Crossref Similarity Check Powered by iThenticate ARTICLE DOI: http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v11n1p11-16

Population structure and small-scale spatial pattern of paraensis () in a várzea forest in the Amazonian estuary

Caroline da Cruz Vasconcelos1, Jaynna Gonar Lôbo Isacksson2, Ana Luiza de Sousa Costa3, Glaucileide Ferreira4, Adelson Rocha Dantas5, Wegliane Campelo da Silva Aparício6

1. Programa de Pós-Graduação em Botânica (Instituto Nacional de Pesquisas da Amazônia-INPA, Brasil). [email protected] http://lattes.cnpq.br/1535461703335857 http://orcid.org/0000-0002-7850-6672 2. Programa de Resgate de Flora, Gestão Ambiental da BR-156/AP (ECOPLAN Engenharia LTDA, Brasil). [email protected] http://lattes.cnpq.br/0463478769238135 http://orcid.org/0000-0002-8220-6293 3. Programa de Pós-Graduação em Ciências Florestais Tropicais (Instituto Nacional de Pesquisas da Amazônia-INPA, Brasil). [email protected] http://lattes.cnpq.br/3241512170193858 http://orcid.org/0000-0002-4216-7277 4. Programa de Pós-Graduação em Ciências Florestais (Universidade Federal do Espírito Santo-UFES, Brasil). [email protected] http://lattes.cnpq.br/9090178228153672 http://orcid.org/0000-0001-8428-7173 5. Programa de Pós-Graduação em Ecologia (Instituto Nacional de Pesquisas da Amazônia-INPA, Brasil). [email protected] http://lattes.cnpq.br/7331278266161056 http://orcid.org/0000-0001-6213-5953 6. Colegiado de Ciências Biológicas (Universidade Federal do Amapá-UNIFAP, Brasil). [email protected] http://lattes.cnpq.br/1838246896243202 http://orcid.org/0000-0001-6370-162X

Detailed knowledge about structural attributes and spatial patterns of tree species is fundamental to enable sustainable

CT management of forest resouces. However, this knowledge remains poorly understood in the context of eastern Amazonian Floodplain forests, even of some economically important species such as Mora paraensis. In this paper, we focused on the

TRA structural parameters and spatial distribution pattern of M. paraensis in an 11.7 ha area of floodplain forest in eastern Amazonia. The structural analysis included quantitative and qualitative parameters, and the spatial distribution pattern was ABS analyzed using the univariate Ripley's K function. A total of 48 trees of M. paraensis were measured, with a total density of 4.1 individuals ha-1, a mean height of 7.1 m, and a basal area of 0.2324 m2 ha-1. Mora paraensis showed a relatively good density of trees, an inverse J-shaped diameter distribution pattern, and individuals in almost every diameter class. The population was predominantly young (75% of individuals), however, the qualitative parameters suggested unfavorable conditions regarding the health of M. paraensis trees, perhaps affecting their development in this environment. At the within diameter class level, the aggregate pattern dominated in smaller diameter classes, but shifted into a random pattern in the larger diameter classes. This study reinforces the importance of using methods that take into account different distance scales, allowing a better understanding of the relationships between the species attributes and their spatial distribution pattern, especially to scientifically manage and utilize forest resources in areas with conservation interest.

Keywords: Diameter distribution; Flooded forest; Pracuúba; Ripley's K function; Spatial analysis of trees.

Estrutura populacional e padrão espacial em pequena escala de Mora paraensis (Fabaceae) em uma floresta de várzea no estuário amazônico

O conhecimento detalhado sobre atributos estruturais e padrões espaciais de espécies arbóreas é fundamental para permitir um manejo sustentável dos recursos florestais. No entanto, esse conhecimento ainda permanece pouco compreendido no contexto das florestas de várzea do leste da Amazônia, mesmo para algumas espécies economicamente importantes como Mora paraensis. Neste artigo, focamos nos parâmetros estruturais e no padrão de distribuição espacial de M. paraensis em

RESUMO uma área de 11,7 ha de floresta de várzea no leste da Amazônia. A análise estrutural incluiu parâmetros quantitativos e qualitativos, e o padrão de distribuição espacial foi analisado usando a função K univariada de Ripley. Um total de 48 árvores de M. paraensis foi medido, com densidade total de 4,1 indivíduos ha-1, altura média de 7,1 m e área basal de 0,2324 m2 ha-1. Mora paraensis apresentou uma densidade relativamente boa de árvores, um padrão de distribuição diamétrica em forma de J invertido e indivíduos em quase todas as classes de diâmetro. A população foi predominantemente jovem (75% dos indivíduos), porém, os parâmetros qualitativos sugeriram condições desfavoráveis quanto a sanidade das árvores de M. paraensis, o que pode estar afetando o seu desenvolvimento neste ambiente. No nível da classe de diâmetro, o padrão agregado dominou nas classes de menor diâmetro, mas mudou para o padrão aleatório nas classes de maior diâmetro. Este estudo reforça a importância do uso de métodos que levem em consideração diferentes escalas de distância, permitindo uma melhor compreensão das relações entre os atributos das espécies e seu padrão de distribuição espacial, especialmente para gerenciar e utilizar cientificamente os recursos florestais em áreas com interesse em conservação.

Palavras-chave: Distribuição diamétrica, Floresta inundável, Pracuúba, Função K de Ripley, Análise espacial de árvores.

Introduction duration and height of the flooding modulate the morphoana- Amazonian várzea forest are areas periodically flooded by tomy and ecophysiology of trees, which require special adapta- sediment-rich whitewater rivers (Amazon River is the largest) tions to cope with the periodically anoxic conditions (PAROLIN originating from the Andes and sub-Andean regions, covering et al., 2004; WITTMANN et al., 2004; ASSIS et al., 2015). an area of approximately 98,110 km2 (MELACK; HESS, 2010). In the Amazonian estuary, the várzea forests are subject to Várzea forests contain fewer species than their non-flooded short, predictable, polymodal flood pulses, influenced (directly counterparts in the same region (JUNK, 1989; WITTMANN et or indirectly) by the oceanic tide (JUNK et al., 2011). Most of al., 2004). Many physical and ecological processes (mineral this area is covered by secondary forests that served as the cycling, decomposition, and forest sucession) are affected by principal source of timber in this region for over three centu- the flood pulse, which is generally regarded as the main driving ries (CATTANIO et al., 2002). Today, the Amazonian estuary is force determining the patterns of tree species composition in also a source of various non-timber forest resources such as these forests (JUNK, 1989; WITTMANN et al., 2004, 2006). The Acai palm (Euterpe oleracea Mart.), rubber, fruits, and oilseeds

Biota Amazônia ISSN 2179-5746 Macapá, v. 11, n. 1, p. 11-16, 2021 Esta obra está licenciada sob uma Licença Disponível em http://periodicos.unifap.br/index.php/biota Creative Commons Attribution 4.0 Internacional Submetido em 30 de Novembro de 2019 / Aceito em 08 de Março de 2021 U S M s d i t f a c p h i t t a 2 s p C 2 f g t H e a s m s e s r f s a t 1 l a t t t o ( a b M A 2 e ( p f F p g [ z n e o l o u e i i h h r r h e m D e a p l a p t t t n v a n t u g n l n a o o a c 0 u y 0 o O A 9 o f 0 u o n m a e I u o u g r . u r r d c a A i a n r s e A . m i m , e t e c a e G s a r t o d d u e d p i g n 1 0 p c 4 1 r s s u e R n i R u a u e o e t n n o d a 2 a n e i t u a v d t n c t C m a l p a s s d T . T v P c h U O e A u s 7 0

s u 9 3 c e x e e y s p d h i m d l T s I u y c

k k n 0 i a e e s p t a e z H t a k . t o i m s M p t e t e r t h l h i o ; ; l ? ; e , ) s r w o C m v m e ; l e r P i d r p g e r n I i m 1 a o m u a a s m h h i l e e e i w b . o s s e t L i 2 n i l i N s A i f e r i

e c e l s n n H n c e e l . u s w 1 t M s e n a t i n e 4 r s a r s ) e v e o e e t e a a n a o d O e I i c 0 s r i s i a o i u e e D m n t s e i r g o I a c i s i a d 9 d p o t r s I l o i ; i s g D

s g z s r a t o n s ; n n i y i s s I i e 0 o a m t t a U n i i m l t e t n l h

s s F a t g n O 9 a n l e o n y R s p u . l e l ( h a o t p m e o s e h p i e a u a n g Z u 2 u l e e t

t u R Q s e d p , a O p n t f a 8 n s , p a s t r l , t f m f n A e A f r g a l s a H e n t e o c c o ,

A s r ; o d a i o o s l e o 2 d d e a l r t s E i 1 ; t i d U e n R t r t l l k t e i . , w f N u a t B a t h r b r e a i t y o t t , o c h r R e e t r c c u h t s i

( c y 0 t e d c s 2 h I e f e r h e T a d E l s h n r e b s n e A e a i c C i u M o a t p f e E w o t e t e R 2 D e l t . n e e i I 0 i g r a c s 7 , p u e r o l d w i e t h o s o e o s I i n I t a b N ( l x l n A c s t M r l i R N e m 0 n O o i u s h A s o t . N l 8 R s p e a t 2 t F . l e e i r e c

s e e ] m r i t s h p

a o u 3

t s T o o a p u , h s 0 E i m A n n a , l e s y v T t n s ; ; a a a c a O . i l e 0 a t c e I s b n y e s a p l w c d e t s u e n c n o t a T 2 n p 8 s r h F S e s m o a i o U p g r o b t i s s h l x E e

0 e e o n Z r c u e t d e e a y c i l n y c t r t t c A c t r I 0 i s O , , , a l m r i a o y s t n s a s a c d e m d m t S J e 8 i r a m t f y s d ; y , o l a L e a a t e p a u h a i e O a t i o 1 t o N h c 2 r r c c v h d o R n - o r M : a d V o w p f ; n s b r l s n i n s a r i o l n t ( e e e l a a G o a e . t o r a 1 m e n n e 0 ( t c l m y i i l y m , h s A a I T f o u C t i e l e J c t d s p f a y i a n m . o g i i n e i a c A n e e O l r b r a e A 2 o , ) O d e 1 t n s a n t r ) i e s i r I A o , e s d A i i u n e a r a e

e . l 2 s i d f s d i l i t s t o

u t C c 0 N l n n o u n M 1 i 7 d l c e ; H e l h o n t a a o f e e e s l e t t d s r R e n z i e y T m k 0 o s e m k i d t H 1 e a n t d n c u v d t 9 s ) d i s c i I t o a a d t n M l n m n k e a x r N i i u i A e i s s s e s I 1 r i ; . o g n t t n . i a i t 8 u a t o t a m i 6 s n A e w A v a m s d M l m n t a p e t a m

p l n r e r c Z s i i T i 5 b . . H l a o a d l . o i r ) c r o s c n t o a , e z 8 v e t t e m n u d t m o a D a e o a c t r l a p h A p . a i n a i n h ) e h h b w a m b n i o o f t p s b s a e t n s o )

T n n e b r l t t a w s t c 2 M . a A i u i i O d o . l R d t e d e e

e a . e e t a e n n i g i a i y a o n a , o l w p l , P e t t e u h n r 0 a r a n i t t a ( l n r m s r r t t ( s t l n , e p d A r n i I t l e n i r a n o , o u e a a r P e s a t ( e 2 r e l n l . t a 1 l a 2 e W N a e f r t e s t c a , t a a d t t t i . d a t a i m a p l k t d n e d h e c t , r i e a I s a c 0 o n a n t v b e h h i o a i 4 2 0 e o s ́ h h t p l , n i h

r m a N e c n ) o m n t u e x i o d t y g z g 2 e (

l n i n e e n s k 0 a 2 l m o e ; o 0 0 f k g u a i e n p u . e a a g d r l b e U t p m e s c e o d , l m i z e a g T v s e r 0 r l t t i 2 e 0 d e z e d s o p 0 o 7 r r i t n r ú , e d n a m s B u e s

l p n n y t f h p a t s E s r O o t 0 , s t a o a i l a 2 o E ; 1 s r p o n r 2 ; e a t b d r f e m r ( e s g .

p e h r r i e R p o e m t

e A p l f n ) i 7 u o s n e o c M , i a 0 k w x r 1 a W l e i a ; t a a o i h r s t g F t a o n c p a

e o s l i e p s u U e w i o e i v d y ) f a P i s p ( a , A m n 0 r a 2 4 e t ) l c m f a i n

c e O a t i i d i I t o d f K i . c i a f t e i s , a ú o l i e p r , O t n k ) Z t e c n d ( e i f f R s 8 s 0 s r 0 i s c L a n y

n t i s e t a o a h s f r y G o . i l R t n a , a u W l b n a o u u e o r s l p I s a o i o N r 1 ; o M M i m A a g a . e c l n f i d r i N e s . o o i p l e a T a g , t n s m , a o c o l g c g n m o f k a n n o y l m m 4 c h

- m s a a h u G N

l d I l . N r s e l f n 2 t o l a . ) l t p . E f e I G a t f e s t c e p r o n T a , d Biota Amazônia ISSN 2179-5746 d T a s M

l ; h t a c D u m i d N M z a i ; f h m o 0 e e h l D s e l e e i m s i I n o i l o r A a o e w o c p p t r R T u l t e n i L o r d s v e D D i t s e r s a p w n u d t s 1 a I o a g p n r d o a l g A e n d u w a r a a w a l e m s e e a M n s E A t

o e t u o b s c k e b a A p A e e s r t 7 p c o s u i c s l s p t n n t e e r o e e r s l e c t a a n h s m E e l a e t f B p i i n c p h t h e h u l e a . r i o ; N o u a A n u s e r t , d o n t t d l p i d o a y m c t t e l e t n t f i a t I , e a t r r p

d o i o a p e E e l m r a i d a n o e , y i d t r i i c N c n s ( n r t T a

s t a i 2 Q r n e a s i d S m a i n n t p l t s w i a o s e a a e n a f n L l n t i y c h g n i y y d a r o A r g p h s s a e l 0 o l ( o i t t s t e N t i t ́ h l

U t a e a s f l r i

y u . a O c s l n e g t c a a t i L . h i f a h , l i l . m f D r n t h e e S r r i 0 u , : p ( t , o n C d m e i e i e s . r t a l e f r m

2 s n t i E u r t i , u i f o e I s o t o A c e o o e a c u 5 t p e n U a s a i r n n p d i m o a t e q M a 2 2 f ) u 2 a e f 0 q

d o n e I s i n e i o o s n w s r g e o , o N r e a t c ) e e e g t d R r s c g f r u C b t l 0 0 t n 0 i t c d 1 u t f e r d t n t i s g i s . e t o t A t r t s e r n a a a s s c n t e e z e e J s a i O a o a K t r a 0 t 1 h s t 0 i i e a 8 e e e e r e t a c O i c s n n a a o a c o h p h a e s h M

r e l r l n- t n- e e r u e- r o o o t i o 4 3 a s- a e r- 6 Z r- s E s ) a d t a t- e i i- i l l s l s n n d d n n d n e a a e S e e e e s r s s s . . . s . t t t t t t f f f f ; ; l l ; ; , , . , , , , , ,

o 1 c r E a D i ( e ( h c o = f t G m T f t ≥ a a t C c w T m a h m w m e t m F s 1 0 p A B F l o e e h r r l i e l a i u e x n r m l s n t l o f u o 9 i q u 1 ° a y h AMAP o P Macapá n g a a a a e s u r 1 h s r r g i a o m o . e p t r 0 p u d c a a d z l r d l t Amazonian ecoregion s p 2 u m Ri . w a e e t s t t S n s e s t e l A h m 7 i i 0 t p t i r w h n n v c e t r l l a 1 e o e r i p t s er basins c T W T e T n i 6 a i a a g , . s h a b r G e / s e c y J s a s e o , a ́ t s i c r , e s h ' c 1 t r h i t i i e c u h a o ) h h o l d e 5 h m 2 t t t , a t e s a o m e s p n t r t F i t n r n u i a s . e e m f e e e h

c g a s A Á n o f r h i n e t i L s e m e i l 5 e s e o 0 a s ( o e g r t a s o e r B , t a s m t m o e i n h , e e i a s I e n a a u v e e E n n m m r y . a 1 e t e e w s c n c o t t s C r n t B 0 o l t c d a w t t r a r l u t d a l o a l i , s e , n i e s n d t u P t s e r p a a 3 . n ) t l e y f t o B c n y f 2 e G a 8 a p u i a i a t e i a l s i t : o m a ARÁ h o n A , e o r r d c t o i s n r e a ; 1 F u m 1 a r n s h a d s " H t t p t r l 2 r n n Amazonian d a d m E s r t e l i r e o e . c S i r s m D s e d h o t h

e l e s l e estuary o u ) o t h m e o e L c a S . e h y d a o e , e a a a

t w s I t c 2 m h

l r s ( v o e a n

d f a o e f z c O ́ c Ocean Atlantic m ( p n 2 L a o ;

l o h n t t a w u l o o s c C i s , Equator H a % a u e t e C f s o f o u o e r e u V t ̂ n d a g n F h w 0 t s v t o , c m y s a u t a d r s i d r l l e l m i s d e O t r h i r i m A t e a ( e g r d r = e S a u l i t e a i r i 1 e z , r p i e n o e . t u e a l r d g i c , y a S i e a c e n i t e , e e ( e a T n 2 s S a y B a s a p g a 2 a r T e ç i c g g x t e s e b u a r n u P O i l o a s r o c n a t g d T T t p r t t m h h S c n r c a t , s h e a ) ̃ p r t , o h l i c w 7 e i f r e p a e i m c I s m u g U s a A a l

r o , u m c v e w o a r e f t w s g a e N e t a r ( i o a r o = e d u s d i 5 o i i e l w r t a m f e m a . n i p n I o r a Z e n a f l c s M n e s i e c r r ( a t e T o r a e o C N 1 n ( . l e l o s h s t s d , g w o o a A s t D a i u d e l e y e a e t s p w d a f i h f l O ́ r t S e ) e d a 2 r l t e n i a M i n i n m , s e d v t n q d e r i i h ; a o e f . e B h n n K g y b n i l - r s f e á t g n f s r 0 a l g , d o u 51°4'54''W i ) e v n c a x S J T l s u e a h r r n c v e h u i t E g 2 u H w o h , a . p e e z g d 1 o y

o s e s b c , u t n . n o d O u c w a n c a h e d p e e c t e ̈ e i c 0 e l T o p o t 2 t o a l a d 3 p ) e o d

u l e t s e t n i i s f e l i i n A l e e s o t n n e , t

w A v t 1 o e o r p l r y c s 0 f r y l o K ) e t i v u i p s o f h w n t w h m a o d c s e 2 n o a v R i d D i c ( i e r t e . l f 4 f r e m 1 n s a u l E t d

i u G r a o t Station of UE s e i c e u o u y Station of UE f f o r t - i l m d 0 g

g b t a e a d i a n E t ) o s a t Experimental e 3 r Experimental d u i n m l q u a o o h t l r s a i M p t

o o a B i i . s c i A 1 r s a e l - r S r o c A o ) o t o e e m m t i h c u n a h d l u h e z i G S =d p r e t t n e a i r 8 y f . e h e , m a n d 2 . b s d y n n l m

h k H n l l a d u o a p , t r e i v e o n p 2 e l s s a f p i b h ) n e t c i , 3 s a 51°4'48''W a u p v e a n s t n i o

a i l a e r t a o , . r i w u i g s c e 0 a i a i n t i a a w s s

n h g w . y e l v s e t a m f s n A a u l o i z 8 u T w e t l o a l l a 1 r o l e i u o a a , g , e a y t m S t s o i c , n y t o a n g n s d i y r a r g e h t o a c m o o d l , 3 t t s t i e t r t t r e u t H a t s o t e g l e n o e r s , o a e h r r r l B m h e u a l s p z a c o s o d i ) f o i l f ( d b e x i a a o a e p o a s n n o l e t s n a c d 3 r : i l n a r l w r o R A n O w e e i v e AP d n d t e a AP i m . d n l i s u r t ) g m a w s 3 o c l u , s g n p b u e g R n t i m e e L i l , e n D m t o d o i e 4 i e i z v r e c s o a f i 1 a d n c h a a s r d m V t t v s d e C b s e p t s m n i s r e e

r i e h y 2 w e r d t , e m . t s t a l ; b t g s A t e r a d 5 D r o e ' h e e 51°4'42''W h r q t e , o r e s

V , , c e f r e b 0 ) e n ( r , i r m e , A i Geogr a t R e w i r d i a e a c d o v a e t u v w o i n O 5 d o n r c e u T o w t w e m f d s d p ° o a n o h e t l t f 0 s a o e u y E a c ́ i a r 1 e d C i a t i n o p m a S a n m d i s b z d t , n e l 1 h e = s 5 d c aphic Coor w r l l p n S t t a s e ° t m r t , t h h . c e a Datum: W r s i u u a t a e e n v p a

= A i . y h . 0 a s e e t d s c 3 ́ A u , a e c a e c e e n i i t t r , n r t n p i e d o l t 75 i l t a ( e n 4 a e m o e h o i x i 0 f n e s l t h v ( a o l l e r d o a a u o n a s a i s a u i l c n d s ' S f 1 o p N t e n d e i c a d e d e u n 4 n t R t f e i i w m p t n n h m a s e i dinate S e s m T a t B o i c t e a 1 r GS84 o h ( l o s n i e . r s d 2 t c u l i o l d i e . p

c Amazon Ri c 150 J t i n y 51°4'36''W t t , U m a l r t D s o A d e m o d p a e 2 a a ( . r a b l y a a c t i i o A r r 2 e 3 A c u s f o w D r o n 7 y T o n n n t R i l n i m t n e r 5 e e l e m e f u ystem e o r l v 0 c i i a 9 o w r w i v n p u e a , 2 p n w u e t c er d I e r s a o G d d o 4 s r i t a u t s e i m 1 r " u S a z t a t y : t e z s e d s n h . i o a a a e s w

i i n o 9 E t h m m- o i i c i T n 3 2 3 n n d A e e r W S n v t u- l u- r n s r r t e i t n o e- o o a . a S i e l i- A s a

n d h d d 7 o 8 4 ) g e S g i e y a y e e s s r ) ) t a f

s f f l l , . , , 0°1'54''S , , , 0°2'12''S 0°2'6''S 0°2'0''S

. l a t e . C . C , S O L E C N O C S A V

12

y r a u t s e n a i n o z a m A e h t n i t s e r o f a e z r á v a n i ) e a e c a b a F (

s i s n e a r a p a r o M f o n r e t t a p l a i t a p s e l a c s - l l a m s d n a e r u t c u r t s n o i t a l u p o P TD = N (1) where: 13 A n(r) = mean number of neighbors within a distance r from a V ( P F A 2 o (2) a p subject tree, and p = stand density. S

π * DBH b C u a O

BA = g = l a c N e Σ 40,000 t i C a

o E We used the linearized L-function (BESAG, 1977) that mo- e n ) L s i O

(3) n difies the shape of the K-function, stabilizes its variance t S k = 1 + 3.33 * logN r a u , C c v

(CRESSIE, 1992), and is calculated using Equation 7. . t á C u r . (4) r z H = DBH - DBH e

max min e e t a a Lr = Kr a n l

(7) f . o d

Cl = H π r

(5) s e m s

t k a i n

A value of Lr = 0 indicates a random spatial pattern, l l - t s h whereas values smaller and larger than 0 correspond to regu- c e a l A

where: e

lar and aggregated spatial patterns, respectively. We applied m

-1 s p TD = Total density (individuals ha ). a a Ripley's isotropic correction formula for edge correction z o t i n

N = total number of individuals sampled. a i l

(RIPLEY, 1991). To test the statistical significance of the devia- a p

A = total sampling area (ha). n a e tion of L values from zero under the null hypothesis of com- t

r t s e

g = sectional area, with DBH in cm. t r 2 u n BA = basal area (m ). plete spatial randomness, we used the Monte Carlo simulation a r o y f k = number of classes. method. We computed the 95% confidence intervals of Lr M o

based on 1000 random permutations. In this study, the range r

H = amplitude between the largest and smallest observed a p diameter. of distances used to calculate the L-function ranged between 0 a r a

CI = DBH class interval. and 300 m, with a grain-size of 5 m. Georeferenced data were e n s

integrated into the ArcGIS 10.1 software (ESRI, Redlands, CA, i s Regarding small-scale spatial aspects of the dynamics of M. USA) and analyzed with the R software (R CORE TEAM, 2019), paraensis trees, we used the univariate Ripley's K function using “maptools” and “splancs” packages for point pattern (RIPLEY, 1977). The K-function considers the distance analysis. between all pairs of points (trees) in a two-dimensional space by using the number of points available in a circle of radius r Results centered on each tree. The univariate estimator of the K- function for a certain pattern of points is calculated using Equa- Structural parameters tion 6. A total of 48 trees of M. paraensis were sampled, with a total density of 4.1 individuals ha-1, a mean height of 7.1 m, and a total basal area of 0.2324 m2 ha-1. An overview of the structural Kr = n(r) (6) p parameters is shown in Table 1 and Figure 2.

Table 1. Number of individuals (N), minimum (min), maximum (max), mean (x̅), and standard deviation (sd) for each diameter class (including interval and center of class) and total population, with regard to structural parameters DBH (cm), total height (m), and basal area (m2) of Mora paraensis trees in a várzea forest of the Amazon River, Amapá, eastern Amazonia, Brazil / Tabela 1. Número de indivıd́ uos (N), mıń imo (mıń ), máximo (máx), média (x̅) e desvio-padrão (dp) para cada classe de diâmetro (incluindo intervalo e centro de classe) e para população total, em relação aos parâmetros estruturais DAP (cm), altura total (m) e área basal (m2) de Mora paraensis em uma loresta de várzea do Rio Amazonas, Amapá, leste da Amazônia, Brasil. DBH (cm) Basal area (m2) Total height (m) class interval center N min max x̅ sd min max x̅ sd min max x̅ sd 1 3.5 –| 17.1 10.3 36 3.5 15.9 3.5 3.6 0.001 0.0199 0.0055 0.005 2.5 13 5.6 3 2 17.1 –| 30.7 23.9 6 18.3 29 25.7 3.8 0.0263 0.0659 0.0526 0.0141 7.5 15 11 3 3 30.7 –| 44.3 37.5 1 35 35 35 - 0.0963 0.0963 0.0963 - 10 10 10 - 4 44.3 –| 57.9 51.1 0 ------5 57.9 –| 71.6 64.8 2 61.1 63.7 62.4 1.8 0.2934 0.3183 0.3058 0.0176 12 14 13 1 6 71.6 –| 85.2 78.4 2 79.6 82.8 81.2 2.3 0.4974 0.5379 0.5177 0.0287 14 16 15 2 7 ≥ 85.2 86.7 1 98.7 98.7 98.7 - 0.7647 0.7647 0.7647 - 11 11 11 - Population 48 3.5 98.7 17.7 22.4 0.001 0.7647 0.063 0.1563 2.5 16 7.1 4

40 1.2 ( a ) ( b ) 15 ( c ) 1.0 30 ) 2 0.8

viduals 10

20 ea (m 0.5

0.4 otal height (m) 5 Basal ar 10 T

Number of indi 0.2

0 0.0 0

≥ 85.2 ≥ 85.2 ≥ 85.2 3.5 –| 17.1 3.5 –| 17.1 3.5 –| 17.1 17.1 –| 30.730.7 –| 44.344.3 –| 57.957.9 –| 71.671.6 –| 85.2 17.1 –| 30.730.7 –| 44.344.3 –| 57.957.9 –| 71.671.6 –| 85.2 17.1 –| 30.730.7 –| 44.344.3 –| 57.957.9 –| 71.671.6 –| 85.2 DBH classes (cm) DBH classes (cm) DBH classes (cm) Figure 2. Frequency histograms per diameter class of Mora paraensis trees in a várzea forest of the Amazon River, Amapá, eastern Amazonia, Brazil. (a) Number of individuals, (b) Basal area (m2), (c) Total height (m) / Figura 2. Histogramas de frequência por classe de diâmetro de Mora paraensis em uma loresta de várzea do Rio Amazonas, Amapá, leste da Amazônia, Brasil. (a) Número de indivıd́ uos, (b) Area basal (m2), (c) Altura total (m).

The population distribution showed an exponential curve diameter classes. Among all the sampled individuals, 75% (n = of inverse J-shaped (a unimodal distribution with positive 36) were concentrated only in the first diameter class, with a asymmetry), with a discontinuity observed in at least one of the sharp reduction observed in the number of individuals in sub-

Biota Amazônia ISSN 2179-5746 sequent classes (Figure 2a). The same pattern was observed When analyzing the spatial distribution per diameter for basal area, which presented an inversely proportional dis- classes (classes 3, 4, and 7 not included due to the insufficient 14 V ( P F A o a p tribution pattern to the number of individuals (Figure 2b). number of individuals), different levels of aggregation were S b C u a O l a observed. The spatial pattern of trees belonging to diameter c

Regarding height, the distribution showed a bimodal tendency N e t i C a o E class 1 was predominantly aggregate, similar to the total popu- e with negative asymmetry (Figure 2c). Despite the presence of a n ) L s i O n lation, as it included the largest number of individuals. This t S greater number of individuals in classes 1 and 2 (DBH < 30.7 r a u , C c v .

pattern reflects the high concentration of young trees near the t cm), classes 5, 6, and 7 (DBH > 57.9 cm) presented individuals á C u r . r z e

mother trees or source of propagules (Figure 4). Individuals e e with higher values of height and basal area (Table 1). t a a a n l f belonging to class 2 were aggregate until about 100 m when a . o

Qualitative data obtained from the sample of trees were d r s e m also organized as per diameter classes (Table 2). About 73% of small spatial scale was considered, and they were distributed s t a i n l

randomly when a large spatial scale was considered. Individu- l

trees presented a slightly tortuous stem, 45.8% had a domi- - t s h c e nated or suppressed crown, while 75% of the trees showed the als belonging to classes 5 and 6 had a predominantly random a l A e m

distribution in the study area (Figure 3). Young trees were s

presence of lianas. Class 1, represented by young individuals, p a a z o mainly concentrated around the source of propagules, whereas t presented a high percentage of lianas, which might be directing i n a i l adult trees (diameter classes 5, 6, and 7) were randomly dis- a p

trees toward the formation of tortuous stems and suppressed n a e t

tributed (Figure 4). t s crowns (Table 2). In addition, these parameters suggested e t r u n a r

unfavorable conditions regarding the health of M. paraensis o y f trees, which may be affecting their development in this envi- M o r ronment. a p a

Table 2. Qualitative characterization of the stem shape, tree crown position, and presence of lianas r a for each diameter class of Mora paraensis trees in a várzea forest of the Amazon River, Amapá, e n eastern Amazonia, Brazil / Tabela 2. Caracterização qualitativa quanto a forma do caule, posição da s i copa e presença de lianas para cada classe de diâmetro das árvores de Mora paraensis em uma s loresta de várzea do Rio Amazonas, Amapá, leste da Amazônia, Brasil. Tree crown Presence of Diameter Stem shape (%) position (%) lianas (%) classes SS STS VTS DO CDO DS AL PL 1 12.5 52.1 10.4 6.3 22.9 45.8 14.6 60.4 2 2.1 10.4 0 8.3 4.2 0 2.1 10.4 DBH class 1 T1 r DBH class 2 e 3 0 2.1 0 2.1 0 0 0 2.1 DBH class 3 T2 iv n R T3 o 4 0 0 0 0 0 0 0 0 DBH class 5 z T5 a DBH class 6 T4 m 5 2.1 2.1 0 4.2 0 0 2.1 2.1 A 6 0 4.2 0 4.2 0 0 4.2 0 DBH class 7 Transects 0 40 80 160 meters 7 0 2.1 0 2.1 0 0 2.1 0 Várzea forest Total 17 73 10 27 27 46 25 75 Figure 4. Spatial pattern per diameter class of the Mora paraensis population in a várzea Mean 4 18 3 7 7 11 6 19 forest of the Amazon River, Amapá, eastern Amazonia, Brazil / Figura 4. Padrão espacial SS = straight stem; STS = slightly tortuous stem; VTS = very tortuous stem; DO = dominant; CDO = por classe de diâmetro da população de Mora paraensis em uma loresta de várzea do codominant; DS = dominated or suppressed; AL = absence of lianas; PL = presence of lianas / SS = caule Rio Amazonas, Amapá, leste da Amazônia, Brasil. reto; STS = caule levemente tortuoso; VTS = caule muito tortuoso; DO = copa dominante; CDO = copa codominante; DS = copa dominada ou suprimida; AL = ausência de lianas; PL = presença de lianas. Discussion Spatial pattern Structural parameters Transformed values of Ripley's K function indicated that In the Amazonian estuary, many studies have shown that the spatial distribution pattern of M. paraensis trees varied M. paraensis is a dominant species that accounts for about one- with the spatial scale as well as with diameter classes (Figure third of all estimated biomass in the region (CARIM et al., 3). The sampled population showed a predominant aggregate 2008), with the values of density and the basal area ranging pattern at the local distance scale, as the L (r) function was from 1.5 to 219 individuals ha-1 and 4.4 to 43.1 m2 ha-1, respec- above the confidence intervals up to 225 m, thus, rejecting the tively (RABELO et al., 2000, 2002; BENTES-GAMA et al., 2002; hypothesis of complete spatial randomness. After this distance, ALMEIDA et al., 2004; CARIM et al., 2008, 2017; FORTINI; the population tended to show a regular pattern. ZARIN, 2011; PINTO, 2014). While the calculated total density -1 Population DBH class 1 (4.1 individuals ha ) in the present study was within the 200 200

100 100 reported range for this region, our value of basal area was 2 -1 Lr Lr 0 0 relatively lower (0.2324 m ha ). Furthermore, in other studies, -100 -100 only a single height interval between 15.5 and 20 m accounted -200 actual Lr 95% conidence intervals -200 actual Lr 95% conidence intervals 0 50 100 150 200 250 300 0 50 100 150 200 250 300 for the largest number of individuals (SANTOS; JARDIM, 2006; Distance (m) Distance (m) DBH class 2 DBH class 5 CARIM et al., 2008; 2017), whereas here, the observed height 200 200 values ranged from 3.5 to 16 m for all diameter classes, indicat- 100 100 ing that the forest stand was mainly composed of young trees Lr Lr 0 0

-100 -100 (Figure 2, Table 1).

-200 actual Lr 95% conidence intervals -200 actual Lr 95% conidence intervals The low values of height and basal area could be related to 0 50 100 150 200 250 300 0 50 100 150 200 250 300 Distance (m) Distance (m) the dominance of young trees, likely due to anthropogenic DBH class 6 200 disturbances (urban expansion and historical timber extrac- 100 tion activities in the region), which may have gradually affected

Lr 0 the structure and dynamics of the area. One evidence for this is -100 the high population density of spruceanum -200 actual Lr 95% conidence intervals 0 50 100 150 200 250 300 Distance (m) (Pau-mulato tree) surveyed in the same area (SANTOS et al., Figure 3. Univariate Ripley's K function (L estimated) at 0–300 m scale for the total 2016). This species has intrinsic ecological characteristics population and per diameter class of Mora paraensis trees in a várzea forest of the Amazon River, Amapá, eastern Amazonia, Brazil / Figura 3. Função K de Ripley univariada (L associated with disturbed várzea forests (natural or estimado) na escala de 0–300 m para a população total e por classe de diâmetro das árvores anthropogenic factors) (CARIM et al., 2008; SANTOS et al., de Mora paraensis em uma loresta de várzea do Rio Amazonas, Amapá, leste da Amazônia, Brasil. 2016).

Biota Amazônia ISSN 2179-5746 The diameter distribution of trees is an important tool for in the success of the establishment and new growth, generating knowledge about the structure of native forests, as launching propagules to more favorable sites. 15 V ( P F A o

Seeds of M. paraensis have hypogeal germination (cotyle- a p it is often used as a proxy of age, based on the assumption that S b C u a O l a young trees are small and adult trees are large. Inverse J- dons at soil level) and a large amount of reserves, characteris- c N e t i C a o E shaped pattern is a characteristic of the species from unequal tics that allow diaspores to remain under the crowns of mother e n ) L s i O n trees (KUBITZKI; ZIBURSKI, 1994; MOREIRA; MOREIRA, 1996; t tropical forests, which present a higher concentration of indi- S r a u , C c v . viduals in the lower classes, with a progressive reduction in MIRANDA et al., 2018). This species forms a seedling bank, t á C u r . r z e e

frequency in higher classes (LAMPRECHT, 1990). This pattern with a high density of individuals in regeneration (MIRANDA et e t a a a n l f .

has already been reported in M. paraensis (FORTINI; ZARIN, al., 2018). These factors may directly modulate the spatial o d r s e m

2011), as well as in the várzea forests in the same region distribution of individuals (HUBBELL, 2001), explaining the s t a i n l

(RABELO et al., 2002; QUEIROZ et al., 2006; SANTOS; JARDIM, predominantly aggregate pattern. Diaspores of many tree l - t s h c e 2006; CARIM et al., 2008), which suggests that the population species have morphological structures that enhance their a l A e m shows a good regeneration and stock of young population, probability of being dispersed away from the mother tree s p a a z o given the high number of young trees that would replace the (HUGHES et al., 1994; GRIZ; MACHADO, 2001). Fruit and seed t i n a i l a present-day adults in the future. morphology affect species distribution, for example, species p n a e t t In spite of the above, M. paraensis regenerates extensively, with edible aril or pulp are less aggregated than those without s e t r u n and all the growth phases, from seedlings to adults are present (SEIDLER; PLOTKIN, 2006). In the case of M. paraensis, its a r o y f in the region (RABELO et al., 2000; MIRANDA et al., 2018). The propagules are not very attractive to frugivorous (e.g. propa- M o reproductive capacity of the species is high and the dynamics of r

gules without bright color and fleshy pulp, and with large size; a p individual establishment in regeneration and ingress into adult pers. obs.), making hydrochory probably the more effective a r a classes depend on the changes in biotic and abiotic factors over dispersion syndrome, due to adaptations that have evolved e n s

time (MIRANDA et al., 2018). Considering the results obtained i

impart buoyancy to the seeds (KUBITZKI; ZIBURSKI, 1994). s here, although the predominantly young population of M. paraensis showed a relatively good density per hectare, the Conclusion young trees may be facing difficulties during ingress into the The evaluation of the qualitative parameters suggested adult classes, which generally showed a low number of individ- unfavorable conditions regarding the health of M. paraensis uals and a low basal area. trees, which may be affecting their development in this envi- ronment. At the within size-class level, the aggregate pattern Spatial pattern dominated in smaller diameter classes, but shifted into a ran- Studies in Amazonian estuary floodplain forests have dom pattern in the larger diameter classes. The large individu- reported an aggregated pattern for M. paraensis (BENTES- als of M. paraensis were found closer to the smaller individuals GAMA et al., 2002; QUEIROZ et al., 2005). These studies used than to those of their class. Thus, this species may have present dispersion indices, which only detect patterns at one scale different spatial distribution patterns when considering differ- (plots), and therefore, the result is strongly affected by the plot ent diameter classes and distance scales. This study reinforces size. Ripley's K function identifies the pattern at different scales the importance of using methods that take into account differ- simultaneously, making it possible to detect the pattern at all ent distance scales, allowing a better understanding of the analyzed scales. relationships between the species attributes and their spatial Populations usually show a combination of patterns, with distribution pattern, especially to scientifically manage and aggregation at large scales, and uniformity on smaller scales utilize forest resources in areas with conservation interest. (DIXON, 2002). Although M. paraensis population showed a predominantly aggregate pattern, when we analyzed the spa- Acknowledgments tial pattern by diameter classes, the species assumed a random The authors thank the Universidade do Estado do Amapá pattern (Figure 3). The different patterns showed by the spe- (UEAP) for providing the requisite infrastructure, the crew of cies change according to the maturation stage of trees, wherein the INFLOR Research Group and Lıv́ ia M. Jesus for help with young trees are densely clustered around the source of data collection. We thank the anonymous reviewers for their propagules (Figure 4), but when only the sources of propagules helpful comments to improve the manuscript. We would like to are considered, they assume a random pattern. For example, thank the Editage for English language editing. CCV, ARD, and , another dominant species in the Ama- ALSC are supported with fellowships funded by the Conselho zonian estuary (CARIM et al., 2017), also exhibited a pattern Nacional de Desenvolvimento Cientıf́ ico e Tecnológico (CNPq, similar to that of M. paraensis, when the same method was grant numbers #142214/2018-3 and #142316/2016-4) and used (DANTAS et al., 2017). the Coordenação de Aperfeiçoamento de Pessoal de Nıv́ el In contrast to what was observed in young trees, a random Superior (CAPES, grant number #1822525), respectively. spatial distribution and a large space between individuals were observed in adult trees (diameter classes 5 and 6). This pattern References is frequently found in rainforests and has been suggested as a ALMEIDA, S. S.; AMARAL, D. D.; SILVA, A. S. Análise florıś tica e estrutura de florestas de key factor for the coexistence of tree species, leading to high várzea no estuário amazônico. Acta Amazonica, v. 34, n. 4, p. 513–524, 2004. ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. diversity in these forests (JANZEN, 1970; CONNELL, 1971; Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, v. GAVIN; PEART, 1997). Furthermore, the changes from aggre- 22, n. 6, p. 711–728, 2013. gate to a random spatial pattern during tree lifespan could ANJOS, A.; COUTO, H. T. Z.; BATISTA, J. L. F.; REIS, A. Análise de um efeito de uma manejo em regime de rendimento sustentável sobre o padrão de distribuição indicate the existence of a density-dependent factor playing an espacial do palmiteiro (Euterpe edulis Martius), utilizando a função K de Ripley. important role for seedlings (GAVIN; PEART, 1997), such as Revista Árvore, v. 22, n. 2, p. 215–225, 1998. ARAU JO, E. J. G.; DAVID, H. C.; MORAIS, V. A.; SCOLFORO, J. R. S. Padrão espacial de herbivory (JANZEN, 1970; CONNEL, 1971), competition, or espécies arbóreas em fragmento de floresta estacional semidecidual. Revista de predation (SOUSA; MITCHELL, 1999). According to the Janzen- Ciências Agrárias Amazonian Journal of Agricultural and Environmental Connell hypothesis (JANZEN, 1970; CONNELL, 1971), the Sciences, v. 57, n. 2, p. 166–171, 2014. ASSIS, R. L.; WITTMANN, F. K.; PIEDADE, M. T. F.; HAUGAASEN, T. Effects of hydroperi- greater distance from adults, the higher are the chances of od and substrate properties on tree alpha diversity and composition in Amazo- survival of young trees. Seed dispersal, therefore, is a key issue nian floodplain forests. Plant Ecology, v. 216, n. 1, p. 41–54, 2015.

Biota Amazônia ISSN 2179-5746 espécies arbóreas: possibilidades e métodos de aproveitamento sustentado. BATISTA, A. P. B.; SANTOS, V. S.; APARIC IO, W. C. S.; APARIC IO, P. S.; SILVA, D. A. S. Eschborn: TZ-Verlag-Ges., 1990. 16 V ( Similaridade e gradientes de riqueza florıś tica em uma floresta de várzea na LIMA, R. B.; APARIC IO, P. S.; FERREIRA, R. L. C.; SILVA, W. C.; GUEDES, M. C.; P F A o a p cidade de Macapá. Revista Verde de Agroecologia e Desenvolvimento OLIVEIRA, C. P.; SILVA, D. A. S.; BATISTA, A. P. B. Volumetria e classificação da S b C u a O Sustentável, v. 8, n. 4, p. 152–158, 2013. capacidade produtiva para Mora paraensis (Ducke) no estuário amapaense. l a c N e t i C BENTES-GAMA, M. M.; SCOLFORO SOARES, J. R.; GAMA, J. R. V. Potencial produtivo Scientia Forestalis, v. 42, n. 101, p. 141–154, 2014. a o E e n ) de madeira e palmito de uma floresta secundária de várzea baixa no estuário LOUREIRO, A. A.; SILVA, M. F. Catálogo das madeiras da Amazônia. Belém: L s i O n t S amazônico. Revista Árvore, v. 26, n. 3, p. 311–319, 2002. Superintendência do Desenvolvimento da Amazônia, 1968. r a u , C c BESAG, J. Contribution to the discussion of Dr Ripley's paper. Journal of the Royal MELACK, J. M.; HESS, L. L. Remote sensing of the distribution and extent of wetlands v . t á C u r . Statistical Society, v. 39, n. 2, p. 193–195, 1977. in the Amazon basin. In: JUNK, W. J.; PIEDADE, M. T. F.; WITTMANN, F.; r z e e e t a a BRUZINGA, J. S.; OLIVEIRA, M. L. R. D.; MACHADO, E. L. M.; LEITE, H. G.; PEREIRA, I. SCHO NGART, J.; PAROLIN, P. (Eds.); Amazonian Floodplain Forests: Ecoph- a n l f . o M.; NOGUEIRA, G. S. Distribuição espacial de indivıd́ uos adultos de pequi. ysiology, Biodiversity and Sustainable Management. Berlin: Springer Nether- d r s e m

Scientia Forestalis, v. 41, n. 98, p. 249–256, 2013. lands, 2010. p. 43–59 s t a CARIM, M. J. V.; JARDIM, M. A. G.; MEDEIROS, T. D. S. Composição florıś tica e estrutu- MIRANDA, Z. P.; GUEDES, M. C.; BATISTA, A. P. B.; SILVA, D. A. S. Natural Regeneration i n l l - t ra de floresta de várzea no municıṕ io de Mazagão, Estado do Amapá, Brasil. s Dynamics of Mora paraensis (Ducke) Ducke in Estuarine Floodplain Forests of h c e Scientia Forestalis, v. 36, n. 79, p. 191–201, 2008. a l the Amazon River. Forests, v. 9, n. 54, p. 1–14, 2018. A e m

CARIM, M. J. V.; WITTMANN, F. K.; PIEDADE, M. T. F.; GUIMARAES, J. R. S.; TOSTES, L. MOREIRA, F. M. S.; MOREIRA, F. W. Caracterıś ticas da germinação de sementes de s p a a C. L. Composition, diversity, and structure of tidal “Várzea” and “Igapó” flood- 64 Leguminosas florestais nativas da Amazônia, em condições de viveiro. Acta z o t i n plain forests in eastern Amazonia, Brazil. Brazilian Journal of Botany, v. 40, n. Amazonica, v. 26, n. 1–2, p. 3–15, 1996. a i l a p

1, p. 115–124, 2017. PAROLIN, P.; FERREIRA, L. V.; ALBERNAZ, A. L. K. M.; ALMEIDA, S. S. Tree species n a e t t CATTANIO, J. H.; ANDERSON, A. B.; CARVALHO, M. S. Floristic composition and distribution in Várzea forests of Brazilian Amazonia. Folia Geobotanica, v. 39, s e t r u

topographic variation in a tidal floodplain forest in the Amazon Estuary. n

n. 4, p. 371–383, 2004. a r o

Brazilian Journal of Botany, v. 25, n. 4, p. 419–430, 2002. PINTO, E. R. Solos, hidrologia e estrutura populacional de pracuubeiras em y f CONNELL, J. H. On the role of natural enemies in prevent competitive exclusion in florestas de várzea do estuário amazônico. 2014. 69 f. Dissertação (Mestra- M o r

some marine animal and rainforest trees. In: DEN BOER, K. A.; GRADWELL G. do) Universidade Federal do Amapá/UNIFAP: Macapá, 2014. a

R. (Eds.). Proceedings of the advanced study institute on dynamics of QUEIROZ, J. A. L.; MACHADO, S. A. Potencial de utilização madeireira de espécies p a r

numbers in populations. Wageningen: PUDOC, 1971. p. 298–312. florestais de várzea no municıṕ io de Mazagão no Estado do Amapá. Floresta, a e

COSTA, E. A.; FINGER, C. A. G.; CUNHA, T. A. Influência da posição social e do número v. 37, n. 2, p. 293–302, 2007. n s i

de raios na estimativa da área de copa em araucária. Floresta, v. 43, n. 3, p. QUEIROZ, J. A. L.; MACHADO, S. A. Estrutura e dinâmica de floresta de várzea no s 429–438, 2013. estuário amazônico no estado do Amapá. Pesquisa Florestal Brasileira, v. 37, CRESSIE, N. Statistics for spatial data. Terra Nova, v. 4, n. 5, p. 613–617, 1992. n. 3, p. 5–20, 2008. DANTAS, A. R.; MARANGON, L. C.; GUEDES, M. C.; FELICIANO, A. L. P.; LIRA-GUEDES, QUEIROZ, J. A. L.; MOCHIUTTI, S.; MACHADO, S. A. Distribuição diamétrica em A. C. Spatial distribution of a population of Pentaclethra macroloba (Willd.) floresta de várzea do braço norte do Rio Amazonas. Revista de Ciências Kuntze in a floodplain forest of the Amazon estuary. Revista Árvore, v. 41, n. 4, Agrárias Amazonian Journal of Agricultural and Environmental Scien- p. e410406, 2017. ces, v. 46, n. 1, p. 151–170, 2006. DIXON, P. M. Ripley's K function. In: EL-SHAARAWI, A. H.; PIERGORSCH, W. W. QUEIROZ, J. A. L.; MOCHIUTTI, S.; MACHADO, S. A.; GALVAO, F. Composição florıś tica (Eds.). The encyclopedia of environmetrics. New Jersey: Wiley, 2002. p. e estrutura de floresta em várzea alta estuarina Amazônica. Floresta, v. 35, n. 1796–1803. 1, p. 41–56, 2005. DUCKE, A. Notas sobre a Flora Neotrópica II: as Leguminosas da Amazônia Brasilei- R CORE TEAM. R: A Language and Environment for Statistical Computing. 2019. ra. Boletim Técnico do Instituto Agronômico do Norte, n. 18, p. 48–65, Disponıv́ el em: https://www.r-project.org (Acessada em 07/05/2019). 1949. RABELO, F. G.; ZARIN, D. J.; OLIVEIRA, F. A.; JARDIM, F. C. S. Regeneração natural de FORTINI, L. B.; CROPPER JR, W. P.; ZARIN, D. J. Modeling the complex impacts of florestas estuarinas na região do Rio Amazonas-Amapá-Brasil. Revista de timber harvests to find optimal management regimes for Amazon tidal Ciências Agrárias Amazonian Journal of Agricultural and Environmental floodplain forests. PloS one, v. 10, n. 8, p. e0136740, 2015. Sciences, n. 34, p. 129–138, 2000. FORTINI, L. B.; RABELO, F. G.; ZARIN, D. J. Mixed potential for sustainable forest use RABELO, F. G.; ZARIN, D. J.; OLIVEIRA, F. A.; JARDIM, F. C. S. Diversidade, composição in the tidal floodplain of the Amazon River. Forest Ecology and Management, florıś tica e distribuição diamétrica do povoamento com DAP ≥ 5 cm em região v. 231, n. 1, p. 78–85, 2006. de estuário no Amapá. Revista de Ciências Agrárias Amazonian Journal of FORTINI, L. B.; ZARIN, D. J. Population dynamics and management of Amazon tidal Agricultural and Environmental Sciences, n. 37, p. 91–112, 2002. floodplain forests: Links to the past, present and future. Forest Ecology and RIPLEY, B. D. Modelling spatial patterns. Journal of the Royal Statistical Society, v. Management, v. 261, n. 3, p. 551–561, 2011. 29, n. 2, p. 172–212, 1977. GAVIN, D. G.; PEART, D. R. Spatial structure and regeneration of Tretamerista glabra RIPLEY, B. D. Statistical inference for spatial processes. Cambridge: Cambridge in peat swamp rain forest in Indonesian Borneo. Plant Ecology, v. 131, n. 2, p. University Press, 1991. 23–231, 1997. SANTOS, G. C.; JARDIM, M. A. G. Florıś tica e estrutura do estrato arbóreo de uma GRIZ, L. M. S.; MACHADO, I. C. S. Fruiting phenology and seed dispersal syndromes floresta de várzea no municıṕ io de Santa Bárbara do Pará, Estado do Pará, in caatinga, a tropical dry forest in the northeast of Brazil. Journal of Tropical Brasil. Acta Amazonica, v. 36, n. 4, p. 437–446, 2006. Ecology, v. 17, n. 2, p. 303–321, 2001. SANTOS, R. O.; SOARES, R. N.; DANTAS, B. S.; ABREU, J. C.; LIMA, R. B. Processos HIGUCHI, P.; OLIVEIRA-FILHO, A. T.; BEBBER, D. P.; BROWN, N. D.; SILVA, A. C.; amostrais para estimativa de parâmetros estruturais de uma floresta estuari- MACHADO, E. L. M. Spatio-temporal patterns of tree community dynamics in a na no estado do Amapá. Nativa, v. 4, n. 5, p. 308–316, 2016. tropical forest fragment in South-east Brazil. Plant Ecology, v. 199, n. 1, p. SEIDLER, T. G.; PLOTKIN, J. B. Seed dispersal and spatial pattern in tropical trees. 125–135, 2008. PLoS Biology, v. 4, n. 11, p. e344, 2006. HUBBELL, S. P. The unified neutral theory of biodiversity and biogeography. SILVA, D. A. S.; BATISTA, A. P. B.; APARIC IO, W. C. S.; APARIC IO, P. S.; LIMA, R. B. New Jersey: Princeton University Press, 2001. Sucessão ecológica de uma floresta de várzea submetida a ações antrópicas HUGHES, L.; DUNLOP, M.; FRENCH, K.; LEISHMAN, M. R.; RICE, B.; RODGERSON, L.; em Macapá, Amapá, Brasil. Revista Verde de Agroecologia e Desenvolvi- WESTOBY, M. Predicting dispersal spectra: a minimal set of hypotheses based mento Sustentável, v. 8, n. 2, p. 218–223, 2013. on plant attributes. Journal of Ecology, v. 82, n. 4, p. 933–950, 1994. SOUSA, W.; MITCHELL, B. J. The effect of seed predators on plant distributions: is IBGE. Manual técnico da vegetação brasileira: sistema fitogeográfico, inventário there a general pattern in mangroves. Oikos, v. 86, n. 1, p. 55–66, 1999. das formações florestais e campestres, técnicas e manejo de coleções botâni- SOUZA, A. L.; SOARES, C. P. B. Florestas nativas: estrutura, dinâmica e manejo. cas e procedimentos para mapeamentos. Rio de Janeiro: IBGE, 2012. Viçosa, Minas Gerais: UFV, 2013. INMET. Normais climatológicas do Brasil 1981-2010. Brasıĺ ia: INMET/MAPA, SOUZA, J. P.; COIMBRA, F. G. Estrutura populacional e distribuição espacial de 2018. Qualea parviflora Mart. em um Cerrado sensu stricto. Bioscience Journal, v. JANZEN, D. H. Herbivores and the number of tree species in tropical forests. Ameri- 21, n. 2, p. 65–70, 2005. can Naturalist, v. 104, n. 940, p. 501–528, 1970. STURGES, H. A. The choice of a class interval. Journal of the American Statistical JOHN, R.; DALLING, J. W.; HARMS, K. E.; YAVITT, J. B.; STALLARD, R. F.; MIRABELLO, Association, v. 21, n. 153, p. 65–66, 1926. M.; HUBBEL, S. P.; VALENCIA, R.; NAVARRETE, H.; VALLEJO, M.; FOSTER, R. B. WITTMANN, F. K.; HOUSEHOLDER, E.; PIEDADE, M. T. F.; JUNK, W. J. Habitat specifi- Soil nutrients influence spatial distributions of tropical tree species. Procee- city, endemism and the neotropical distribution of Amazonian white-water dings of the National Academy of Sciences, v. 104, n. 3, p. 864–869, 2007. floodplain trees. Ecography, v. 36, n. 6, p. 690–707, 2013. JUNK, W. J. Flood tolerance and tree distribution in central Amazonian floodplains. WITTMANN, F. K.; JUNK, W. J.; PIEDADE, M. T. F. The várzea forests in Amazonia: In: HOLM-NIELSEN, L. B.; NIELSEN, I. C.; BALSLEV, H. (Eds.). Tropical Forests: flooding and the highly dynamic geomorphology interact with natural forest Botanical Dynamics, Speciation and Diversity. London: Academic Press, succession. Forest Ecology and Management, v. 196, n. 2–3, p. 199–212, 1989. p. 47–64. 2004. JUNK, W. J.; PIEDADE, M. T. F.; SCHO NGART, J.; COHN-HAFT, M.; ADENEY, J. M.; WITTMANN, F. K.; SCHO NGART, J.; MONTERO, J. C.; MOTZER, T.; JUNK, W. J.; WITTMANN, F. A classification of major naturally-occurring Amazonian PIEDADE, M. T. F.; QUEIROZ, H. L.; WORBES, M. Tree species composition and lowland wetlands. Wetlands, v. 31, n. 4, p. 623–640, 2011. diversity gradients in white-water forests across the Amazon Basin. Journal of KUBITZKI, K.; ZIBURSKI, A. Seed dispersal in flood plain forests of Amazonia. biogeography, v. 33, n. 8, p. 1334–1347, 2006. Biotropica, v. 26, n. 1, p. 30–43, 1994. WONG, W. S. D.; LEE, J. Statistical analysis of geographic information with LAMPRECHT, H. Silvicultura nos trópicos: ecossistemas florestais e respectivas ArcView GIS and ArcGIS. New Jersey: Wiley, 2005.

Biota Amazônia ISSN 2179-5746