Mathematics People

Total Page:16

File Type:pdf, Size:1020Kb

Mathematics People Mathematics People de Paris-Sud under the direction of Pierre Deligne. He has Budaghyan Awarded Artin held positions in Heidelberg, Bonn, Wuppertal, and Köln. Junior Prize In 2003 he was appointed to his current position as profes- sor of arithmetic algebraic geometry at the University of Lilya Budaghyan of the University of Bergen, Norway, has been awarded the 2011 Emil Artin Junior Prize in Bonn. Rapoport received the Leibniz Prize in 1992 for his Mathematics. She was chosen for her joint paper with Tor work on Shimura varieties and on the proof of the local Helleseth, “New commutative semifields defined by new Langlands conjecture for the general linear group GLn(K) PN multinomials”, published in Cryptography and Com- for local fields K of positive characteristic, work done munications 3 (2011), 1–16. Established in 2001, the Emil jointly with Gérard Laumon and Ulrich Stuhler. Rapoport Artin Junior Prize in Mathematics carries a cash award of has had a great impact on the arithmetic of elliptic curves. US$1,000 and is presented usually every year to a student or former student of an Armenian university under the The Hopf Prize is awarded every two years on the oc- age of thirty-five for outstanding contributions to alge- casion of the Heinz Hopf Lectures, which are given by the bra, geometry, topology, and number theory—the fields prizewinners. The prize carries a cash award of 30,000 in which Emil Artin made major contributions. The prize Swiss francs (approximately US$32,700). committee consisted of A. Basmajian, Y. Movsisyan, and V. Pambuccian. —From an ETH announcement —Victor Pambuccian, New College, Arizona State University Maharaj and Sarkar Awarded Rapoport Awarded Hopf Prize Bhatnagar Prize Michael Rapoport of the University of Bonn has been Mahan Maharaj of Ramakrishna Mission Vivekananda awarded the 2011 Heinz Hopf Prize of the ETH Zürich. University and Palash Sarkar of the Indian Statistical He was honored “for his broad and extraordinarily deep Institute have been awarded the 2011 Shanti Swarup scientific works.” Rapoport uses algebraic geometry to Bhatnagar Prize for Science and Technology in the math- establish higher reciprocity laws, which serve as a bridge ematical sciences. The prize is awarded by the Council of between the field of arithmetic and the theory of auto- morphic forms. He is interested in Shimura varieties and Scientific Research and Industrial Development to recog- their local variants from the point of view of constructing nize outstanding Indian work in science and technology. interesting Galois representations, of identifying algebraic Shanti Swarup Bhatnagar was the founding director of the cycles on them, and of studying their deformations. He Council. It is the highest award for science in India. The delivered the Heinz Hopf Lectures, titled “How Geometry prize carries a cash award of 500,000 rupees (approxi- Meets Arithmetic”, in October 2011. mately US$10,000). Born in 1948, Michael Rapoport grew up in the former East Germany. After initial studies in Berlin, he emigrated and continued his studies in Paris and at Princeton and —Council of Scientific Research and Industrial Harvard. He received his Ph.D. in 1976 from the Université Development, India 322 NOTICES OF THE AMS VOLUME 59, NUMBER 2 Mathematics People Soundararajan Awarded CAREER Awards Presented Infosys Prize 2011 The Division of Mathematical Sciences (DMS) of the Na- tional Science Foundation (NSF) has honored thirty-one Kannan Soundararajan of Stanford University has young mathematicians in fiscal year 2011 with Faculty been awarded the Infosys Prize in Mathematical Sciences Early Career Development (CAREER) awards. The NSF for 2011. According to the prize citation, “Soundararajan established the awards to support promising scientists, has made fundamental contributions to analytic number mathematicians, and engineers who are committed to the theory. These include numerous brilliant breakthroughs integration of research and education. The grants provide in well-known and difficult problems, as well as the reso- funding of at least US$400,000 over a five-year period. lution of some that have been open for a long time. In The 2011 CAREER grant awardees and the titles of their particular, his recent development of new, unexpected grant projects follow. techniques to study the critical values of general zeta Mark Behrens, Massachusetts Institute of Technol- functions has led to the proof of the quantum unique ogy, Arithmetic Structure of Homotopy Theory; Hongjie ergodicity conjecture for classical holomorphic modular Dong, Brown University, Problems in Regularity Theory forms. Many of the analytic and combinatorial tools that for Linear and Nonlinear Partial Differential Equations; Soundararajan and his collaborators have developed, in Kirsten Eisentraeger, Pennsylvania State University, works ranging from prime numbers and sieve methods to Undecidability in Number Theory and Applications of character sums and zeta functions, have become standard Arithmetic Geometry; Volker Elling, University of tools for researchers in these fields.” Michigan, Ann Arbor, Non-Uniqueness in Inviscid Flow The Infosys Prize recognizes outstanding contribu- and Algebraic Vortex Spirals; Maria Emelianenko, George tions to research in engineering and computer sci- Mason University, Developing Mathematical Tools for Ibrahim Fatkullin ence, life sciences, mathematical sciences, physical Modeling Complex Materials Systems; , sciences, and social sciences. The prize carries a cash University of Arizona, Defects and Singularities in Liquid Ilse C. F. Ipsen award of 5 million rupees (approximately US$97,000). Crystalline and Bacterial Systems; , North Carolina State University, Early Career and Student Sup- Max Lieblich —From an Infosys Science Foundation announcement port for the XVIII Householder Symposium; , University of Washington, The Brauer Group in Algebraic and Formal Geometry; Lek-Heng Lim, University of Chi- cago, Numerical Multilinear Algebra and Its Applications: Brandenberger Awarded CAP- From Matrices to Tensors; Ping Ma, University of Illinois, CRM Prize Urbana-Champaign, Subsampling Methods in Statistical Modeling of Ultra-Large Sample Geophysics; Mokshay Robert Brandenberger of McGill University has been Madiman, Yale University, An Integrated Probabilistic awarded the 2011 CAP-CRM Prize in Theoretical and Math- Approach to Discrete and Continuous Extremal Problems ematical Physics by the Canadian Association of Physicists via Information Theory; Svitlana Mayboroda, Purdue (CAP) and the Centre de recherches mathématiques (CRM). University, Analysis of Partial Differential Equations He was honored “for his pioneering contributions in the in Non-Smooth Media; Jason Metcalfe, University of area of theoretical cosmology, especially the interplay of North Carolina, Chapel Hill, The Wave Equation on Black particle physics and cosmology.” The prize is intended to Hole Backgrounds; Irina Mitrea, Temple University, recognize research excellence in the fields of theoretical Spectral Theory for Singular Integrals, Validated Numer- and mathematical physics. ics and Elliptic Problems in Non-Lipschitz Polyhedra: Research and Outreach; Adilson Motter, Northwestern —From a CAP-CRM announcement University, Rescue and Control of Complex Networks of Dynamical Systems: Nonlinear Dynamics Approaches and Applications to Biological and Physical Networks; Alvaro Pelayo, Washington University, Symplectic and Hinrichs Awarded 2011 Spectral Theory of Integrable Systems; Zhiguang Qian, Information-Based Complexity University of Wisconsin, Madison, A Flexible Design and Modeling Framework for Computer Experiments and Prize Beyond; Philippe Rigollet, Princeton University, Large- Scale Stochastic Optimization and Statistics; David Aicke Hinrichs of the Mathematisches Institut, University Savitt, University of Arizona, p-adic and mod p Galois of Jena, Germany, has been awarded the 2011 Information- Representations; Natasa Sesum, Rutgers University, Based Complexity (IBC) Young Researcher Prize. The prize Singularities and Singularity Models in Curvature Flows; consists of US$3,000 and a plaque. This annual prize is Eric Shea-Brown, University of Washington, Bridging given for outstanding contributions to information-based Dynamical and Statistical Models of Neural Circuits: A complexity. Mechanistic Approach to Multispike Synchrony; Maggy Tomova, University of Iowa, New Approaches to Classical —Joseph Traub, Columbia University Knot Invariants; Ignacio Uriarte-Tuero, Michigan State FEBRUARY 2012 NOTICES OF THE AMS 323 Mathematics People University, Weighted Inequalities and Their Applications an editorial writer for the Stanford Daily and a political to Quasiconformal Maps; Benedek Valko, University columnist. A marathon runner, he will do the M.Sc. in of Wisconsin, Madison, Random Eigenvalue Problems economics for development at Oxford. and Fluctuations of Large Stochastic Systems; Mariel Nabeel N. Gillani of Glen Allen, Virginia, is a senior Vazquez, San Francisco State University, Topological at Brown University majoring in applied mathematics and Mechanism of DNA Unlinking by the XerCD-FtsK System; computer science. He has also served as a research assis- Stefan Wenger, University of Illinois, Chicago, Geometric tant on a biotechnology project and as a Microsoft project Inequalities, Asymptotic Geometry, and Geometric Mea- manager, and he is working now at Brown’s optimization sure Theory; Lauren Williams, University of California, lab on electricity restoration
Recommended publications
  • Mathematics People
    Mathematics People symmetric spaces, L²-cohomology, arithmetic groups, and MacPherson Awarded Hopf the Langlands program. The list is by far not complete, and Prize we try only to give a representative selection of his contri- bution to mathematics. He influenced a whole generation Robert MacPherson of the Institute for Advanced Study of mathematicians by giving them new tools to attack has been chosen the first winner of the Heinz Hopf Prize difficult problems and teaching them novel geometric, given by ETH Zurich for outstanding scientific work in the topological, and algebraic ways of thinking.” field of pure mathematics. MacPherson, a leading expert Robert MacPherson was born in 1944 in Lakewood, in singularities, delivered the Heinz Hopf Lectures, titled Ohio. He received his B.A. from Swarthmore College in “How Nature Tiles Space”, in October 2009. The prize also 1966 and his Ph.D. from Harvard University in 1970. He carries a cash award of 30,000 Swiss francs, approximately taught at Brown University from 1970 to 1987 and at equal to US$30,000. the Massachusetts Institute of Technology from 1987 to The following quotation was taken from a tribute to 1994. He has been at the Institute for Advanced Study in MacPherson by Gisbert Wüstholz of ETH Zurich: “Singu- Princeton since 1994. His work has introduced radically larities can be studied in different ways using analysis, new approaches to the topology of singular spaces and or you can regard them as geometric phenomena. For the promoted investigations across a great spectrum of math- latter, their study demands a deep geometric intuition ematics.
    [Show full text]
  • Differential Geometry in the Large Seminar Lectures New York University 1946 and Stanford University 1956 Series: Lecture Notes in Mathematics
    springer.com Heinz Hopf Differential Geometry in the Large Seminar Lectures New York University 1946 and Stanford University 1956 Series: Lecture Notes in Mathematics These notes consist of two parts: Selected in York 1) Geometry, New 1946, Topics University Notes Peter Lax. by Differential in the 2) Lectures on Stanford Geometry Large, 1956, Notes J. W. University by Gray. are here with no essential They reproduced change. Heinz was a mathematician who mathema- Hopf recognized important tical ideas and new mathematical cases. In the phenomena through special the central idea the of a or difficulty problem simplest background is becomes clear. in this fashion a crystal Doing geometry usually lead serious allows this to to - joy. Hopf's great insight approach for most of the in these notes have become the st- thematics, topics I will to mention a of further try ting-points important developments. few. It is clear from these notes that laid the on Hopf emphasis po- differential 2nd ed. 1989, VIII, 192 p. Most of the results in smooth differ- hedral geometry. whose is both t1al have understanding geometry polyhedral counterparts, works I wish to mention and recent important challenging. Printed book Among those of Robert on which is much in the Connelly rigidity, very spirit R. and in - of these notes (cf. Connelly, Conjectures questions open International of Mathematicians, H- of Softcover gidity, Proceedings Congress sinki vol. 1, 407-414) 1978, . 29,95 € | £26.99 | $49.95 [1]32,05 € (D) | 32,95 € (A) | CHF 43,04 eBook 24,60 € | £20.99 | $34.99 [2]24,60 € (D) | 24,60 € (A) | CHF 34,00 Available from your library or springer.com/shop MyCopy [3] Printed eBook for just € | $ 24.99 springer.com/mycopy Error[en_EN | Export.Bookseller.
    [Show full text]
  • PETER SCHOLZE to RECEIVE 2013 SASTRA RAMANUJAN PRIZE the 2013 SASTRA Ramanujan Prize Will Be Awarded to Professor Peter Scholze
    PETER SCHOLZE TO RECEIVE 2013 SASTRA RAMANUJAN PRIZE The 2013 SASTRA Ramanujan Prize will be awarded to Professor Peter Scholze of the University of Bonn, Germany. The SASTRA Ramanujan Prize was established in 2005 and is awarded annually for outstanding contributions by young mathematicians to areas influenced by the genius Srinivasa Ramanujan. The age limit for the prize has been set at 32 because Ramanujan achieved so much in his brief life of 32 years. The prize will be awarded in late December at the International Conference on Number Theory and Galois Representations at SASTRA University in Kumbakonam (Ramanujan's hometown) where the prize has been given annually. Professor Scholze has made revolutionary contributions to several areas at the interface of arithmetic algebraic geometry and the theory of automorphic forms. Already in his master's thesis at the University of Bonn, Scholze gave a new proof of the Local Langlands Conjecture for general linear groups. There were two previous approaches to this problem, one by Langlands{Kottwitz, and another by Harris and Taylor. Scholze's new approach was striking for its efficiency and simplicity. Scholze's proof is based on a novel approach to calculate the zeta function of certain Shimura varieties. This work completed in 2010, appeared in two papers in Inventiones Mathematicae in 2013. Scholze has generalized his methods partly in collaboration with Sug Woo Shin to determine the `-adic Galois representations defined by a class of Shimura varieties. These results are contained in two papers published in 2013 in the Journal of the American Mathematical Society. While this work for his master's was groundbreaking, his PhD thesis written under the direction of Professor Michael Rapoport at the University of Bonn was a more mar- velous breakthrough and a step up in terms of originality and insight.
    [Show full text]
  • Jt3(S\ H. Hopf, W.K. Clifford, F. Klein
    CHAPTER 20 jt3(S\ H. Hopf, W.K. Clifford, F. Klein H. Samelson* Department of Mathematics, Stanford University, Stanford, CA 94305, USA E-mail: [email protected] In 1931 there appeared the seminal paper [2] by Heinz Hopf, in which he showed that 7t2>{S^) (the third homotopy group of the two-sphere S^) is nontrivial, or more specifically that it contains an element of order oo. (His language was different. Homotopy groups had not been defined yet; E. Czech introduced them at the 1932 Congress in Zurich. Interest­ ingly enough, both Paul Alexandroff and Hopf persuaded him not to continue with these groups. They had different reasons for considering them as not fruitful; the one because they are Abehan, and the other (if I remember right) because there is no mechanism, like chains say, to compute them. It was not until 1936 that W. Hurewicz rediscovered them and made them respectable by proving substantial theorems with and about them.) There are two parts to the paper: The first one is the definition of what now is called the Hopf invariant and the proof of its homotopy invariance. The second consists in the presentation of an example of a map from S^ to S^ that has Hopf invariant 1 and thus represents an element of infinite order of 713(5^); it is what is now called the Hopf fibration; the inverse images of the points of S^ are great circles of S^. Taking S^ as the unit-sphere ki 1^ + k2p = 1 in C^, these circles are the intersections of S^ with the various complex lines through the origin.
    [Show full text]
  • A Treatise on Quantum Clifford Algebras Contents
    A Treatise on Quantum Clifford Algebras Habilitationsschrift Dr. Bertfried Fauser arXiv:math/0202059v1 [math.QA] 7 Feb 2002 Universitat¨ Konstanz Fachbereich Physik Fach M 678 78457 Konstanz January 25, 2002 To Dorothea Ida and Rudolf Eugen Fauser BERTFRIED FAUSER —UNIVERSITY OF KONSTANZ I ABSTRACT: Quantum Clifford Algebras (QCA), i.e. Clifford Hopf gebras based on bilinear forms of arbitrary symmetry, are treated in a broad sense. Five al- ternative constructions of QCAs are exhibited. Grade free Hopf gebraic product formulas are derived for meet and join of Graßmann-Cayley algebras including co-meet and co-join for Graßmann-Cayley co-gebras which are very efficient and may be used in Robotics, left and right contractions, left and right co-contractions, Clifford and co-Clifford products, etc. The Chevalley deformation, using a Clif- ford map, arises as a special case. We discuss Hopf algebra versus Hopf gebra, the latter emerging naturally from a bi-convolution. Antipode and crossing are consequences of the product and co-product structure tensors and not subjectable to a choice. A frequently used Kuperberg lemma is revisited necessitating the def- inition of non-local products and interacting Hopf gebras which are generically non-perturbative. A ‘spinorial’ generalization of the antipode is given. The non- existence of non-trivial integrals in low-dimensional Clifford co-gebras is shown. Generalized cliffordization is discussed which is based on non-exponentially gen- erated bilinear forms in general resulting in non unital, non-associative products. Reasonable assumptions lead to bilinear forms based on 2-cocycles. Cliffordiza- tion is used to derive time- and normal-ordered generating functionals for the Schwinger-Dyson hierarchies of non-linear spinor field theory and spinor electro- dynamics.
    [Show full text]
  • 1 Background and History 1.1 Classifying Exotic Spheres the Kervaire-Milnor Classification of Exotic Spheres
    A historical introduction to the Kervaire invariant problem ESHT boot camp April 4, 2016 Mike Hill University of Virginia Mike Hopkins 1.1 Harvard University Doug Ravenel University of Rochester Mike Hill, myself and Mike Hopkins Photo taken by Bill Browder February 11, 2010 1.2 1.3 1 Background and history 1.1 Classifying exotic spheres The Kervaire-Milnor classification of exotic spheres 1 About 50 years ago three papers appeared that revolutionized algebraic and differential topology. John Milnor’s On manifolds home- omorphic to the 7-sphere, 1956. He constructed the first “exotic spheres”, manifolds homeomorphic • but not diffeomorphic to the stan- dard S7. They were certain S3-bundles over S4. 1.4 The Kervaire-Milnor classification of exotic spheres (continued) • Michel Kervaire 1927-2007 Michel Kervaire’s A manifold which does not admit any differentiable structure, 1960. His manifold was 10-dimensional. I will say more about it later. 1.5 The Kervaire-Milnor classification of exotic spheres (continued) • Kervaire and Milnor’s Groups of homotopy spheres, I, 1963. They gave a complete classification of exotic spheres in dimensions ≥ 5, with two caveats: (i) Their answer was given in terms of the stable homotopy groups of spheres, which remain a mystery to this day. (ii) There was an ambiguous factor of two in dimensions congruent to 1 mod 4. The solution to that problem is the subject of this talk. 1.6 1.2 Pontryagin’s early work on homotopy groups of spheres Pontryagin’s early work on homotopy groups of spheres Back to the 1930s Lev Pontryagin 1908-1988 Pontryagin’s approach to continuous maps f : Sn+k ! Sk was • Assume f is smooth.
    [Show full text]
  • EMMY NOETHER and TOPOLOGY F. Hirzebruch1 My Knowledge
    EMMY NOETHER AND TOPOLOGY F. Hirzebruch1 My knowledge about the role of Emmy Noether in Algebraic Topology stems from my encounters with Paul Alexandroff and Heinz Hopf. I studied in Z¨urich at the Eidgen¨ossische Technische Hochschule for three terms, from the summer term 1949 to the summer term 1950. Heinz Hopf and Beno Eckmann were my teachers. For the first time I attended courses on Algebraic Topology and its applications in other fields. I also learnt some facts about the famous book Topologie I by Alexandroff and Hopf [A-H] and how the cooperation of Alexandroff and Hopf started. In May 1925 Hopf received his doctor’s degree at the University of Berlin un- der Erhard Schmidt. He spent the Academic Year 1925/26 at the University of G¨ottingen where Alexandroff and Hopf met for the first time in the summer term 1926. I quote from Alexandroff [A]: ”Die Bekanntschaft zwischen Hopf und mir wurde im selben Sommer zu einer en- gen Freundschaft. Wir geh¨orten beide zum Mathematiker-Kreis um Courant und Emmy Noether, zu dieser unvergeßlichen menschlichen Gemeinschaft mit ihren Musikabenden und ihren Bootsfahrten bei und mit Courant, mit ihren ”algebraisch- topologischen” Spazierg¨angen unter der F¨uhrung von Emmy Noether und nicht zuletzt mit ihren verschiedenen Badepartien und Badeunterhaltungen, die sich in der Universit¨ats-Badeanstalt an der Leine abspielten. ... Die Kliesche Schwimmanstalt war nicht nur ein Studentenbad, sie wurde auch von vielen Universit¨atsdozenten besucht, darunter von Hilbert, Courant, Emmy Noether, Prandtl, Friedrichs, Deuring, Hans Lewy, Neugebauer und vielen anderen. Von ausw¨artigen Mathematikern seien etwa Jakob Nielsen, Harald Bohr, van der Waerden, von Neumann, Andr´e Weil als Klies st¨andige Badeg¨aste erw¨ahnt.” Here one sees G¨ottingen as a mathematical world center.
    [Show full text]
  • Collected Papers - Gesammelte Abhandlungen Series: Springer Collected Works in Mathematics
    H. Hopf B. Eckmann (Ed.) Collected Papers - Gesammelte Abhandlungen Series: Springer Collected Works in Mathematics From the preface: "Hopf algebras, Hopf fibration of spheres, Hopf-Rinow complete Riemannian manifolds, Hopf theorem on the ends of groups - can one imagine modern mathematics without all this? Many other concepts and methods, fundamental in various mathematical disciplines, also go back directly or indirectly to the work of Heinz Hopf: homological algebra, singularities of vector fields and characteristic classes, group-like spaces, global differential geometry, and the whole algebraisation of topology with its influence on group theory, analysis and algebraic geometry. It is astonishing to realize that this oeuvre of a whole scientific life consists of only about 70 writings. Astonishing also the transparent and clear style, the concreteness of the problems, and how abstract and far-reaching the methods Hopf invented." 2001. Reprint 2013 of the 2001 edition, XIII, 1271 p. 1 illus. Printed book Softcover ▶ 64,99 € | £54.99 | $79.99 ▶ *69,54 € (D) | 71,49 € (A) | CHF 77.00 Order online at springer.com ▶ or for the Americas call (toll free) 1-800-SPRINGER ▶ or email us at: [email protected]. ▶ For outside the Americas call +49 (0) 6221-345-4301 ▶ or email us at: [email protected]. The first € price and the £ and $ price are net prices, subject to local VAT. Prices indicated with * include VAT for books; the €(D) includes 7% for Germany, the €(A) includes 10% for Austria. Prices indicated with ** include VAT for electronic products; 19% for Germany, 20% for Austria. All prices exclusive of carriage charges.
    [Show full text]
  • Hopf Fibrations and Hurwitz-Radon Numbers
    Mathematical Gems and Curiosities Sergei Tabachnikov, Editor opf fibration is a beautiful topological construction Hopf Fibrations and representing a 3-dimensional sphere as a disjoint HHunion of pairwise linked great circles. Judging by its presence on YouTube, it is almost an object of mass Hurwitz-Radon culture; see [23] for a sampler. For visualization, we also strongly recommend the film ‘‘Dimensions’’ [3]. Hopf fibration was defined and studied by the famous Numbers German geometer and topologist Heintz Hopf in 1931 [16]. VALENTIN OVSIENKO AND SERGE TABACHNIKOV In a sense, contemporary algebraic topology has grown up with the Hopf fibration: the development of the theory of characteristic classes, homotopy theory, and K-theory was much influenced by the study of Hopf fibration; see [4, This column is a place for those bits of contagious 5, 8, 13, 14]. Hopf fibration appears in other areas of mathematics and physics, including fluid dynamics, gauge mathematics that travel from person to person in the theories, cosmology, and elementary particles [22]. In fact, there exist four fiber bundles, called the Hopf community, because they are so elegant, surprising, or fibrations, whose fibers, total spaces, and bases are appealing that one has an urge to pass them on. spheres: Contributions are most welcome. ð1Þ The vertical arrows denote projections whose fibers, that is, inverse images of points, are represented by the horizontal arrows. The term ‘‘fibration’’ means that, locally, the total space is the product of the base and the fiber, hence the bigger spheres are filed with smaller ones. For instance, through every point of S3 there passes one circle, S1, and different circles do not intersect.
    [Show full text]
  • Heinz Hopf, Selected Chapters of Geometry
    Selected Chapters of Geometry ETH Zurich,¨ summer semester 1940 Heinz Hopf (This is the text of a course that Heinz Hopf gave in the summer of 1940 at the ETH in Zurich.¨ It has been reconstructed and translated by Hans Samelson from the notes that he took as student during the course and that resurfaced in 2002.) Contents Chapter I. Euler’s Formula I.1. The Euclidean and the Spherical Triangle .............1 I.2. The n Dimensional Simplex, Euclidean and Spherical .......2 I.3. Euler’s Theorem on Polyhedra, other Proofs and Consequences .4 I.4. Convex Polyhedra ..........................6 I.5. More Applications ..........................8 I.6. Extension of Legendre’s Proof to n Dimensions ..........9 I.7. Steiner’s Proof of Euler’s Theorem ................ 10 I.8. The Euler Characteristic of a (Bounded Convex) 3 Cell .... 11 Chapter II. Graphs II.1. The Euler Formula for the Characteristic ........... 15 II.2. Graphs in the Plane (and on the Sphere) ............. 16 II.3. Comments and Applications .................... 18 II.4. A Result of Cauchy’s ........................ 20 Chapter III. The Four Vertex Theorem and Related Matters III.1. The Theorem of Friedrich Schur (Erhard Schmidt’s Proof) .. 22 III.2. The Theorem of W. Vogt ...................... 25 III.3. Mukhopadaya’s Four Vertex Theorem .............. 26 III.4. Cauchy’s Congruence Theorem for Convex Polyhedra ..... 27 Chapter IV. The Isoperimetric Inequality IV.1. Proofs of H.A. Schwarz (1884), A. Hurwitz, Erhard Schmidt .. 30 IV.2. The Isoperimetric Inequality in Rn ............... 33 selected chapters of geometry 1 Chapter I. Euler’s Formula I.1. The Euclidean and the Spherical Triangle For the Euclidean triangle we have the well known P fact “Sum of the angles = π ”or α−π=0.
    [Show full text]
  • Saunders Mac Lane, the Knight of Mathematics S. S
    Scientiae Mathematicae Japonicae Online, e-2006, 73–77 73 SAUNDERS MAC LANE, THE KNIGHT OF MATHEMATICS S. S. Kutateladze Received June 12, 2005 Abstract. This is a short obituary of Saunders Mac Lane (1909–2005). San Francisco and April 14, 2005 form the terminal place and date of the marvellous almost centennial life of the prominent American mathematician Saunders Mac Lane who shared with Samuel Eilenberg (1913–1998) the honor of creation of category theory which ranks among the most brilliant, controversial, ambitious, and heroic mathematical achieve- ments of the 20th century. Category theory, alongside set theory, serves as a universal language of modern math- ematics. Categories, functors, and natural transformations are widely used in all areas of mathematics, allowing us to look uniformly and consistently on various constructions and formulate the general properties of diverse structures. The impact of category theory is irreducible to the narrow frameworks of its great expressive conveniences. This theory has drastically changed our general outlook on the foundations of mathematics and widened the room of free thinking in mathematics. Set theory, a great and ingenious creation of Georg Cantor, occupies in the common opin- ion of the 20th century the place of the sole solid base of modern mathematics. Mathematics becomes sinking into a section of the Cantorian set theory. Most active mathematicians, teachers, and philosophers consider as obvious and undisputable the thesis that mathemat- ics cannot be grounded on anything but set theory. The set-theoretic stance transforms paradoxically into an ironclad dogma, a clear-cut forbiddance of thinking (as L. Feuerbach once put it wittily).
    [Show full text]
  • 2014 Annual Report
    CLAY MATHEMATICS INSTITUTE www.claymath.org ANNUAL REPORT 2014 1 2 CMI ANNUAL REPORT 2014 CLAY MATHEMATICS INSTITUTE LETTER FROM THE PRESIDENT Nicholas Woodhouse, President 2 contents ANNUAL MEETING Clay Research Conference 3 The Schanuel Paradigm 3 Chinese Dragons and Mating Trees 4 Steenrod Squares and Symplectic Fixed Points 4 Higher Order Fourier Analysis and Applications 5 Clay Research Conference Workshops 6 Advances in Probability: Integrability, Universality and Beyond 6 Analytic Number Theory 7 Functional Transcendence around Ax–Schanuel 8 Symplectic Topology 9 RECOGNIZING ACHIEVEMENT Clay Research Award 10 Highlights of Peter Scholze’s contributions by Michael Rapoport 11 PROFILE Interview with Ivan Corwin, Clay Research Fellow 14 PROGRAM OVERVIEW Summary of 2014 Research Activities 16 Clay Research Fellows 17 CMI Workshops 18 Geometry and Fluids 18 Extremal and Probabilistic Combinatorics 19 CMI Summer School 20 Periods and Motives: Feynman Amplitudes in the 21st Century 20 LMS/CMI Research Schools 23 Automorphic Forms and Related Topics 23 An Invitation to Geometry and Topology via G2 24 Algebraic Lie Theory and Representation Theory 24 Bounded Gaps between Primes 25 Enhancement and Partnership 26 PUBLICATIONS Selected Articles by Research Fellows 29 Books 30 Digital Library 35 NOMINATIONS, PROPOSALS AND APPLICATIONS 36 ACTIVITIES 2015 Institute Calendar 38 1 ach year, the CMI appoints two or three Clay Research Fellows. All are recent PhDs, and Emost are selected as they complete their theses. Their fellowships provide a gener- ous stipend, research funds, and the freedom to carry on research for up to five years anywhere in the world and without the distraction of teaching and administrative duties.
    [Show full text]