Adjusting Glucose-Stimulated Insulin Secretion for Adipose Insulin

Total Page:16

File Type:pdf, Size:1020Kb

Adjusting Glucose-Stimulated Insulin Secretion for Adipose Insulin Diabetes Care 1 Steven K. Malin,1,2 Sangeeta R. Kashyap,3 Adjusting Glucose-Stimulated Jeff Hammel,1 Yoshi Miyazaki,4 CLIN CARE/EDUCATION/NUTRITION/PSYCHOSOCIAL Ralph A. DeFronzo,4 and Insulin Secretion for Adipose John P. Kirwan1,2,5 Insulin Resistance: An Index of b-Cell Function in Obese Adults DOI: 10.2337/dc13-3011 OBJECTIVE The hyperbolic relationship between insulin secretion and sensitivity has been used to assess in vivo b-cell function (i.e., the disposition index). The disposition index emphasizes the importance of taking into account both skeletal muscle and hepatic insulin resistance to depict insulin secretion. However, we propose that adipose tissue insulin resistance also needs to be accounted for when character- izing glucose-stimulated insulin secretion (GSIS) because elevated plasma free fatty acids (FFAs) impair b-cell function. RESEARCH DESIGN AND METHODS To characterize the adipose disposition index, we used [1-14C] palmitate infusion to determine basal FFA turnover rate/adipose insulin resistance and an oral glu- cose tolerance test to characterize the first (i.e., 0–30 min) and second phase (i.e., 60–120 min) of GSIS. We validated a simplified version of the tracer infusion calculation as the product of (1/plasma FFA concentration 3 plasma insulin con- centration) 3 GSIS in 44 obese insulin-resistant subjects. RESULTS The plasma FFA and palmitate tracer infusion calculations of the first- and second- phase disposition index were strongly correlated (r = 0.86, P < 0.000001 and r = 0.89, P < 0.000001, respectively). The first- and second-phase adipose disposition 1Department of Pathobiology, Lerner Research index derived from plasma FFA also was tightly associated with fasting hypergly- Institute, Cleveland Clinic, Cleveland, OH 2 cemia (r = 20.87, P < 0.00001 and r = 20.89, P < 0.00001, respectively) and 2-h Department of Nutrition, School of Medicine, r 2 P < r 2 P < Case Western Reserve University, Cleveland, OH glucose concentrations ( = 0.86, 0.00001 and = 0.90, 0.00001). 3Department of Endocrinology, Diabetes, and Metabolism, Cleveland Clinic, Cleveland, OH CONCLUSIONS 4University of Texas Health Science Center, Di- Adjusting GSIS for adipose insulin resistance provides an index of b-cell function in abetes Division, San Antonio, TX 5 obese subjects across the glucose spectrum. Plasma FFA–derived calculations of Metabolic Translational Research Center, Endo- b crine and Metabolism Institute, Cleveland Clinic, -cell function may provide additional insight into the role of adipose tissue in Cleveland, OH glucose regulation. Corresponding author: John P. Kirwan, kirwanj@ ccf.org, and Ralph A. DeFronzo, albarado@uthscsa .edu. Prevention of b-cell dysfunction is critical for avoiding the development and pro- gression of type 2 diabetes (1). Assessing in vivo insulin secretion is complex because Received 23 December 2013 and accepted 30 July 2014. the release of insulin from the b-cell is influenced by multiple factors including © 2014 by the American Diabetes Association. systemic insulin sensitivity, hepatic insulin extraction, plasma free fatty acid (FFA) Readers may use this article as long as the work concentrations, and glucolipid toxicity (2–4). An important aspect of the regulation is properly cited, the use is educational and not of insulin secretion in healthy adults with normal glucose tolerance is that a for profit, and the work is not altered. Diabetes Care Publish Ahead of Print, published online August 19, 2014 2 Adipose Insulin Resistance and Secretion Diabetes Care reduction in insulin sensitivity is gener- of chronic disease participated in the the duration of the study. During the ally accompanied by a compensatory in- study (14,15). Women were postmeno- last 30 min of tracer equilibration, plasma crease in insulin secretion (5,6). This pausal and were not receiving hor- samples were obtained at 230, 220, relationship typically is curvilinear and mone replacement therapy. Subjects 210, 25, and 0 min for determination has been referred to as the disposition who were being treated with insulin or of plasma [1-14C] palmitate radioactivity index (5). thiazolidinediones were excluded. Sub- and plasma FFA concentration. At 8 A.M. a The disposition index was originally jects were not taking any medications bolus of 3.5 uCi of sodium bicarbonate calculated from insulin sensitivity and known to influence glucose or insulin was given intravenously. Blood samples acute insulin response during the intra- metabolism. The diagnosis of type 2 di- were placed on ice and immediately venous glucose tolerance test (IVGTT) abetes was based on a standard 75-g centrifuged and stored at 2708C until (5,6). Insulin sensitivity measured with oral glucose tolerance test (OGTT): fasting subsequent analysis. Adipose insulin resis- the IVGTT is an aggregate of skeletal plasma glucose .126 mg/dL and/or 2-h tance index (Adipose-IR) was calculated as muscle, hepatic, and adipose insulin glucose .200 mg/dL. Subjects were in the product of the fasting plasma FFA 3 sensitivity. When the disposition index otherwise good health without evidence fasting insulin and compared with the is calculated using the hyperinsulinemic- of renal, hepatic, cardiovascular, or hema- product of basal rate palmitate turnover euglycemic clamp technique with supra- tological disease as determined by history, 3 fasting plasma insulin, as previously de- physiological insulin infusion rates (40–80 physical examination, screening blood scribed (12,13). mU z m22 z min21), hepatic glucose pro- chemistries, urinalysis, and electrocardiog- duction and lipolysis are almost com- raphy. The study protocol was approved Insulin Secretion At 8 A.M. on a different day, following a pletely suppressed, and 80–90% of by the institutional review board of the 10- to 12-h overnight fast, blood sam- glucose is disposed in skeletal muscle University of Texas Health Science Center ples were collected from a superficial (7). Therefore, when using the euglyce- at San Antonio and the Cleveland Clinic. antecubital vein to determine fasting mic insulin clamp to calculate the dispo- Subjects gave voluntary written informed plasma glucose, triglyceride, FFA, total sition index, two physiologically relevant consent before their participation. cholesterol, LDL, and HDL concentra- tissues and two physiologically relevant tions. HbA also was measured in pa- processes, that is, hepatic insulin sensitiv- Body Composition 1c tients with type 2 diabetes to further ity (2) and adipose insulin sensitivity (8), Height was measured without shoes characterize glycemic control. Following are not taken into account. Adipose tissue using a wall-mounted stadiometer, and collection of baseline samples, subjects should be considered in the interaction of weight was recorded on a digital platform orally consumed 75 g of glucose, and insulin secretion and insulin action be- scale with minimal clothing. Total body blood samples were obtained at 30, cause fat tissue secretes factors (e.g., fat and fat-free mass were measured by 3 60, 90, and 120 min to determine FFAs and adipokines) that contribute to underwater weighing or use of H-water plasma glucose and insulin concentra- multiorgan insulin resistance (8). These radioactivity, as previously described tions. Whole-body insulin action, which factors may contribute not only to skele- (14,15). reflects the aggregate of skeletal muscle, tal muscle and hepatic insulin resistance Control Period hepatic, and adipose insulin sensitivity, but also to impaired b-cell function in in- Before metabolic testing, subjects were was estimated using the Matsuda Index sulin-resistant states, including impaired instructed to avoid strenuous physical ac- (16). The HOMA of insulin resistance also fasting glucose, impaired glucose toler- tivity for 24 h. All subjects also were in- was calculated as a more reflective surro- ance, type 2 diabetes mellitus, and obe- structed to consume weight-maintenance gate of hepatic insulin resistance (17,18). sity (9,10). Because the fasting plasma meals (;55% carbohydrates, 30% fat, and Glucose and insulin total area under the FFA concentration is influenced by a feed- 15% protein). curve (AUC) during the OGTT were cal- back loop between adipose tissue and the culated using the trapezoidal method. pancreas (11), a valid estimate of adipose Palmitate Turnover First- and second-phase GSIS, that is, the insulin resistance can be obtained from Palmitate turnover, an index of lipolysis, insulinogenic index, was calculated during the product of the basal rate of FFA turn- wasassessedwithanisotopicallyla- the first 30 min and last 60 min of the over and the fasting insulin concentration beled palmitate infusion. After an over- OGTT as insulin AUC divided by plasma glu- (12,13). Relating adipose insulin re- night fast, a polyethylene catheter was cose AUC (i.e., I – /G – and I – – / sistance with glucose-stimulated insulin inserted into an antecubital vein for the 0 30 0 30 0 60 120 G – ). The first- and second-phase ad- secretion (GSIS) could yield a novel index infusion of [1-14C] palmitate. A second 60 120 ipose disposition indices were calculated of b-cell function. In this study we exam- catheter was inserted retrogradely into as follows: I – /G – 3 adipose plasma ine the physiologic relevance of the adi- the distal portion of a vein on the contra- 0 30 0 30 FFA IR and I – /G – 3 adipose pose disposition index as it relates to lateral hand for blood sampling. The hand 60 120 60 120 plasma FFA IR, respectively (19). blood glucose. was kept in a box warmed to ;608Cfor the duration of the study to collect arte- Biochemical Analysis RESEARCH DESIGN AND METHODS rialized blood. A prime (2.5 uCi) and con- Plasma glucose was determined using 14 Subjects tinuous (0.1 uCi/min) infusion of 1- C the glucose oxidase method (YSI 2300 Forty-four obese individuals (Table 1) palmitate was prepared as previously de- STAT Plus; YSI Life Sciences, Yellow who had a stable weight (,2-kg change scribed (14,15) and started at 8 A.M.
Recommended publications
  • Cell Function the Hyperbolic Correction Richard N
    Accurate Assessment of ␤-Cell Function The Hyperbolic Correction Richard N. Bergman, Marilyn Ader, Katrin Huecking, and Gregg Van Citters Only in the last decade did modeling studies predict, and knockout experiments confirm, that type 2 diabetes is a “2-hit” disease in which insulin resistance is necessarily efective function of the pancreatic ␤-cells is accompanied by ␤-cell defect(s) preventing the compen- now accepted to be a hallmark of type 1 and satory upregulation of insulin secretion. This long- type 2 diabetes. The importance of the ␤-cells in delayed insight was associated with the development of type 1 diabetes has long been accepted. On the a constant, the “disposition index,” describing the D contrary, the necessity of a pancreatic defect in type 2 ␤-cell sensitivity-secretion relationship as a rectangular hyperbola. Shifts in insulin sensitivity are accompanied diabetes has only recently been widely appreciated (1,2). by compensatory alterations in ␤-cell sensitivity to For many years, it was considered that insulin resistance glucose. Insulin-sensitive subjects do not require a alone could engender hyperglycemia in those without massive insulin response to exogenous glucose to main- immune etiology of disease (3,4). Results based on mod- tain a normal blood glucose. But if their insulin sensi- eling indicating that ␤-cell upregulation would compensate tivity decreases by 80%, as in late pregnancy, they need for even severe insulin resistance and not result in fasting a fivefold greater insulin response to achieve an identi- hyperglycemia (5) were recently supported by the labora- cal disposition index. Women with gestational diabetes tory of C.R.
    [Show full text]
  • Methods for Measuring Risk for Type 2 Diabetes in Youth: the Oral Glucose Tolerance Test
    Methods for Measuring Risk for Type 2 Diabetes in Youth: The Oral Glucose Tolerance Test (OGTT) Melinda E. Chen, MD1, Rebecca S. Aguirre, MD, PhD2, and Tamara S. Hannon, MD, MS 1University of Nebraska Medical Center; 2Indiana University School of Medicine Corresponding Author: Tamara S. Hannon 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202 Email: [email protected] Keywords: insulin sensitivity; β-cell function; prediabetes; adolescent; pediatric Abstract Purpose of review: The oral glucose tolerance test (OGTT) is used both in clinical practice and research to assess glucose tolerance. In addition, the OGTT is utilized for surrogate measures of insulin sensitivity and the insulin response to enteral glucose, and has been widely applied in the evaluation of β-cell dysfunction in obesity, prediabetes, and type 2 diabetes. Here we review the use of the OGTT and the OGTT-derived indices for measurement of risk markers for type 2 diabetes in youth. Recent findings: Advantages of using the OGTT for measures of diabetes risk include its accessibility and the incorporation of physiological contributions of the gut-pancreas axis in the measures of insulin response to glucose. Mathematical modeling expands the potential gains from the OGTT in physiology and clinical research. Disadvantages include individual differences in the rate of glucose absorption that modify insulin responses, imperfect control of the glycemic stimulus, and poor intraindividual reproducibility. ___________________________________________________________________ This is the author's manuscript of the article published in final edited form as: Chen, M. E., Aguirre, R. S., & Hannon, T. S. (2018). Methods for Measuring Risk for Type 2 Diabetes in Youth: the Oral Glucose Tolerance Test (OGTT).
    [Show full text]
  • Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: Assessment of Causal Relations
    nutrients Review Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: Assessment of Causal Relations Geoffrey Livesey 1,* , Richard Taylor 1, Helen F. Livesey 1, Anette E. Buyken 2, David J. A. Jenkins 3,4,5,6, Livia S. A. Augustin 4,7, John L. Sievenpiper 3,4,5,6, Alan W. Barclay 8, Simin Liu 9, Thomas M. S. Wolever 3,4, Walter C. Willett 10, Furio Brighenti 11 , Jordi Salas-Salvadó 12,13 , Inger Björck 14, Salwa W. Rizkalla 15, Gabriele Riccardi 16, Carlo La Vecchia 17 , Antonio Ceriello 18, Antonia Trichopoulou 19, Andrea Poli 20, Arne Astrup 21 , Cyril W. C. Kendall 3,4,22, Marie-Ann Ha 23 , Sara Baer-Sinnott 24 and Jennie C. Brand-Miller 25 1 Independent Nutrition Logic Ltd, 21 Bellrope Lane, Wymondham NR180QX, UK; [email protected] (R.T.); [email protected] (H.F.L.) 2 Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, 33098 Paderborn, Germany; [email protected] 3 Departments of Nutritional Science and Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; [email protected] (D.J.A.J.); [email protected] (J.L.S.); [email protected] (T.M.S.W.); [email protected] (C.W.C.K.) 4 Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada; [email protected] 5 Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada 6 Li Ka Shing Knowledge Institute, St.
    [Show full text]
  • The Effects of the Dietary Glycemic Load on Type 2 Diabetes Risk Factors During Weight Loss
    Diet and Physical Activity The Effects of the Dietary Glycemic Load on Type 2 Diabetes Risk Factors during Weight Loss Anastassios G. Pittas,* Susan B. Roberts,† Sai Krupa Das,† Cheryl H. Gilhooly,† Edward Saltzman,† Julie Golden,† Paul C. Stark,‡ and Andrew S. Greenberg† Abstract 0.83); first-phase acute insulin release was Ϫ20% in the HG PITTAS, ANASTASSIOS G., SUSAN B. ROBERTS, SAI group and Ϫ21% in the LG group (p ϭ 0.77). More par- KRUPA DAS, CHERYL H. GILHOOLY, EDWARD ticipants on the LG diet (14 of 16 subjects) had a decline in SALTZMAN, JULIE GOLDEN, PAUL C. STARK, AND serum CRP, compared with those on the HG diet (7 of 16 ANDREW S. GREENBERG. The effects of the dietary subjects) (p Ͻ 0.05). glycemic load on type 2 diabetes risk factors during weight Discussion: In healthy overweight adults provided with loss. Obesity. 2006;14:2200–2209. food for 6 months, the dietary GL did not seem to influence Objective: To compare the effects of two calorie-restricted chronic adaptations in glucose-insulin dynamics above that diets that differ in glycemic load (GL) on glucose tolerance associated with weight loss. This finding highlights the and inflammation. importance of absolute weight loss over the dietary macro- Research Methods and Procedures: Thirty-four healthy nutrient composition used to achieve weight loss. The find- overweight adults, ages 24 to 42 years, were randomized to ing of greater declines in CRP concentration after consump- 30% provided calorie-restricted diets with high (HG) or low tion of a low-GL diet warrants further investigation.
    [Show full text]
  • High-Carbohydrate–Low-Glycaemic Index Dietary Advice Improves Glucose Disposition Index in Subjects with Impaired Glucose Tolerance
    Downloaded from British Journal of Nutrition (2002), 87, 477–487 DOI: 10.1079/BJN2002568 q The Authors 2002 https://www.cambridge.org/core High-carbohydrate–low-glycaemic index dietary advice improves glucose disposition index in subjects with impaired glucose tolerance Thomas M. S. Wolever* and Christine Mehling . IP address: Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada M5S 3E2 and Division of Endocrinology and Metabolism, St. Michael’s Hospital, Toronto, Ontario, Canada 170.106.202.126 (Received 5 June 2001 – Revised 26 November 2001 – Accepted 20 January 2002) Controversy exists about the optimal amount and source of dietary carbohydrate for managing , on 28 Sep 2021 at 16:43:51 insulin resistance. Therefore, we compared the effects on insulin sensitivity (SI), pancreatic responsivity (AIRglu) and glucose disposition index ðDI ¼ SI £ AIRgluÞ of dietary advice aimed at reducing the amount or altering the source of dietary carbohydrate in subjects with impaired glucose tolerance (IGT). Subjects were randomized to high-carbohydrate–high-gly- caemic index (GI) (high-GI, n 11), high-carbohydrate–low-GI (low-GI, n 13), or low-carbo- hydrate–high-monounsaturated fat (MUFA, n 11) dietary advice, with SI, AIRglu and DI measured using a frequently sampled, intravenous glucose tolerance test before and after 4 , subject to the Cambridge Core terms of use, available at months treatment. Carbohydrate and fat intakes and diet GI, respectively, were: high-GI, 53 %, 28 %, 83; low-GI, 55 %, 25 %, 76; MUFA, 47 %, 35 %, 82. Weight changes on each diet differed significantly from each other: high-GI, 20·49 (SEM 0·29) kg; low-GI, 20·19 (SEM 0·40) kg; MUFA +0·27 (SEM 0·45) kg.
    [Show full text]
  • Assessment of Disturbed Glucose Metabolism and Surrogate
    Roth et al. Nutrition and Diabetes (2017) 7:301 DOI 10.1038/s41387-017-0004-y Nutrition & Diabetes ARTICLE Open Access Assessment of disturbed glucose metabolism and surrogate measures of insulin sensitivity in obese children and adolescents Christian L Roth1, Clinton Elfers1 and Christiane S Hampe2 Abstract Background: With the rising prevalence of obesity and type 2 diabetes (T2D) in obese children, it is becoming imperative to detect disturbed glucose metabolism as early as possible in order to prevent T2D development. Subjects/Methods: Cross-sectional study of 92 obese children (median age 11.7 years, 51% female) and 7 lean children (median age 11.4 years, 57% female) who underwent an oral glucose tolerance test (OGTT) in a tertiary pediatric care center. Glucose tolerance was assessed and different indices for β-cell function, insulin sensitivity and insulin secretion were calculated. Results: Nineteen obese children were identified with prediabetes (PD, 12 impaired glucose tolerance, 4 increased fasting glucose and 3 combined). Compared with the 73 obese children with normal glucose tolerance (nGT), subjects with PD had higher insulin resistance, but lower insulin sensitivity and β-cell function, although their glycated 1234567890 1234567890 hemoglobin (HbA1c) levels were comparable. The Whole Body Insulin Sensitivity Index (WBISI) and β-cell function by Insulin Secretion-Sensitivity Index-2 (ISSI-2) strongly correlated with the OGTT glucose area under the curve 0–120 min (r = 0.392, p < 0.0002; r = 0.547, p < 0.0001, respectively). When testing the relation between early insulin response during OGTT by insulinogenic index and insulin sensitivity assessed by WBISI, a hyperbolic relationship between insulin secretion and insulin sensitivity was found.
    [Show full text]
  • Do Glycemic Index, Glycemic Load, and Fiber Play a Role in Insulin Sensitivity, Disposition Index, and Type 2 Diabetes?
    EDITORIAL (SEE LIESE ET AL., P. 2832) Do Glycemic Index, Glycemic Load, and Fiber Play a Role in Insulin Sensitivity, Disposition Index, and Type 2 Diabetes? n this issue of Diabetes Care, Liese et al. fiber to have a positive association with and the other of the Health Professionals’ (1) report on the relation of dietary gly- insulin sensitivity and an inverse associa- Study (7). However, reading these reports I cemic index, glycemic load, carbohy- tion with adiposity and disposition index. carefully, neither is significant for a glyce- drate, and fiber intake to measures of Insulin sensitivity is a very important mic load effect and only one for glycemic insulin sensitivity, insulin secretion, and component of carbohydrate homeostasis. index effect at P Ͻ 0.04. Other epidemi- adiposity in the Insulin Resistance Ath- Individuals with insulin resistance are ological, observational, longitudinal stud- erosclerosis Study (IRAS). The evaluation more likely to eventually develop type 2 ies have shown no significant effect. These was confined to those with normal or im- diabetes. The potential effect of diet on include the Iowa Women’s study (8), the paired glucose tolerance and did not in- this physiological state is thus important San Luis Valley Study (9), and the Athero- clude diabetic individuals. As the authors in gauging risk. In short-term interven- sclerosis Risk in Communities study (10). state, there has been no previous large ep- tional metabolic studies in small numbers The present IRAS report bolsters the neg- idemiologic study relating glycemic index of people, the best trial to date, e.g., the ative data.
    [Show full text]
  • Lower Insulin Clearance Parallels a Reduced Insulin Sensitivity in Obese Youths and Is
    Page 1 of 29 Diabetes Title: Lower Insulin Clearance parallels a reduced insulin sensitivity in obese youths and is associated with a decline in 훽-cell function over time Running title: Insulin clearance in obese youths Authors: Alfonso Galderisi1,2, David Polidori3, Ram Weiss4, Cosimo Giannini1,5, Bridget Pierpont1, Domenico Trico’6,7, and Sonia Caprio8. Affiliations 1Department of Pediatrics, Pediatrics Endocrinology and Diabetes Section, Yale School of Medicine, New Haven, CT, USA 2Department of Woman and Child’s Health, University of Padova, Padova, Italy 3Janssen Research & Development, San Diego, CA 3Department of Pediatrics, Ruth Rappaport Children’s' Hospital, Rambam Medical Center, Haifa, Israel 4Department of Pediatrics, Ospedale “SS Annunziata”, Chieti, Italy 5Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy 6Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy Correspondence. Sonia Caprio, MD - Division of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA – email [email protected] - Phone: +1-203.764.9199, Fax: +1-203.737.2829 Keywords: insulin clearance, pediatric obesity, prediabetes Word count: 4508/4000 Figures: 5 Tables: 1 Supplemental tables: 1 Diabetes Publish Ahead of Print, published online August 9, 2019 Diabetes Page 2 of 29 Abstract We examined the relationship between insulin clearance, insulin sensitivity and 훽-cell function and the longitudinal effect of insulin clearance on 훽-cell function in lean, obese insulin sensitive and insulin resistant adolescents. A hyperinsulinemic-euglycemic and a hyperglycemic clamp were performed in 110 youths to quantify hepatic and peripheral clearance, insulin sensitivity and β-cell function (disposition index, DIh-clamp).
    [Show full text]
  • Original Article: Metabolism Evaluation of Proposed Oral Disposition Index Measures in Relation to the Actual Disposition Index
    DIABETICMedicine DOI:10.1111/j.1464-5491.2009.02841.x Original Article: Metabolism Evaluation of proposed oral disposition index measures in relation to the actual disposition index R. Retnakaran*†, Y. Qi*, M. I. Goran‡ and J. K. Hamilton†§ *Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, †Division of Endocrinology, University of Toronto, Toronto, ON, Canada, ‡Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA and §Division of Endocrinology, Hospital for Sick Children, Toronto, ON, Canada Accepted 11 August 2009 Abstract Aims While the disposition index provides a useful measure of B-cell function, its calculation requires the performance of a frequently sampled intravenous glucose tolerance test (FSIVGTT). Recently, the demonstration of a hyperbolic relationship between indices of insulin secretion and insulin sensitivity derived from the oral glucose tolerance test (OGTT) has led to the introduction of two novel OGTT-based measures of B-cell function analogous to the disposition index: (i) the insulin secretion-sensitivity index-2 (ISSI-2) (defined as the ratio of the area-under-the-insulin-curve to the area-under-the-glucose curve, multiplied by the Matsuda index) and (ii) insulinogenic index (IGI) ⁄ fasting insulin. However, neither of these two measures has been directly compared with the disposition index. Methods Two hundred and thirteen non-diabetic children (122 boys, 91 girls) underwent both OGTT and FSIVGTT, allowing for the calculation of ISSI-2, IGI ⁄ fasting insulin and the disposition index. Results ISS1-2 and IGI ⁄ fasting insulin were strongly correlated with each other (r = 0.82, P < 0.0001).
    [Show full text]
  • Proposal for a New Oral Disposition Index with OGIS As a Marker of Insulin Action
    Endocrinology & Metabolism International Journal Research Article Open Access Proposal for a new oral disposition index with OGIS as a marker of insulin action Abstract Volume 5 Issue 5 - 2017 Aim: The euglycemic clamp is the gold standard for measuring insulin action, but has a disadvantage that makes it impractical. There surrogates as OGIS, based on a mathematical Aguirre Karina, Mehta Roopa, Gulías Alfonso, model derived from kinetic studies of plasma glucose humane methods. It has better Aguilar Carlos performance over other options (Matsuda, HOMA, Quicki). Searching an integrated manner Department of Endocrinology and Metabolism, Instituto the compensation capacity of the beta cell to different states of insulin sensitivity, disposition Nacional de Nutrición Salvador Zubirán, Mexico index, which serves as a predictor developed of incident diabetes. Can be calculated using surrogates indexes both secretion and action insulin. Present study proposes using OGIS as Correspondence: Aguirre Karina, Department of a marker of insulin action and a new disposition index. Endocrinology and Metabolism, Instituto Nacional de Nutrición Salvador Zubirán, Mexico, Email Materials and methods: All OGTT of 3 to 5hours made in 2007 to 2013 at INNSZ were included. The secretion index and action of insulin were calculated too. The oral disposition Received: September 06, 2016 | Published: October 27, 2017 index (IDO) was estimated as the product of (Delta 0-30insulin/delta 0-30glucose x (1/basal insulin). OGIS was used as a marker of insulin action and HOMA-B as a secretion marker. Their correlation and concordance were evaluated. Results: Data from 2097 patients were collected, only 1619 with complete information were included in the analysis.
    [Show full text]
  • Early Alterations in Glycemic Control and Pancreatic Endocrine Function in Nondiabetic Patients with Chronic Pancreatitis
    ORIGINAL ARTICLE Early Alterations in Glycemic Control and Pancreatic Endocrine Function in Nondiabetic Patients With Chronic Pancreatitis Rachel Lundberg, BS,* Gregory J. Beilman, MD,† Ty B. Dunn, MD,† Tim L. Pruett, MD,† Martin L. Freeman, MD,‡ Peggy E. Ptacek, CMA,* Katherine Louise Berry, RN,† R. Paul Robertson, MD,‡ Antoinette Moran, MD,* and Melena D. Bellin, MD*† disease to clinical attention, diabetes mellitus (DM) is an impor- Objectives: – Diabetes mellitus is a frequent consequence of chronic pan- tant and frequent consequence.1 5 The lifelong risk of developing creatitis (CP). Little is known about pancreatic endocrine function before DM in the setting of CP is estimated at 25% to 75%6–9 and de- the development of diabetes mellitus in CP,particularly in females, or those pends in part on previous surgical resection, etiology of disease, without calcific and/or alcoholic pancreatitis. and extent of pancreatic damage, with exocrine insufficiency Methods: – Twenty-five nondiabetic adult patients with CP (19 female; and calcifications as important markers of the latter.7 11 mean [SE] age, 34.2 [2.4] years) were compared with 25 healthy controls Compared with type 1 and type 2 DM, very few clinical stud- matched for age, sex, and body mass index. Subjects underwent frequent ies exist to characterize the pathophysiology and natural history of sample intravenous glucose tolerance testing (FSIVGTT) and mixed meal DM in CP.Impaired insulin responses to oral and intravenous (IV) tolerance testing (MMTT). 6,10,12 Results: secretagogues have been observed in those with DM and CP Mean (SE) fasting glucose was higher in patients with CP and in a handful of patients with normal glucose tolerance and (89.5 [2.3] mg/dL) than in controls (84.4 [1.2] mg/dL, P = 0.04).
    [Show full text]
  • Impact of Lifestyle Behaviors on Postprandial Hyperglycemia During Continuous Glucose Monitoring in Adult Males with Overweight/Obesity but Without Diabetes
    nutrients Article Impact of Lifestyle Behaviors on Postprandial Hyperglycemia during Continuous Glucose Monitoring in Adult Males with Overweight/Obesity but without Diabetes Ichiro Kishimoto 1,* and Akio Ohashi 2 1 Department of Endocrinology and Diabetes, Toyooka Public Hospital, 1094 Tobera, Toyooka 668-8501, Japan 2 Environment and Total Quality Management Division, NEC Corporation, 5-7-1 Minato-ku, Shiba, Tokyo 108-0014, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-796-22-6111; Fax: +81-796-22-0088 Abstract: Data regarding hyperglycemia-related factors were scarce in people without diabetes. Fifty males (age 50–65 years) with overweight/obesity but without diagnosis of diabetes were recruited. After excluding participants with the 2 h plasma glucose value during a 75 g oral glucose tolerance test ≥200 mg/dL, continuous glucose monitoring (CGM) was performed for 6 days. Subjects with ≥1800 CGM readings were included (n = 36). The CGM indices of hyperglycemia were significantly associated with disposition index and snacking frequency. In receiver-operating characteristic analysis for predicting the maximal CGM glucose ≥200 mg/dL, the area under curves of disposition index, snacking frequency, and minimal daily step counts during the study were 0.69, 0.63, and 0.68, whereas the cutoff values were 1.57, once daily, and 2499 steps, respectively. After adjustments, the Citation: Kishimoto, I.; Ohashi, A. lower disposition index (≤1.57), higher snacking frequency (≥1 per day), and lower minimal step Impact of Lifestyle Behaviors on (≤2499 steps per day) categories conferred 14.5, 14.5, and 6.6-fold increased probabilities for having Postprandial Hyperglycemia during the maximum level ≥ 200 mg/dL, respectively.
    [Show full text]