichgewicht und Kopplungsungleichgewicht .................. 16 2.2.3.2 Kopplungskartierungen (linkage mapping) ........... 17 Inhaltsverzeichnis II 2.2.3.3 Kopplungsungleichgewichts-Kartierungen (linkage disequilibrium mapping) .......................... 18 2.2.3.4 Kopplungsungleichgewichts- und Kopplungs- Kartierungen (linkage disequilibrium and linkage mapping) .................................................. 19 2.3 Das Weaver-Syndrom ................................................................... 21 2.3.1 Geschichte .......................................................................... 21 2.3.2 Symptome ........................................................................... 22 2.3.2.1 Frühstadium ......................................................... 23 2.3.2.2 Fortgeschrittenes Stadium ................................... 23 2.3.2.3 Endstadium .......................................................... 25 2.3.3 Pathologie ........................................................................... 26 2.3.3.1 Pathologisch-anatomische Untersuchung ............ 26 2.3.3.2 Pathologisch-histologische Untersuchung ........... 26 2.3.4 Diagnose ............................................................................. 27 2.3.5 Frequenz in der Braunvieh-/Brown Swiss-Population ......... 28 2.3.6 Bisher durchgeführte Studien.............................................. 30 2.3.6.1 Hoeschele und Meinert: Kopplung mit QTL für Milchmenge ..................................................... 30 2.3.6.2 Georges et al.: Kopplung des Weaver-Locus mit TGLA116 ........................................................ 30 2.3.6.3 Erweiterung des indirekten Gentests und Einengung des Weaver-Locus ............................. 31 2.3.6.4 McClure et al.: weitere Einengung des Weaver-Locus, diagnostische SNPs und Weaver-Haplotyp ................................................. 31 Inhaltsverzeichnis III 3 MATERIAL UND METHODEN ................................................................ 33 3.1 Material ........................................................................................... 33 3.1.1 Zusammenstellung der Testpopulation ............................... 33 3.1.2 Zuteilung der Phänotypen ................................................... 33 3.1.3 Probenmaterial .................................................................... 35 3.1.4 Datenmaterial...................................................................... 35 3.2 Methoden ........................................................................................ 36 3.2.1 Verwendete Software .......................................................... 36 3.2.2 Verwendete Datenbanken .................................................. 36 3.2.3 Kombinierte Kopplungsungleichgewichts- und Kopplungs-Kartierung ......................................................... 37 3.2.3.1 Genotypisierung ................................................... 37 3.2.3.1.1 Auswahl der zu genotypisierenden Tiere .................................................... 37 3.2.3.1.2 Durchführung der Genotypisierung ..... 38 3.2.3.1.3 Qualitätskontrolle................................. 40 3.2.3.2 Haplotypisierung und Imputation .......................... 40 3.2.3.3 Korrektur auf Populationsstratifikation und Verwandtschaftsbeziehungen .............................. 42 3.2.3.4 Hauptkomponentenanalyse .................................. 43 3.2.3.5 Bestimmung der Locus IBD und Diplotypen- Verwandtschaftsmatrix ......................................... 44 3.2.3.6 Varianzkomponentenanalyse ............................... 45 3.2.3.7 Likelihood-Ratio Teststatistik ................................ 47 3.2.3.8 Festlegung der Signifikanzschwelle ..................... 47 3.2.3.9 Bestimmung der Konfidenzintervalle .................... 48 3.2.4 Vergleichende Kartierung per Fall-Kontroll- Assoziationsanalyse ........................................................... 48 Inhaltsverzeichnis IV 3.2.5 Ermittlung eines Weaver-Haplotypen auf BTA4 .................. 49 3.2.6 Nutzung von Sequenzdaten aus dem 1000 Bull Genomes Project ................................................................ 49 3.2.7 Überprüfung von Kandidatenmutationen durch gezielte Genotypisierungen ................................................ 50 3.2.7.1 Gezielte Genotypisierungen des SNP an Position 49 878 773 bp ........................................ 50 3.2.7.2 Gezielte Genotypisierungen des SNP an Position 50 858 538 bp ........................................ 52 3.2.7.3 Überprüfung des Krankheitsstatus von Tieren mit abweichenden PCR-RFLP Genotypen ............................................................ 53 3.2.8 Schätzung der Frequenz der Kandidatenmutation an Position 49 878 773 bp in einer Stichprobe von Braunvieh-Tieren aus der genomischen Evaluation ............ 54 3.2.9 Schätzung der Frequenz des Weaver-Haplotypen in anderen Rassen .................................................................. 54 3.2.10 Überprüfung des Krankheitsstatus des kontroversen Anlageträgers W0277 ......................................................... 55 4 ERGEBNISSE ......................................................................................... 57 4.1 Allgemeine Übersicht ....................................................................... 57 4.2 Kombinierte Kopplungsungleichgewichts- und Kopplungs- Kartierung auf BTA4 ........................................................................ 58 4.3 Vergleichende Kartierung per Fall-Kontroll-Assoziationsanalyse .... 58 4.4 Identifizierung eines gemeinsamen Haplotypen auf BTA4 .............. 61 4.5 Nutzung von Sequenzdaten aus dem 1000 Bull Genomes Project ............................................................................................. 61 Inhaltsverzeichnis V 4.6 Gezielte Genotypisierungen für zwei Kandidaten-SNPs per PCR-RFLP ....................................................................................... 64 4.6.1 Überprüfung widersprüchlicher Ergebnisse bezüglich des SNP an Position 49 878 773 bp ................................... 65 4.6.2 Überprüfung widersprüchlicher Ergebnisse bezüglich des SNP an Position 50 858 538 bp ................................... 68 4.7 Schätzung der Frequenz der Kandidaten-Mutation in einer Stichprobe von Braunvieh-Tieren aus der genomischen Evaluation ........................................................................................ 68 4.8 Schätzung der Haplotypenfrequenz und Überprüfung der Kandidatenmutation in anderen Rassen .......................................... 69 4.9 Überprüfung des Anlageträgerstatus von Tier
Recommended publications
  • Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways
    biomolecules Article Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways Aayushi Srivastava 1,2,3,4 , Abhishek Kumar 1,5,6 , Sara Giangiobbe 1, Elena Bonora 7, Kari Hemminki 1, Asta Försti 1,2,3 and Obul Reddy Bandapalli 1,2,3,* 1 Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; [email protected] (A.S.); [email protected] (A.K.); [email protected] (S.G.); [email protected] (K.H.); [email protected] (A.F.) 2 Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany 3 Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany 4 Medical Faculty, Heidelberg University, D-69120 Heidelberg, Germany 5 Institute of Bioinformatics, International Technology Park, Bangalore 560066, India 6 Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India 7 S.Orsola-Malphigi Hospital, Unit of Medical Genetics, 40138 Bologna, Italy; [email protected] * Correspondence: [email protected]; Tel.: +49-6221-42-1709 Received: 29 August 2019; Accepted: 10 October 2019; Published: 13 October 2019 Abstract: Evidence of familial inheritance in non-medullary thyroid cancer (NMTC) has accumulated over the last few decades. However, known variants account for a very small percentage of the genetic burden. Here, we focused on the identification of common pathways and networks enriched in NMTC families to better understand its pathogenesis with the final aim of identifying one novel high/moderate-penetrance germline predisposition variant segregating with the disease in each studied family.
    [Show full text]
  • Inbred Mouse Strains Expression in Primary Immunocytes Across
    Downloaded from http://www.jimmunol.org/ by guest on September 26, 2021 Daphne is online at: average * The Journal of Immunology published online 29 September 2014 from submission to initial decision 4 weeks from acceptance to publication Sara Mostafavi, Adriana Ortiz-Lopez, Molly A. Bogue, Kimie Hattori, Cristina Pop, Daphne Koller, Diane Mathis, Christophe Benoist, The Immunological Genome Consortium, David A. Blair, Michael L. Dustin, Susan A. Shinton, Richard R. Hardy, Tal Shay, Aviv Regev, Nadia Cohen, Patrick Brennan, Michael Brenner, Francis Kim, Tata Nageswara Rao, Amy Wagers, Tracy Heng, Jeffrey Ericson, Katherine Rothamel, Adriana Ortiz-Lopez, Diane Mathis, Christophe Benoist, Taras Kreslavsky, Anne Fletcher, Kutlu Elpek, Angelique Bellemare-Pelletier, Deepali Malhotra, Shannon Turley, Jennifer Miller, Brian Brown, Miriam Merad, Emmanuel L. Gautier, Claudia Jakubzick, Gwendalyn J. Randolph, Paul Monach, Adam J. Best, Jamie Knell, Ananda Goldrath, Vladimir Jojic, J Immunol http://www.jimmunol.org/content/early/2014/09/28/jimmun ol.1401280 Koller, David Laidlaw, Jim Collins, Roi Gazit, Derrick J. Rossi, Nidhi Malhotra, Katelyn Sylvia, Joonsoo Kang, Natalie A. Bezman, Joseph C. Sun, Gundula Min-Oo, Charlie C. Kim and Lewis L. Lanier Variation and Genetic Control of Gene Expression in Primary Immunocytes across Inbred Mouse Strains Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2014/09/28/jimmunol.140128 0.DCSupplemental Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc.
    [Show full text]
  • Rabbit Anti-PNPLA8/FITC Conjugated Antibody-SL12764R-FITC
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-PNPLA8/FITC Conjugated antibody SL12764R-FITC Product Name: Anti-PNPLA8/FITC Chinese Name: FITC标记的磷脂酶patatin样域包含蛋白8抗体 Calcium-independent phospholipase A2-gamma; Intracellular membrane associated calcium independent phospholipase A2 gamma; Intracellular membrane-associated calcium-independent phospholipase A2 gamma; IPLA2 2; iPLA2 gamma; Alias: IPLA2(GAMMA); iPLA2-2; iPLA2-gamma; IPLA22; IPLA2G; Patatin like phospholipase domain containing protein 8; Patatin-like phospholipase domain- containing protein 8; PLPL8_HUMAN; PNPLA-gamma; PNPLA8. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Dog,Pig,Cow,Horse,Rabbit,Sheep,Guinea Pig, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 88kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLHwww.sunlongbiotech.com conjugated synthetic peptide derived from human PNPLA8 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: This gene encodes a member of the patatin-like phospholipase domain containing Product Detail: protein family. Members of this family are phospholipases which catalyze the cleavage of fatty acids from membrane phospholipids.
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]
  • Downloaded from Ensembl
    UCSF UC San Francisco Electronic Theses and Dissertations Title Detecting genetic similarity between complex human traits by exploring their common molecular mechanism Permalink https://escholarship.org/uc/item/1k40s443 Author Gu, Jialiang Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California by Submitted in partial satisfaction of the requirements for degree of in in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO AND UNIVERSITY OF CALIFORNIA, BERKELEY Approved: ______________________________________________________________________________ Chair ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ Committee Members ii Acknowledgement This project would not have been possible without Prof. Dr. Hao Li, Dr. Jiashun Zheng and Dr. Chris Fuller at the University of California, San Francisco (UCSF) and Caribou Bioscience. The Li lab grew into a multi-facet research group consist of both experimentalists and computational biologists covering three research areas including cellular/molecular mechanism of ageing, genetic determinants of complex human traits and structure, function, evolution of gene regulatory network. Labs like these are the pillar of global success and reputation
    [Show full text]
  • Analysis of Whole-Genome Re-Sequencing Data of Ducks
    Jiang et al. Genet Sel Evol (2021) 53:35 https://doi.org/10.1186/s12711-021-00627-0 Genetics Selection Evolution RESEARCH ARTICLE Open Access Analysis of whole-genome re-sequencing data of ducks reveals a diverse demographic history and extensive gene fow between Southeast/South Asian and Chinese populations Fan Jiang1,2, Ruiyi Lin3, Changyi Xiao1, Tanghui Xie1, Yaoxin Jiang1, Jianhai Chen1,4, Pan Ni2, Wing‑Kin Sung1,5, Jianlin Han6,7*, Xiaoyong Du1,2* and Shijun Li2,8* Abstract Background: The most prolifc duck genetic resource in the world is located in Southeast/South Asia but little is known about the domestication and complex histories of these duck populations. Results: Based on whole‑genome resequencing data of 78 ducks (Anas platyrhynchos) and 31 published whole‑ genome duck sequences, we detected three geographic distinct genetic groups, including local Chinese, wild, and local Southeast/South Asian populations. We inferred the demographic history of these duck populations with difer‑ ent geographical distributions and found that the Chinese and Southeast/South Asian ducks shared similar demo‑ graphic features. The Chinese domestic ducks experienced the strongest population bottleneck caused by domes‑ tication and the last glacial maximum (LGM) period, whereas the Chinese wild ducks experienced a relatively weak bottleneck caused by domestication only. Furthermore, the bottleneck was more severe in the local Southeast/South Asian populations than in the local Chinese populations, which resulted in a smaller efective population size for the former (7100–11,900). We show that extensive gene fow has occurred between the Southeast/South Asian and Chi‑ nese populations, and between the Southeast Asian and South Asian populations.
    [Show full text]
  • Supplemental Data
    Supplementary Table 1. Gene sets from Figure 6. Lists of genes from each individual gene set defined in Figure 6, including the fold-change in expression of each gene in treatment group pair-wise comparisons. ENSEMBL: Ensembl gene identifier; Symbol: official gene symbol; logFC: log fold change; p value: significance of fold-change in a pair-wise comparison, P<0.05 cut-off; FDR: false discovery rate, expected proportion of false positives among the differentially expressed genes in a pair-wise comparison (FDR<0.25 cut-off). Sup. Table 1 SET I CP versus Sal CP versus CP+DCA DCA versus Sal ENSEMBL Symbol logFC PValue FDR logFC PValue FDR logFC PValue FDR Desc ENSMUSG00000020326 Ccng1 2.64 0.00 0.00 -0.06 0.13 0.96 0.40 0.00 0.23 cyclin G1 [Source:MGI Symbol;Acc:MGI:102890] ENSMUSG00000031886 Ces2e 3.97 0.00 0.00 -0.24 0.02 0.28 0.01 1.00 1.00 carboxylesterase 2E [Source:MGI Symbol;Acc:MGI:2443170] ENSMUSG00000041959 S100a10 2.31 0.00 0.00 -0.21 0.02 0.23 -0.11 0.53 1.00 S100 calcium binding protein A10 (calpactin) [Source:MGI Symbol;Acc:MGI:1339468] ENSMUSG00000092341 Malat1 1.09 0.00 0.00 -0.11 0.20 1.00 0.66 0.00 0.00 metastasis associated lung adenocarcinoma transcript 1 (non-coding RNA) [Source:MGI Symbol;Acc:MGI:1919539] ENSMUSG00000072949 Acot1 1.73 0.00 0.00 -0.22 0.01 0.12 -0.44 0.01 1.00 acyl-CoA thioesterase 1 [Source:MGI Symbol;Acc:MGI:1349396] ENSMUSG00000064339 mt-Rnr2 1.09 0.00 0.00 -0.08 0.17 1.00 0.67 0.00 0.07 mitochondrially encoded 16S rRNA [Source:MGI Symbol;Acc:MGI:102492] ENSMUSG00000025934 Gsta3 1.86 0.00 0.00 -0.28
    [Show full text]
  • Clinical Efficacy and Immune Regulation with Peanut Oral
    Clinical efficacy and immune regulation with peanut oral immunotherapy Stacie M. Jones, MD,a Laurent Pons, PhD,b Joseph L. Roberts, MD, PhD,b Amy M. Scurlock, MD,a Tamara T. Perry, MD,a Mike Kulis, PhD,b Wayne G. Shreffler, MD, PhD,c Pamela Steele, CPNP,b Karen A. Henry, RN,a Margaret Adair, MD,b James M. Francis, PhD,d Stephen Durham, MD,d Brian P. Vickery, MD,b Xiaoping Zhong, MD, PhD,b and A. Wesley Burks, MDb Little Rock, Ark, Durham, NC, New York, NY, and London, United Kingdom Background: Oral immunotherapy (OIT) has been thought to noted during OIT resolved spontaneously or with induce clinical desensitization to allergenic foods, but trials antihistamines. By 6 months, titrated skin prick tests and coupling the clinical response and immunologic effects of peanut activation of basophils significantly declined. Peanut-specific OIT have not been reported. IgE decreased by 12 to 18 months, whereas IgG4 increased Objective: The study objective was to investigate the clinical significantly. Serum factors inhibited IgE–peanut complex efficacy and immunologic changes associated with OIT. formation in an IgE-facilitated allergen binding assay. Secretion Methods: Children with peanut allergy underwent an OIT of IL-10, IL-5, IFN-g, and TNF-a from PBMCs increased over protocol including initial day escalation, buildup, and a period of 6 to 12 months. Peanut-specific forkhead box protein maintenance phases, and then oral food challenge. Clinical 3 T cells increased until 12 months and decreased thereafter. In response and immunologic changes were evaluated. addition, T-cell microarrays showed downregulation of genes in Results: Of 29 subjects who completed the protocol, 27 ingested apoptotic pathways.
    [Show full text]
  • Gene Amplifications at Chromosome 7 of the Human Gastric Cancer Genome
    225-231 4/7/07 20:50 Page 225 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 20: 225-231, 2007 225 Gene amplifications at chromosome 7 of the human gastric cancer genome SANGHWA YANG Cancer Metastasis Research Center, Yonsei University College of Medicine, 134 Shinchon-Dong, Seoul 120-752, Korea Received April 20, 2007; Accepted May 7, 2007 Abstract. Genetic aberrations at chromosome 7 are known to Introduction be related with diverse human diseases, including cancer and autism. In a number of cancer research areas involving gastric The completion of human genome sequencing and the cancer, several comparative genomic hybridization studies subsequent gene annotations, together with a rapid develop- employing metaphase chromosome or BAC clone micro- ment of high throughput screening technologies, such as DNA arrays have repeatedly identified human chromosome 7 microarrays, have made it possible to perform genome-scale as containing ‘regions of changes’ related with cancer expression profiling and comparative genomic hybridizations progression. cDNA microarray-based comparative genomic (CGHs) in various cancer models. The elucidation of gene hybridization can be used to directly identify individual target copy number variations in several cancer genomes is generating genes undergoing copy number variations. Copy number very informative results. Metaphase chromosome CGH and change analysis for 17,000 genes on a microarray format was the recent introduction of BAC and especially cDNA micro- performed with tumor and normal gastric tissues from 30 array-based CGHs (aCGH) (1) have greatly contributed to patients. A group of 90 genes undergoing copy number the identification of chromosome aberrations and of amplified increases (gene amplification) at the p11~p22 or q21~q36 and deleted genes in gastric cancer tissues and cell lines (2-9).
    [Show full text]
  • UI Health Care Letterhead Template
    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Brownstein, Catherine A. et al. "An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge." Genome Biology 15:.3 (2014). p.1-18. As Published http://dx.doi.org/10.1186/gb-2014-15-3-r53 Publisher BioMed Central Ltd. Version Final published version Citable link http://hdl.handle.net/1721.1/88017 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/2.0 University of Iowa Hospitals and Clinics Department of Otolaryngology – Head & Neck Surgery 200 Hawkins Drive, 21151-PFP Iowa City, IA 52242-1078 319-356-3612 Tel 319-356-4108 Fax www.uihealthcare.com September 24, 2012 Katherine Flannery Program Manager Harvard Medical School Center for Biomedical Informatics Email: [email protected] RE: CLARITY Challenge Dear Katherine, Accompanying this letter is our CLARITY Challenge reports. As stipulated in the protocol and instructions, our reports are not focused on identifying unrelated findings associated with other health issues or diseases. Pursuant to these specific aims and objectives, we have completed the following: 1. Analysis of whole genome and whole exome sequence data on three families; 2. Identification of potential alterations associated with the phenotype in the proband; 3. Determination and identification of key components for reporting these results; 4.
    [Show full text]
  • Comparative Studies of Adipose Triglyceride Lipase Genes and Proteins: an Ancient Gene in Vertebrate Evolution
    Open Access Bioinformatics Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Comparative studies of adipose triglyceride lipase genes and proteins: an ancient gene in vertebrate evolution Roger S Holmes Abstract: At least eight families of mammalian patatin-like phospholipase domain-containing School of Biomolecular and Physical proteins (EC 3.1.1.3) catalyze the hydrolysis of triglycerides, including adipose triglyceride Sciences, Griffith University, Nathan, lipase (ATGL), which functions in triglyceride lipase metabolism in the body, especially QLD, Australia in adipose tissue. Bioinformatic methods were used to predict the amino acid sequences, secondary and tertiary structures, and gene locations for ATGL genes and encoded proteins using data from several vertebrate genome projects. ATGL genes usually contained nine coding exons for each of the vertebrate genomes examined, whereas the invertebrate sea squirt (Ciona intestinalis) ATGL gene contained a single exon. Vertebrate ATGL subunits contained 473–504 residues, shared .46% sequence identities, and exhibited sequence alignments and For personal use only. identities for key amino acid residues and predicted motifs: an N-terminal lipid binding region (residues 7–29 for human ATGL); a patatin “motif ” (residues 10–179); a putative active site oxyanion “hole” (Cys15, Gly16, and Leu18); and catalytic dyad active site residues (Ser47 and Asp166). Predicted tertiary structures for the ATGL patatin “motif ” were similar to those reported for potato patatin, suggesting that this structure is strongly conserved during animal and plant evolution. Human ATGL contained a CpG131 island within the gene promoter; miR-124/506 and miR-108 binding sites within the mRNA 3′-noncoding region; several transcription factor binding sites, including PPARA and PPARG, which are key regulators of genes encoding enzymes of lipid metabolism; and exhibited wide tissue expression at a higher than average level (2.2×).
    [Show full text]
  • Updating Phospholipase A2 Biology
    biomolecules Review Updating Phospholipase A2 Biology Makoto Murakami * , Hiroyasu Sato and Yoshitaka Taketomi Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; [email protected] (H.S.); [email protected] (Y.T.) * Correspondence: [email protected]; Tel.: +81-3-5841-1431 Received: 24 September 2020; Accepted: 15 October 2020; Published: 19 October 2020 Abstract: The phospholipase A2 (PLA2) superfamily contains more than 50 enzymes in mammals that are subdivided into several distinct families on a structural and biochemical basis. In principle, PLA2 has the capacity to hydrolyze the sn-2 position of glycerophospholipids to release fatty acids and lysophospholipids, yet several enzymes in this superfamily catalyze other reactions rather than or in addition to the PLA2 reaction. PLA2 enzymes play crucial roles in not only the production of lipid mediators, but also membrane remodeling, bioenergetics, and body surface barrier, thereby participating in a number of biological events. Accordingly, disturbance of PLA2-regulated lipid metabolism is often associated with various diseases. This review updates the current state of understanding of the classification, enzymatic properties, and biological functions of various enzymes belonging to the PLA2 superfamily, focusing particularly on the novel roles of PLA2s in vivo. Keywords: fatty acid; knockout mouse; lipid mediator; lipidomics; lysophospholipid; membrane; phospholipase A2; phospholipid 1. Introduction Based on their structural relationships, the PLA2 superfamily is classified into several 2+ families, including the secreted PLA2 (sPLA2), cytosolic PLA2 (cPLA2), Ca -independent PLA2 (iPLA2, also called patatin-like phospholipase (PNPLA)), platelet-activating factor acetylhydrolase (PAF-AH), lysosomal PLA2 (LPLA2), PLA/acyltransferase (PLAAT), α/β hydrolase (ABHD), and glycosylphosphatidylinositol (GPI)-specific PLA2 families.
    [Show full text]