Snapshots of Topology in the 50'S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Commentary on the Kervaire–Milnor Correspondence 1958–1961
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 603–609 http://dx.doi.org/10.1090/bull/1508 Article electronically published on July 1, 2015 COMMENTARY ON THE KERVAIRE–MILNOR CORRESPONDENCE 1958–1961 ANDREW RANICKI AND CLAUDE WEBER Abstract. The extant letters exchanged between Kervaire and Milnor during their collaboration from 1958–1961 concerned their work on the classification of exotic spheres, culminating in their 1963 Annals of Mathematics paper. Michel Kervaire died in 2007; for an account of his life, see the obituary by Shalom Eliahou, Pierre de la Harpe, Jean-Claude Hausmann, and Claude We- ber in the September 2008 issue of the Notices of the American Mathematical Society. The letters were made public at the 2009 Kervaire Memorial Confer- ence in Geneva. Their publication in this issue of the Bulletin of the American Mathematical Society is preceded by our commentary on these letters, provid- ing some historical background. Letter 1. From Milnor, 22 August 1958 Kervaire and Milnor both attended the International Congress of Mathemati- cians held in Edinburgh, 14–21 August 1958. Milnor gave an invited half-hour talk on Bernoulli numbers, homotopy groups, and a theorem of Rohlin,andKer- vaire gave a talk in the short communications section on Non-parallelizability of the n-sphere for n>7 (see [2]). In this letter written immediately after the Congress, Milnor invites Kervaire to join him in writing up the lecture he gave at the Con- gress. The joint paper appeared in the Proceedings of the ICM as [10]. Milnor’s name is listed first (contrary to the tradition in mathematics) since it was he who was invited to deliver a talk. -
Mathematics People
Mathematics People symmetric spaces, L²-cohomology, arithmetic groups, and MacPherson Awarded Hopf the Langlands program. The list is by far not complete, and Prize we try only to give a representative selection of his contri- bution to mathematics. He influenced a whole generation Robert MacPherson of the Institute for Advanced Study of mathematicians by giving them new tools to attack has been chosen the first winner of the Heinz Hopf Prize difficult problems and teaching them novel geometric, given by ETH Zurich for outstanding scientific work in the topological, and algebraic ways of thinking.” field of pure mathematics. MacPherson, a leading expert Robert MacPherson was born in 1944 in Lakewood, in singularities, delivered the Heinz Hopf Lectures, titled Ohio. He received his B.A. from Swarthmore College in “How Nature Tiles Space”, in October 2009. The prize also 1966 and his Ph.D. from Harvard University in 1970. He carries a cash award of 30,000 Swiss francs, approximately taught at Brown University from 1970 to 1987 and at equal to US$30,000. the Massachusetts Institute of Technology from 1987 to The following quotation was taken from a tribute to 1994. He has been at the Institute for Advanced Study in MacPherson by Gisbert Wüstholz of ETH Zurich: “Singu- Princeton since 1994. His work has introduced radically larities can be studied in different ways using analysis, new approaches to the topology of singular spaces and or you can regard them as geometric phenomena. For the promoted investigations across a great spectrum of math- latter, their study demands a deep geometric intuition ematics. -
Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory. -
On the Work of Michel Kervaire in Surgery and Knot Theory
1 ON MICHEL KERVAIRE'S WORK IN SURGERY AND KNOT THEORY Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/eaar/slides/kervaire.pdf Geneva, 11th and 12th February, 2009 2 1927 { 2007 3 Highlights I Major contributions to the topology of manifolds of dimension > 5. I Main theme: connection between stable trivializations of vector bundles and quadratic refinements of symmetric forms. `Division by 2'. I 1956 Curvatura integra of an m-dimensional framed manifold = Kervaire semicharacteristic + Hopf invariant. I 1960 The Kervaire invariant of a (4k + 2)-dimensional framed manifold. I 1960 The 10-dimensional Kervaire manifold without differentiable structure. I 1963 The Kervaire-Milnor classification of exotic spheres in dimensions > 4 : the birth of surgery theory. n n+2 I 1965 The foundation of high dimensional knot theory, for S S ⊂ with n > 2. 4 MATHEMATICAL REVIEWS + 1 Kervaire was the author of 66 papers listed (1954 { 2007) +1 unlisted : Non-parallelizability of the n-sphere for n > 7, Proc. Nat. Acad. Sci. 44, 280{283 (1958) 619 matches for "Kervaire" anywhere, of which 84 in title. 18,600 Google hits for "Kervaire". MR0102809 (21() #1595) Kervaire,, Michel A. An interpretation of G. Whitehead's generalizationg of H. Hopf's invariant. Ann. of Math. (2)()69 1959 345--365. (Reviewer: E. H. Brown) 55.00 MR0102806 (21() #1592) Kervaire,, Michel A. On the Pontryagin classes of certain ${\rm SO}(n)$-bundles over manifolds. Amer. J. Math. 80 1958 632--638. (Reviewer: W. S. Massey) 55.00 MR0094828 (20 #1337) Kervaire, Michel A. Sur les formules d'intégration de l'analyse vectorielle. -
[Math.AT] 24 Aug 2005
QUADRATIC FUNCTIONS IN GEOMETRY, TOPOLOGY, AND M-THEORY M. J. HOPKINS AND I. M. SINGER Contents 1. Introduction 2 2. Determinants, differential cocycles and statement of results 5 2.1. Background 5 2.2. Determinants and the Riemann parity 7 2.3. Differential cocycles 8 2.4. Integration and Hˇ -orientations 11 2.5. Integral Wu-structures 13 2.6. The main theorem 16 2.7. The fivebrane partition function 20 3. Cheeger–Simons cohomology 24 3.1. Introduction 24 3.2. Differential Characters 25 3.3. Characteristic classes 27 3.4. Integration 28 3.5. Slant products 31 4. Generalized differential cohomology 32 4.1. Differential function spaces 32 4.2. Naturality and homotopy 36 4.3. Thom complexes 38 4.4. Interlude: differential K-theory 40 4.5. Differential cohomology theories 42 4.6. Differential function spectra 44 4.7. Naturality and Homotopy for Spectra 46 4.8. The fundamental cocycle 47 arXiv:math/0211216v2 [math.AT] 24 Aug 2005 4.9. Differential bordism 48 4.10. Integration 53 5. The topological theory 57 5.1. Proof of Theorem 2.17 57 5.2. The topological theory of quadratic functions 65 5.3. The topological κ 69 5.4. The quadratic functions 74 Appendix A. Simplicial methods 82 A.1. Simplicial set and simplicial objects 82 A.2. Simplicial homotopy groups 83 The first author would like to acknowledge support from NSF grant #DMS-9803428. The second author would like to acknowledge support from DOE grant #DE-FG02-ER25066. 1 2 M.J.HOPKINSANDI.M.SINGER A.3. -
Lecture Notes in Mathematics
Lecture Notes in Mathematics Edited by A. Dold and 13. Eckmann 551 Algebraic K-Theory Proceedings of the Conference Held at Northwestern University Evanston, January 12-16, 1976 Edited by Michael R. Stein Springer-Verlag Berlin. Heidelberg- New York 19 ? 6 Editor Michael R. Stein Department of Mathematics Northwestern University Evanston, I1. 60201/USA Library of Congress Cataloging in Publication Data Main entry under title: Algebraic K-theory. (Lecture notes in mathematics ; 551) Bibliography: p. Includes index. i. K-theory--Congresses. 2 ~ Homology theory-- Congresses. 3. Rings (Algebra)--Congresses. I. Stein, M~chael R., 1943- II. Series: Lecture notes in mathematics (Berlin) ; 551. QAB,I,q8 no. 551 [QA61~.33] 510'.8s [514'.23] 76-~9894 ISBN AMS Subject Classifications (1970): 13D15, 14C99,14 F15,16A54,18 F25, 18H10, 20C10, 20G05, 20G35, 55 El0, 57A70 ISBN 3-540-07996-3 Springer-Verlag Berlin 9Heidelberg 9New York ISBN 0-38?-0?996-3 Springer-Verlag New York 9Heidelberg 9Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, re- printing, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under w 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. 9 by Springer-Verlag Berlin 9Heidelberg 1976 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. Introduction A conference on algebraic K-theory, jointly supported by the National Science Foundation and Northwestern University, was held at Northwestern University January 12-16, 1976. -
Laurent Bartholdi
(2020-09-28) Curriculum vitæ Laurent Bartholdi Education March 2000 Ph.D. in Mathematics, University of Geneva, advisor: Pierre de la Harpe. “Croissance de groupes agissant sur des arbres” May 1995 Diploma in Mathematics, University of Geneva, advisor: Michel Kervaire. 1991–1993 First cycle, University of Geneva, Mathematics and Computer Science studies. Academic Interests ○␣ Geometric group theory and its applications ○␣ Dynamical systems, in particuliar symbolic and holomorphic ○␣ Algebraic structures: groups, rings, algebras ○␣ Complexity and computability, computer algebra Employment 2008– Georg-August University, Göttingen, Professor (W3). 2004–2008 École Polytechnique Fédérale, Lausanne, Assistant Professor (PATT). 2001–2003 University of California, Berkeley, Charles B. Morrey Jr. Assistant Professor. 2000–2001 Swiss National Fund, Berkeley, Brasília, Jerusalem, Post-doctoral researcher. 1995–2000 University of Geneva, Geneva, Teaching Assistant. 1992 University of Geneva, Geneva, Programmer on a parallel computer. Invited Professorships 2019–2020 École Normale Supérieure, Lyon, 8 months. 2018–2019 Institute of Advanced Studies, Lyon, 10 months. 2015–2018 École Normale Supérieure, Paris, 3 years. 2014 Institut Henri Poincaré, Paris, 1 month. 2013 University of Chicago, Chicago, 1 month. 2013 CIMI, Toulouse, 6 months. 2012 Mittag-Leffler Institute, Stockholm, 1 month. 2012 CNRS, Paris, 1 month. 2011 CNRS, Paris, 1 month. 2010 Chinese Academy of Sciences, Beijing, 6 months. 2008 T.U. Graz, Graz, 1 month. Brauweg 17a – D-37073 Göttingen – Germany +49 157 71540254 • +49 551 3927826 [email protected] • www.uni-math.gwdg.de/laurent laurentbartholdi • 0000-0002-1243-6384 1/12 2007 CNRS, Marseille, 1 month. 2005 T.U. Graz, Graz, 1 month. Prizes and funding 2019– ANR research grant “AlMaRe”, speaker G. -
Differential Geometry in the Large Seminar Lectures New York University 1946 and Stanford University 1956 Series: Lecture Notes in Mathematics
springer.com Heinz Hopf Differential Geometry in the Large Seminar Lectures New York University 1946 and Stanford University 1956 Series: Lecture Notes in Mathematics These notes consist of two parts: Selected in York 1) Geometry, New 1946, Topics University Notes Peter Lax. by Differential in the 2) Lectures on Stanford Geometry Large, 1956, Notes J. W. University by Gray. are here with no essential They reproduced change. Heinz was a mathematician who mathema- Hopf recognized important tical ideas and new mathematical cases. In the phenomena through special the central idea the of a or difficulty problem simplest background is becomes clear. in this fashion a crystal Doing geometry usually lead serious allows this to to - joy. Hopf's great insight approach for most of the in these notes have become the st- thematics, topics I will to mention a of further try ting-points important developments. few. It is clear from these notes that laid the on Hopf emphasis po- differential 2nd ed. 1989, VIII, 192 p. Most of the results in smooth differ- hedral geometry. whose is both t1al have understanding geometry polyhedral counterparts, works I wish to mention and recent important challenging. Printed book Among those of Robert on which is much in the Connelly rigidity, very spirit R. and in - of these notes (cf. Connelly, Conjectures questions open International of Mathematicians, H- of Softcover gidity, Proceedings Congress sinki vol. 1, 407-414) 1978, . 29,95 € | £26.99 | $49.95 [1]32,05 € (D) | 32,95 € (A) | CHF 43,04 eBook 24,60 € | £20.99 | $34.99 [2]24,60 € (D) | 24,60 € (A) | CHF 34,00 Available from your library or springer.com/shop MyCopy [3] Printed eBook for just € | $ 24.99 springer.com/mycopy Error[en_EN | Export.Bookseller. -
Michel Kervaire 1927–2007 Shalom Eliahou, Pierre De La Harpe, Jean-Claude Hausmann, and Claude Weber
Michel Kervaire 1927–2007 Shalom Eliahou, Pierre de la Harpe, Jean-Claude Hausmann, and Claude Weber Michel Kervaire died on November 19, 2007, in Geneva. He was born in Poland on April 26, 1927. His secondary school education was in France and he studied mathematics at Eigdenössisches Tech- nische Hochschule Zurich, defending his thesis in 1955 under the supervision of Heinz Hopf. He pub- lished a second thesis in France in 1965. He was a professor in New York (1959–1971) and in Geneva (1972–2007), with several long-term academic visits to Princeton, Paris, Chicago, Massachusetts Institute of Technology, Cambridge (UK) and Bom- bay. He was very active as editor of Commentarii Mathematici Helvetici (1980–2001) and chief editor of L’Enseignement Mathématique (1978–2007). He had an h.c. doctorate from Neuchâtel (1986). Kervaire was an inspiring example that a math- ematician can be both a generalist and a specialist Dib. Teresa by Photograph at the highest level. As a generalist he knew how Michel Kervaire, 2005. to appreciate a large range of subjects and en- courage others to progress in their work. Among Plans-sur-Bex, mixing younger students with the other things, he organized uncountably many best international specialists in all kinds of do- meetings in the small mountain village of Les mains: Brauer groups, foliations, arithmetic, von Neumann algebras, knot theory, representations of Shalom Eliahou is professor of mathematics at the Uni- versité du Littoral, Calais, France. His email address is Lie groups, the theory of codes, ergodic theory and [email protected]. -
Jt3(S\ H. Hopf, W.K. Clifford, F. Klein
CHAPTER 20 jt3(S\ H. Hopf, W.K. Clifford, F. Klein H. Samelson* Department of Mathematics, Stanford University, Stanford, CA 94305, USA E-mail: [email protected] In 1931 there appeared the seminal paper [2] by Heinz Hopf, in which he showed that 7t2>{S^) (the third homotopy group of the two-sphere S^) is nontrivial, or more specifically that it contains an element of order oo. (His language was different. Homotopy groups had not been defined yet; E. Czech introduced them at the 1932 Congress in Zurich. Interest ingly enough, both Paul Alexandroff and Hopf persuaded him not to continue with these groups. They had different reasons for considering them as not fruitful; the one because they are Abehan, and the other (if I remember right) because there is no mechanism, like chains say, to compute them. It was not until 1936 that W. Hurewicz rediscovered them and made them respectable by proving substantial theorems with and about them.) There are two parts to the paper: The first one is the definition of what now is called the Hopf invariant and the proof of its homotopy invariance. The second consists in the presentation of an example of a map from S^ to S^ that has Hopf invariant 1 and thus represents an element of infinite order of 713(5^); it is what is now called the Hopf fibration; the inverse images of the points of S^ are great circles of S^. Taking S^ as the unit-sphere ki 1^ + k2p = 1 in C^, these circles are the intersections of S^ with the various complex lines through the origin. -
A Treatise on Quantum Clifford Algebras Contents
A Treatise on Quantum Clifford Algebras Habilitationsschrift Dr. Bertfried Fauser arXiv:math/0202059v1 [math.QA] 7 Feb 2002 Universitat¨ Konstanz Fachbereich Physik Fach M 678 78457 Konstanz January 25, 2002 To Dorothea Ida and Rudolf Eugen Fauser BERTFRIED FAUSER —UNIVERSITY OF KONSTANZ I ABSTRACT: Quantum Clifford Algebras (QCA), i.e. Clifford Hopf gebras based on bilinear forms of arbitrary symmetry, are treated in a broad sense. Five al- ternative constructions of QCAs are exhibited. Grade free Hopf gebraic product formulas are derived for meet and join of Graßmann-Cayley algebras including co-meet and co-join for Graßmann-Cayley co-gebras which are very efficient and may be used in Robotics, left and right contractions, left and right co-contractions, Clifford and co-Clifford products, etc. The Chevalley deformation, using a Clif- ford map, arises as a special case. We discuss Hopf algebra versus Hopf gebra, the latter emerging naturally from a bi-convolution. Antipode and crossing are consequences of the product and co-product structure tensors and not subjectable to a choice. A frequently used Kuperberg lemma is revisited necessitating the def- inition of non-local products and interacting Hopf gebras which are generically non-perturbative. A ‘spinorial’ generalization of the antipode is given. The non- existence of non-trivial integrals in low-dimensional Clifford co-gebras is shown. Generalized cliffordization is discussed which is based on non-exponentially gen- erated bilinear forms in general resulting in non unital, non-associative products. Reasonable assumptions lead to bilinear forms based on 2-cocycles. Cliffordiza- tion is used to derive time- and normal-ordered generating functionals for the Schwinger-Dyson hierarchies of non-linear spinor field theory and spinor electro- dynamics. -
1 Background and History 1.1 Classifying Exotic Spheres the Kervaire-Milnor Classification of Exotic Spheres
A historical introduction to the Kervaire invariant problem ESHT boot camp April 4, 2016 Mike Hill University of Virginia Mike Hopkins 1.1 Harvard University Doug Ravenel University of Rochester Mike Hill, myself and Mike Hopkins Photo taken by Bill Browder February 11, 2010 1.2 1.3 1 Background and history 1.1 Classifying exotic spheres The Kervaire-Milnor classification of exotic spheres 1 About 50 years ago three papers appeared that revolutionized algebraic and differential topology. John Milnor’s On manifolds home- omorphic to the 7-sphere, 1956. He constructed the first “exotic spheres”, manifolds homeomorphic • but not diffeomorphic to the stan- dard S7. They were certain S3-bundles over S4. 1.4 The Kervaire-Milnor classification of exotic spheres (continued) • Michel Kervaire 1927-2007 Michel Kervaire’s A manifold which does not admit any differentiable structure, 1960. His manifold was 10-dimensional. I will say more about it later. 1.5 The Kervaire-Milnor classification of exotic spheres (continued) • Kervaire and Milnor’s Groups of homotopy spheres, I, 1963. They gave a complete classification of exotic spheres in dimensions ≥ 5, with two caveats: (i) Their answer was given in terms of the stable homotopy groups of spheres, which remain a mystery to this day. (ii) There was an ambiguous factor of two in dimensions congruent to 1 mod 4. The solution to that problem is the subject of this talk. 1.6 1.2 Pontryagin’s early work on homotopy groups of spheres Pontryagin’s early work on homotopy groups of spheres Back to the 1930s Lev Pontryagin 1908-1988 Pontryagin’s approach to continuous maps f : Sn+k ! Sk was • Assume f is smooth.