Lecture Notes in Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes in Mathematics Lecture Notes in Mathematics Edited by A. Dold and 13. Eckmann 551 Algebraic K-Theory Proceedings of the Conference Held at Northwestern University Evanston, January 12-16, 1976 Edited by Michael R. Stein Springer-Verlag Berlin. Heidelberg- New York 19 ? 6 Editor Michael R. Stein Department of Mathematics Northwestern University Evanston, I1. 60201/USA Library of Congress Cataloging in Publication Data Main entry under title: Algebraic K-theory. (Lecture notes in mathematics ; 551) Bibliography: p. Includes index. i. K-theory--Congresses. 2 ~ Homology theory-- Congresses. 3. Rings (Algebra)--Congresses. I. Stein, M~chael R., 1943- II. Series: Lecture notes in mathematics (Berlin) ; 551. QAB,I,q8 no. 551 [QA61~.33] 510'.8s [514'.23] 76-~9894 ISBN AMS Subject Classifications (1970): 13D15, 14C99,14 F15,16A54,18 F25, 18H10, 20C10, 20G05, 20G35, 55 El0, 57A70 ISBN 3-540-07996-3 Springer-Verlag Berlin 9Heidelberg 9New York ISBN 0-38?-0?996-3 Springer-Verlag New York 9Heidelberg 9Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, re- printing, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under w 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. 9 by Springer-Verlag Berlin 9Heidelberg 1976 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. Introduction A conference on algebraic K-theory, jointly supported by the National Science Foundation and Northwestern University, was held at Northwestern University January 12-16, 1976. These proceedings contain papers presented at that conference, survey articles on certain subspecialities represented at the conference, and related papers, some by mathematicians who did not attend the conference. The diversity of mathematical interests subsumed under the title "algebraic K-theory" is by now well-known; a glance at the contents of this volume will confirm this. To deal with this diversity, a large block of time was left free for participants to organize themselves into seminars on topics of their choice. A list of these seminar talks has been included following the list of lectures given to the full group. I have also listed the names of conference participants and of authors of articles along with their addresses as of January 1976. It seems appropriate to mention here that shortly after the end of this conference, Quillen and Sus]in, working independently, found a positive solution to Serre's problemMhich motivated some of the earliest research in the "classical" period of algebraic K-theory. Quillen's solution is to appear in Inventiones Math. On behalf of the participants, I would like to thank the NSF and Northwestern University's College of Arts and Sciences for their financial support. I would also like to thank Madalyn Kuharick and Georgette Savino of Northwestern's Mathematics Department for their excellent administrative and secretarial help. Michael R. Stein Evanston, July, 1976 Algebraic K-Theory Conference - List of Talks LECTURES Monday, January 12, 1976 Bloch: K-theory of group schemes Roberts: Reducible curves Hatcher: Some new algebraic K-theories Tuesday, January 13, 1976 van der Kallen: Injective stability for K2 Dennis: Algebraic K-theory and Hochschild homology Grayson: + = Q Wednesday, January 14, 1976 Krusemeyer: Serre's problem Wagoner: Continuouscohomology and K-theory Szczarba: K3(Z) Thursday, January 15, 1976 Giffen: Algebraic K2 and K3 invariants of Hermitian forms Loday: Stable homotopy and higher Whitehead groups Bass: Projective modules over infinite groups Friday, January 16, 1976 Quinn: A new surgery obstraction group Pardon: Localization in L-theory Hausmann: Homology spheres in algebraic K-theory SEMINARS Algebraic qeometry and K-theory Bloch: Some examples in the theory of algebraic cycles Murthy: Cancellation theorems for projective modules on affine surfaces Kazhdan: Some strange groups Vl Cohomology of groups Soule: Cohomologyof SL3(~ Brown: Tate cohomology of infinite groups Alperin: Stability for H2(SUn) Fiedorowicz: Homology of classical groups over finite fields Wagoner: Stability for H.(GL.(A)),A a local ring Evens: Chern classes of inBuced representations Ko and K1 Dayton: SK1 (CX) Martin: NK~(/_~),= finitely generated abelian Magurn: SK~ of dihedral groups Kuku: SK~ of orders Wright: K-theory of the category of invertible algebras K2 Dunwoody: K2 of a Euclidean ring Geller:, KGv theory Green: K2 of a division ring van der Kallen: K2 of a regular local noetherian ring of dlmension 2 injects into K2 of its field of fractions Krusemeyer: Kp(F[x,y]) and related computations Strooker: Tile fundamental group of GL n L-theory Ranicki: Algebraic theory of surgery Topology and K-theory Hatcher: The simple homotopy space Wh(X) May: Remarks on Brauer lifting, Frobenius and KO.(Z) Waldhausen: Computation of pseudo-isotopies by non-additive Q construction Browder: Complete intersections, fixed-point free involutions and the Kervaire invariant Giffen: Segal K-theory Browder: K-theory and stable homotopy Edwards: Steenrod homotopy LIST OF PARTICIPANTS AND AUTHORS Professor Roger Alperin Dr. Barry Dayton Department of Mathematics Department of Mathematics Brown University Northeastern Illinois University Providence, Rhode Island 02912 Bryn Mawr at St. Louis Chicago, Illinois 60625 Mr. David F. Anderson Professor R. K. Dennis Department of Mathematics Department of Mathematics University of Chicago Cornell University Chicago, Illinois 60637 Ithaca, New York 14853 Professor Anthony Bak Professor Andreas Dress Fakult~t Fir Mathematik Fakult~t fQr Mathematik Universit~t Bielefeld Universit~t Bielefeld 48 Bielefeld 48 Bielefeld Federal Republic of~ Germany Federal Republic of Germany Professor Hyman Bass Professor M. J. Dunwoody Department of Mathematics Mathematics Division Columbia University University of Sussex New York, New York 10027 Falmer, Brighton BNI 9QF England Professor Spencer B1och Professor David A. Edwards IHES Department of Mathematics 91440 Bures-sur-Yvette State University of New York France .Binghamton, New York 13901 Professor William Browder Professor Helmut Epp Department of Mathematics Department of Mathematics Princeton University De Paul University Princeton, New Jersey 08540 25 East Jackson Boulevard Chicago, Illinois 60604 Professor Kenneth S. Brown Professor Leonard Evens Department of Mathematics Department of Mathematics Cornell University Northwestern University Ithaca, New York 14853 Evanston, Illinois 60201 Ms. Ruth Charney Professor Zbigniew Fiedorowicz Department of Mathematics Department of Mathematics Princeton University University of Michigan Princeton, New Jersey 08540 Ann Arbor, Michigan 48104 viii Dr. Edward Formanek Dr. J. C. Hausmann Department of Mathematics School of Mathematics University of Chicago Institute for Advanced Study Chicago, Illinois 60637 Princeton, New Jersey 08540 Professor Eric Friedlander Dr. Peter T. Johnstone Department of Mathematics Department of Mathematics Northwestern University University of Chicago Evanston, Illinois 60201 Chicago, Illinois 60637 Professor S. Geller Professor Wilberd van der Kallen Department of Mathematics Department of Mathematics Purdue University Northwestern University West Lafayette, Indiana 47907 Evanston, Illinois 60201 Professor C. H. Giffen Dr. To Kambayashi Department of Mathematics Department of Mathematics University of Virginia Northern Illinois University Charlottesville, Virginia 22901 DeKalb, Illinois 60115 Mr. Daniel R. Grayson Professor David Kazhdan MIT Department of Mathematics Room 2-087 Harvard University Cambridge, Massachusetts 02139 Cambridge, Massachusetts 02138 Professor Sherry M. Green Professor Michel Kervaire Department of Mathematics Department of Math6matiques University of Utah Universit~ de Gen~ve Salt Lake City, Utah 84112 2-4 rue du Li~vre Gen~ve 24, Switzerland Professor Bruno Harris Professor Mark Krusemeyer Department of Mathematics Department of Mathematics Brown University Columbia University Providence, Rhode Island 02912 New York, New York I0027 Professor Allen Hatcher Professor A. O. Kuku School of Mathematics Department of Mathematics Institute for Advanced Study University of Ibadan Princeton, New Jersey 08540 Ibadan Nigeria IX Professor R. Lee Mr. Barton Plumstead Department of Mathematics Department of Mathematics Yale University University of Chicago New Haven, Connecticut 06520 Chicago, Illinois 60637 Mr. H. W. Lenstra, Jr. Professor Stewart Priddy Mathematisch Instituut Department of Mathematics Roeterstraat 15 Northwestern University Amsterdam -C Evanston, Illinois 60201 The Netherlands Dr. Jean-Louis Loday Professor Daniel G. Quillen InstitBt de Recherche Department of Mathematics Mathematique Avanc~e Massachusetts Institute of Technology 7, rue R~n~ Descartes Cambridge, Massachusetts 02139 67084 Strasbourg, France Mr. Bruce Magurn Professor Frank Quinn Department of Mathematics Department of Mathematics Northwestern University Yale University Evanston, Illinois 60201 New Haven, Connecticut 06520 Professor Robert Martin Dr. Andrew Ranicki Department of Mathematics - Box I093 Trinity College Hunter College Cambridge 695 Park Avenue England New York, New York lO021 Professor Peter May Dr. Ulf Rehmann Department of Mathematics Fakult~t f~r Mathematik University of Chicago Universit~t
Recommended publications
  • Commentary on the Kervaire–Milnor Correspondence 1958–1961
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 603–609 http://dx.doi.org/10.1090/bull/1508 Article electronically published on July 1, 2015 COMMENTARY ON THE KERVAIRE–MILNOR CORRESPONDENCE 1958–1961 ANDREW RANICKI AND CLAUDE WEBER Abstract. The extant letters exchanged between Kervaire and Milnor during their collaboration from 1958–1961 concerned their work on the classification of exotic spheres, culminating in their 1963 Annals of Mathematics paper. Michel Kervaire died in 2007; for an account of his life, see the obituary by Shalom Eliahou, Pierre de la Harpe, Jean-Claude Hausmann, and Claude We- ber in the September 2008 issue of the Notices of the American Mathematical Society. The letters were made public at the 2009 Kervaire Memorial Confer- ence in Geneva. Their publication in this issue of the Bulletin of the American Mathematical Society is preceded by our commentary on these letters, provid- ing some historical background. Letter 1. From Milnor, 22 August 1958 Kervaire and Milnor both attended the International Congress of Mathemati- cians held in Edinburgh, 14–21 August 1958. Milnor gave an invited half-hour talk on Bernoulli numbers, homotopy groups, and a theorem of Rohlin,andKer- vaire gave a talk in the short communications section on Non-parallelizability of the n-sphere for n>7 (see [2]). In this letter written immediately after the Congress, Milnor invites Kervaire to join him in writing up the lecture he gave at the Con- gress. The joint paper appeared in the Proceedings of the ICM as [10]. Milnor’s name is listed first (contrary to the tradition in mathematics) since it was he who was invited to deliver a talk.
    [Show full text]
  • Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
    Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory.
    [Show full text]
  • Tōhoku Rick Jardine
    INFERENCE / Vol. 1, No. 3 Tōhoku Rick Jardine he publication of Alexander Grothendieck’s learning led to great advances: the axiomatic description paper, “Sur quelques points d’algèbre homo- of homology theory, the theory of adjoint functors, and, of logique” (Some Aspects of Homological Algebra), course, the concepts introduced in Tōhoku.5 Tin the 1957 number of the Tōhoku Mathematical Journal, This great paper has elicited much by way of commen- was a turning point in homological algebra, algebraic tary, but Grothendieck’s motivations in writing it remain topology and algebraic geometry.1 The paper introduced obscure. In a letter to Serre, he wrote that he was making a ideas that are now fundamental; its language has with- systematic review of his thoughts on homological algebra.6 stood the test of time. It is still widely read today for the He did not say why, but the context suggests that he was clarity of its ideas and proofs. Mathematicians refer to it thinking about sheaf cohomology. He may have been think- simply as the Tōhoku paper. ing as he did, because he could. This is how many research One word is almost always enough—Tōhoku. projects in mathematics begin. The radical change in Gro- Grothendieck’s doctoral thesis was, by way of contrast, thendieck’s interests was best explained by Colin McLarty, on functional analysis.2 The thesis contained important who suggested that in 1953 or so, Serre inveigled Gro- results on the tensor products of topological vector spaces, thendieck into working on the Weil conjectures.7 The Weil and introduced mathematicians to the theory of nuclear conjectures were certainly well known within the Paris spaces.
    [Show full text]
  • Professor AO Kuku
    CURRICULUM VITAE Professor A.O. Kuku I. Personal Details Date of Birth: March 20, 1941 Marital Status: Married with four children Nationality: Nigerian Sex: Male U.S.A. Permanent Resident (Green card) since March 2002 II CURRENT POSITION: Professor of Mathematics, Grambling State University, Grambling, LA, USA. Since August 2008 III. Position held in the last five years (a) Member, Institute for Advanced Study Princeton, NJ, USA. Sept. 2003-Aug. 2004 (b) Visiting Research Professor, MSRI Berkeley, CA, USA. Aug-Dec 2004 (c) Visiting Professor, OSU (Ohio State Univ.) Columbus, OH, USA 2005 (d) Distinguished Visiting Professor, Miami 2005 – 2006 University, Oxford, OH, USA (e) Visiting Professor, Universitat Bielefeld, Germany ,USA. 2006 (f) Visiting Professor, IHES, Paris, France 2006 (g) Visiting Professor, Max Planck Inst. Fur Mathematik, Bonn, Germany 2007 (h) Visiting Professor, National Mathema- tical Centre, Abuja, Nigeria. 2007 (i) Visiting professor, The University of Iowa, Iowa-City, USA 2007-2008 (j) Visiting Professor, National Mathema- Tical Centre, Abuja, Nigeria. 2008 IV. Educational Institutions Attended (University Education) 1.Makerere University College, Kampala, Uganda (then under special relationship with the University of London) 1962-1965 2.University of Ibadan, Nigeria 1966-1971 1 3Columbia University, New York City, USA (To write my Ph.D thesis) (Thesis written under Professor Hyman Bass) 1970-1971 V. Academic Qualification (with dates and granting bodies) 1.B. Sc (Special- Honours) Mathematics, University of London 1965 2.M. Sc. (Mathematics), University of Ibadan, Nigeria. 1968 3.Ph. D. (Mathematics), University of Ibadan, Nigeria 1971 (Thesis written under Professor Hyman Bass of Columbia Univerisity, New York).
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Professor Aderemi Oluyomi Kuku Ph.D, FAMS (USA), FTWAS, FAAS, FAS (Nig), FNMS, FMAN, FASI, OON, NNOM I. Personal Details Date of Birth: March 20, 1941 Marital Status: Married with four children Nationality: USA/Nigeria. Sex: Male II CONTACT ADDRESSES: Email [email protected] Website: www.aderemikuku.com MAILING ADDRESS: USA: 307 Penny Lane, Apt 5, Ruston, LA 71270, USA. NIGERIA(a) 2 Amure Street, Kongi-NewBodija, Ibadan, Oyo State, Nigeria. (b) Univerdityof Ibadan Post office Box 22574 Ibadan, Oyo State , Nigeria. PHONE NUMBERS: USA: +1-318-255-6433 Cell: +1-224-595-4854 NIGERIA: +234-70-56871969; +234-80-62329855 III. Positions held in the last 14 years (a) Member, Institute for Advanced Study Princeton, NJ, USA. Sept. 2003-Aug. 2004 (b) Visiting Research Professor, MSRI-- (Math. Sci. Research Inst) Berkeley, CA, USA. Aug-Dec, 2004 (c) Visiting Professor, OSU (Ohio State Univ.) Columbus, OH, USA 2005 (d) Distinguished Visiting Professor, Miami 2005 – 2006 University, Oxford, OH, USA (e) Visiting Professor, Universitat Bielefeld, Germany 2006 (f) Visiting Professor, IHES, Paris, France 2006 (g) Visiting Professor, Max Planck Inst. Fur Mathematik, Bonn, Germany 2007 1 (h) Distinguished Visiting Professor, National Mathematical Centre, Abuja, Nigeria. 2007 (i) Visiting Professor, The University of Iowa, Iowa-City, USA 2007-2008 (j) Professor of Mathematics, Grambling State University, Grambling, LA 71245, USA 2008-2009 (k) William W. S. Claytor Endowed Professor of Mathematics Grambling State University, Grambling, LA 71245, USA. 2009-2014 (l) Distinguished Visiting Professor, National Mathematical Centre, Abuja, Nigeria. Summer 2009, 2010,2011, 2012, 2013, 2014 (m) Distinguished Visiting Professor of Mathematics, IMSP—Institut demathematiques etde Sciences Physiques, Porto Novo, BeninRepublic,Nov/Dec,2015.
    [Show full text]
  • On the Work of Michel Kervaire in Surgery and Knot Theory
    1 ON MICHEL KERVAIRE'S WORK IN SURGERY AND KNOT THEORY Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/eaar/slides/kervaire.pdf Geneva, 11th and 12th February, 2009 2 1927 { 2007 3 Highlights I Major contributions to the topology of manifolds of dimension > 5. I Main theme: connection between stable trivializations of vector bundles and quadratic refinements of symmetric forms. `Division by 2'. I 1956 Curvatura integra of an m-dimensional framed manifold = Kervaire semicharacteristic + Hopf invariant. I 1960 The Kervaire invariant of a (4k + 2)-dimensional framed manifold. I 1960 The 10-dimensional Kervaire manifold without differentiable structure. I 1963 The Kervaire-Milnor classification of exotic spheres in dimensions > 4 : the birth of surgery theory. n n+2 I 1965 The foundation of high dimensional knot theory, for S S ⊂ with n > 2. 4 MATHEMATICAL REVIEWS + 1 Kervaire was the author of 66 papers listed (1954 { 2007) +1 unlisted : Non-parallelizability of the n-sphere for n > 7, Proc. Nat. Acad. Sci. 44, 280{283 (1958) 619 matches for "Kervaire" anywhere, of which 84 in title. 18,600 Google hits for "Kervaire". MR0102809 (21() #1595) Kervaire,, Michel A. An interpretation of G. Whitehead's generalizationg of H. Hopf's invariant. Ann. of Math. (2)()69 1959 345--365. (Reviewer: E. H. Brown) 55.00 MR0102806 (21() #1592) Kervaire,, Michel A. On the Pontryagin classes of certain ${\rm SO}(n)$-bundles over manifolds. Amer. J. Math. 80 1958 632--638. (Reviewer: W. S. Massey) 55.00 MR0094828 (20 #1337) Kervaire, Michel A. Sur les formules d'intégration de l'analyse vectorielle.
    [Show full text]
  • [Math.AT] 24 Aug 2005
    QUADRATIC FUNCTIONS IN GEOMETRY, TOPOLOGY, AND M-THEORY M. J. HOPKINS AND I. M. SINGER Contents 1. Introduction 2 2. Determinants, differential cocycles and statement of results 5 2.1. Background 5 2.2. Determinants and the Riemann parity 7 2.3. Differential cocycles 8 2.4. Integration and Hˇ -orientations 11 2.5. Integral Wu-structures 13 2.6. The main theorem 16 2.7. The fivebrane partition function 20 3. Cheeger–Simons cohomology 24 3.1. Introduction 24 3.2. Differential Characters 25 3.3. Characteristic classes 27 3.4. Integration 28 3.5. Slant products 31 4. Generalized differential cohomology 32 4.1. Differential function spaces 32 4.2. Naturality and homotopy 36 4.3. Thom complexes 38 4.4. Interlude: differential K-theory 40 4.5. Differential cohomology theories 42 4.6. Differential function spectra 44 4.7. Naturality and Homotopy for Spectra 46 4.8. The fundamental cocycle 47 arXiv:math/0211216v2 [math.AT] 24 Aug 2005 4.9. Differential bordism 48 4.10. Integration 53 5. The topological theory 57 5.1. Proof of Theorem 2.17 57 5.2. The topological theory of quadratic functions 65 5.3. The topological κ 69 5.4. The quadratic functions 74 Appendix A. Simplicial methods 82 A.1. Simplicial set and simplicial objects 82 A.2. Simplicial homotopy groups 83 The first author would like to acknowledge support from NSF grant #DMS-9803428. The second author would like to acknowledge support from DOE grant #DE-FG02-ER25066. 1 2 M.J.HOPKINSANDI.M.SINGER A.3.
    [Show full text]
  • Laurent Bartholdi
    (2020-09-28) Curriculum vitæ Laurent Bartholdi Education March 2000 Ph.D. in Mathematics, University of Geneva, advisor: Pierre de la Harpe. “Croissance de groupes agissant sur des arbres” May 1995 Diploma in Mathematics, University of Geneva, advisor: Michel Kervaire. 1991–1993 First cycle, University of Geneva, Mathematics and Computer Science studies. Academic Interests ○␣ Geometric group theory and its applications ○␣ Dynamical systems, in particuliar symbolic and holomorphic ○␣ Algebraic structures: groups, rings, algebras ○␣ Complexity and computability, computer algebra Employment 2008– Georg-August University, Göttingen, Professor (W3). 2004–2008 École Polytechnique Fédérale, Lausanne, Assistant Professor (PATT). 2001–2003 University of California, Berkeley, Charles B. Morrey Jr. Assistant Professor. 2000–2001 Swiss National Fund, Berkeley, Brasília, Jerusalem, Post-doctoral researcher. 1995–2000 University of Geneva, Geneva, Teaching Assistant. 1992 University of Geneva, Geneva, Programmer on a parallel computer. Invited Professorships 2019–2020 École Normale Supérieure, Lyon, 8 months. 2018–2019 Institute of Advanced Studies, Lyon, 10 months. 2015–2018 École Normale Supérieure, Paris, 3 years. 2014 Institut Henri Poincaré, Paris, 1 month. 2013 University of Chicago, Chicago, 1 month. 2013 CIMI, Toulouse, 6 months. 2012 Mittag-Leffler Institute, Stockholm, 1 month. 2012 CNRS, Paris, 1 month. 2011 CNRS, Paris, 1 month. 2010 Chinese Academy of Sciences, Beijing, 6 months. 2008 T.U. Graz, Graz, 1 month. Brauweg 17a – D-37073 Göttingen – Germany +49 157 71540254 • +49 551 3927826 [email protected] • www.uni-math.gwdg.de/laurent laurentbartholdi • 0000-0002-1243-6384 1/12 2007 CNRS, Marseille, 1 month. 2005 T.U. Graz, Graz, 1 month. Prizes and funding 2019– ANR research grant “AlMaRe”, speaker G.
    [Show full text]
  • Algebraic Topology August 5-10 2007, Oslo, Norway
    THE ABEL SYMPOSIUM 2007 ALGEBRAIC TOPOLOGY AUGUST 5-10 2007, OSLO, NORWAY On behalf of the Abel Board, the Norwegian Mathematical Society organizes the Abel Symposia, a series of high level research conferences. The topic for the 2007 Abel Symposium is Algebraic Topology, with emphasis on the interaction between the themes: • Algebraic K-theory and motivic homotopy theory • Structured ring spectra and homotopical algebraic geometry • Elliptic objects and quantum field theory The organizing committee consists of Eric Friedlander (Northwestern), Stefan Schwede (Bonn) and Graeme Segal (Oxford), together with the local organizers Nils A. Baas (Trondheim), Bjørn Ian Dundas (Bergen), Bjørn Jahren (Oslo) and John Rognes (Oslo). The conference will take place at the Department of Mathematics, University of Oslo, from Sunday August 5th to Friday August 10th. There will be plenary lectures from Monday August 6th through Thursday August 9th, including survey lectures on the major recent advances in the three themes, together with more specialized lectures. http://abelsymposium.no/2007 The following invited speakers have agreed to contribute with lectures ((*) = to be confirmed): Matt Ando (UIUC) • John Baez (UCR) • Mark Behrens (MIT) • Ralph Cohen (Stanford) • Hélène Esnault (Essen) • Dan Freed (Austin) • Lars Hesselholt (MIT/Nagoya) • Mike Hopkins (Harvard) • Uwe Jannsen (Regensburg) • Marc Levine (Northeastern) • Jacob Lurie (Harvard) • Alexander Merkurjev (UCLA) • Fabien Morel (München) • Charles Rezk (UIUC) • Stefan Stolz (Notre Dame) • Neil Strickland (Sheffield) • Dennis Sullivan (SUNY) • Andrei Suslin (Northwestern) (*) • Ulrike Tillmann (Oxford) • Bertrand Toën (Toulouse).
    [Show full text]
  • Vanishing Theorems for Real Algebraic Cycles
    VANISHING THEOREMS FOR REAL ALGEBRAIC CYCLES JEREMIAH HELLER AND MIRCEA VOINEAGU Abstract. We establish the analogue of the Friedlander-Mazur conjecture for Teh's reduced Lawson homology groups of real varieties, which says that the reduced Lawson homology of a real quasi-projective variety X vanishes in homological degrees larger than the dimension of X in all weights. As an application we obtain a vanishing of homotopy groups of the mod-2 topolog- ical groups of averaged cycles and a characterization in a range of indices of dos Santos' real Lawson homology as the homotopy groups of the topological group of averaged cycles. We also establish an equivariant Poincare dual- ity between equivariant Friedlander-Walker real morphic cohomology and dos Santos' real Lawson homology. We use this together with an equivariant ex- tension of the mod-2 Beilinson-Lichtenbaum conjecture to compute some real Lawson homology groups in terms of Bredon cohomology. Contents 1. Introduction 1 2. Equivariant Homotopy and Cohomology 5 3. Topological Spaces of Cycles 6 4. Poincare Duality 14 5. Compatibility of Cycle Maps 22 6. Vanishing Theorem 30 7. Reduced Topological Cocycles 36 Appendix A. Topological Monoids 42 Appendix B. Tractable Monoid Actions 45 References 48 1. Introduction Let X be a quasi-projective real variety. The Galois group G = Gal(C=R) acts on Zq(XC), the topological group of q-cycles on the complexification of X. Cycles on the real variety X correspond to cycles on XC which are fixed by conjugation. Inside G the topological group Zq(XC) of cycles fixed by conjugation is the topological av group Zq(XC) of averaged cycles which are the cycles of the form α + α.
    [Show full text]
  • References Is Provisional, and Will Grow (Or Shrink) As the Course Progresses
    Note: This list of references is provisional, and will grow (or shrink) as the course progresses. It will never be comprehensive. See also the references (and the book) in the online version of Weibel's K- Book [40] at http://www.math.rutgers.edu/ weibel/Kbook.html. References [1] Armand Borel and Jean-Pierre Serre. Le th´eor`emede Riemann-Roch. Bull. Soc. Math. France, 86:97{136, 1958. [2] A. K. Bousfield. The localization of spaces with respect to homology. Topology, 14:133{150, 1975. [3] A. K. Bousfield and E. M. Friedlander. Homotopy theory of Γ-spaces, spectra, and bisimplicial sets. In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, volume 658 of Lecture Notes in Math., pages 80{130. Springer, Berlin, 1978. [4] Kenneth S. Brown and Stephen M. Gersten. Algebraic K-theory as gen- eralized sheaf cohomology. In Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 266{ 292. Lecture Notes in Math., Vol. 341. Springer, Berlin, 1973. [5] William Dwyer, Eric Friedlander, Victor Snaith, and Robert Thoma- son. Algebraic K-theory eventually surjects onto topological K-theory. Invent. Math., 66(3):481{491, 1982. [6] Eric M. Friedlander and Daniel R. Grayson, editors. Handbook of K- theory. Vol. 1, 2. Springer-Verlag, Berlin, 2005. [7] Ofer Gabber. K-theory of Henselian local rings and Henselian pairs. In Algebraic K-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989), volume 126 of Contemp. Math., pages 59{70. Amer. Math. Soc., Providence, RI, 1992. [8] Henri Gillet and Daniel R.
    [Show full text]
  • CURRICULUM VITAE CRISTINA BALLANTINE Anthony and Renee
    CURRICULUM VITAE CRISTINA BALLANTINE Anthony and Renee Marlon Professor in the Sciences Department of Mathematics and Computer Science College of the Holy Cross Phone: (o) 508-793-3940 e{mail: [email protected] Research Interests Number Theory, Automorphic Forms and Representation Theory, Buildings, Algebraic Combina- torics, Graph Theory, Visualization of Complex Functions. Education Ph.D. University of Toronto, Canada (November 1998) Advisor: Professor James Arthur Thesis: Hypergraphs and Automorphic Forms M.Sc. University of Toronto, Canada (November 1992) Diplom University of Stuttgart, Germany (1988) Academic Appointments Sept. 2018 { Present College of the Holy Cross: Anthony and Renee Marlon Professor in the Sciences Sept. 2014 { Aug. 2018 College of the Holy Cross: Professor Sept. 2015 { Dec. 2015 ICERM (Brown University): Visiting Researcher Sept. 2007 { Aug. 2014 College of the Holy Cross: Associate Professor Jan. 2013 { May 2013 ICERM (Brown University): Visiting Researcher Sept. 2002 { Aug. 2007 College of the Holy Cross: Assistant Professor Sept. 2004 { July 2005 Universit¨atM¨unster: Fulbright Research Scholar Sept. 2000 { Aug. 2002 Dartmouth College: J.W. Young Research Instructor Sept. 1999 { Aug. 2000 Bowdoin College: Visiting Assistant Professor Sept. 1998 { Aug. 1999 University of Wyoming: Visiting Assistant Professor Sept. 1996 { Jan. 1998 University of Toronto, Canada: Instructor Aug. 1994 { Dec. 1994 Santa Rosa Junior College, CA: Instructor Research and Publications Refereed Research Papers 1. Almost partition identities (with George E. Andrews), submitted. 2. A Combinatorial proof of an Euler identity type theorem of Andrews (with Richard Bielak), submitted. 3. Quasisymmetric Power Sums (with Zajj Daugherty, Angela Hicks, Sarah Mason and Elizabeth Niese), 35 pp. submitted. 4.
    [Show full text]