Climate Change Adaptation and Mitigation

Total Page:16

File Type:pdf, Size:1020Kb

Climate Change Adaptation and Mitigation Stratford-on-Avon District Development Requirements Supplementary Planning Document (SPD) Consultation Draft Part V: Climate Change Adaptation and Mitigation January 2020 Stratford-on-Avon District Council – January 2020 2 Part V: Climate Change Adaptation and Mitigation Contents V1. How to Use this SPD – The 5 Principles and Checklists 4 V2. Principle 1: Increasing accessibility - reducing the need to travel by private car 5 V3. Principle 2: Improving energy efficiency in buildings 8 V4. Principle 3: Adapting to Higher Temperatures 16 V5. Principle 4: Mitigating Flood Risk 21 V6. Principle 5: Mitigating Biodiversity loss 25 V7. Case Studies 27 V8. Climate Change Checklist 32 Appendix 1: Climate Change Checklist for New Build (Non-Householder) Developments where over 20 Square Metres of Additional Floorspace is proposed 33 Appendix 2: Climate Change Checklist for Conversion and Change of Use developments 36 Appendix 3: Climate Change Checklist for Householder Developments where over 20 square metres of Additional Floorspace is Proposed 38 Appendix 4: Glossary 40 Stratford-on-Avon District Council – January 2020 3 This part of the Development Requirements SPD provides further detailed guidance on the interpretation of the following Core Strategy policies in relation to climate change mitigation and adaptation, as appropriate: CS.2 Climate Change and Sustainable Construction CS.3 Sustainable Energy CS.4 Water Environment and Flood Risk CS.5 Landscape CS.6 Natural Environment CS.7 Green Infrastructure CS.9 Design and Distinctiveness CS.19 Housing Mix and Type CS.22 Economic Development CS.25 Healthy Communities CS.26 Transport & Communications AS.1-9 Area Strategies AS.10 Countryside and Villages AS.11 Large Rural Brownfield Sites It will be used by Stratford-on-Avon District Council to help reach decisions on whether to approve or refuse planning applications. Making sure that applications comply with the guidance contained within SPD will make it easier for the Council to grant planning permission. Stratford-on-Avon District Council – January 2020 4 V1. How to Use this SPD – The 5 Principles and Checklists Stratford-on-Avon District Council is committed to tackling climate change, and in July 2019 the Council declared a ‘Climate Emergency’ as a pledge to take local action to contribute to national carbon neutral targets. The National Planning Policy Framework (NPPF) recognises the role of the planning system in supporting the transition to a low carbon future by helping to shape places that contribute to reductions in greenhouse gas emissions, minimise vulnerability and improve resilience. In February 2019 the Committee on Climate Change assessed whether homes are adequately prepared for the challenges of climate change. The Committee identified in its report ‘UK Housing: Fit for the Future?’ a number of actions including the need for new homes to be built to be low-carbon, energy and water efficient and climate resilient. In a joint report by the Royal Town Planning Institute and Town and Country Planning Association ‘Rising to the Climate Crisis: A Guide for Local Authorities on Planning for Climate Change’ (Dec. 2018) it is acknowledged that whilst work is needed at an international and national level, local action is also needed as the solutions to many of the adverse impacts of climate change need to be developed locally. Land use planning can contribute to the transition to a low-carbon future, centred on the following 5 principles based around two key themes: 1. Reducing greenhouse gas emissions Principle 1: Increasing accessibility - reducing the need to travel by private car Principle 2: Improving energy efficiency 2. Implementing adaptation and mitigation measures Principle 3: Adapting to higher temperatures Principle 4: Mitigating flood risk Principle 5: Mitigating biodiversity loss Checklists for applicants to provide a minimum level of climate change adaptation and mitigation measures, centred around the 5 key principles, are provided within Appendices 1-3. Detailed guidelines for how to apply the checklists to new development proposals is provided within Section V8. Case Studies that demonstrate each of the 5 key principles being applied in practice within existing developments in the District and County are provided within Section V7. Stratford-on-Avon District Council – January 2020 5 V2. Principle 1: Increasing accessibility - reducing the need to travel by private car Private cars contribute towards a large proportion of the UK’s total carbon emissions, with transport being the largest contributor to greenhouse gas emissions in Britain. This has primarily been caused by an increase in the length of trips taken and a modal shift towards the car as well as changing land use patterns. There are opportunities for more sustainable transport choices and healthy lifestyles through well planned development and providing practical and sustainable alternatives to private car travel is therefore critical to tackling the climate crisis. A report by the Urban Transport Group ‘Making the Connections on Climate’ (Nov. 2019) highlights the connections that can be made on climate between transport and energy, and between transport and the decarbonisation and adaptation of the built interventions. This section of the SPD provides details of how interventions can be achieved in new development within the District. However, Stratford-on-Avon District is an area of relatively small towns and rural settlements and this context needs to be borne very much in mind when considering viable alternatives to the private car and light commercial vehicles. V.2.1 Density and Mixed Use Density plays an important part in reducing people’s reliance on using a private car. Higher density developments can make destinations easily accessible by walking or cycling and can bring people together to support local public transport, facilities and local services. Due to Stratford District being rural in nature, an appropriate density should be considered for each new development which will help form the context, accessibility, proposed building types, form and character of the area. Mixed use developments can provide a wide range of services and facilities including employment opportunities, schools, healthcare provision, recreational and leisure facilities, open green spaces and many more. These developments should be encouraged where appropriate and provide facilities which are within 10 minutes (800m) walking distance of dwellings. Further information on how developments can be designed to incorporate principles of higher density and mixed uses is available in Part A: Achieving Good Design. Case Study An example of how higher densities can be successfully used order to reduce the need to travel by the private car is in the Case Study of the Arden Quarter, Stratford- upon-Avon in Section V7 (Case Study 1) V.2.2 Walkability/Permeability New developments should provide active frontages that are directly accessible by foot and overlooked from the street. This can help in reducing crime by providing natural surveillance and ensuring streets are community friendly which in turn encourages walking and social interaction. Stratford-on-Avon District Council – January 2020 6 Developments should provide permeable networks as these encourage walking and cycling and make places easy to navigate through especially for visitors. Signage should be provided on all new developments to show the main pedestrian and cycling routes to village centres and key facilities and to make it easy for pedestrians and cyclists to find their way through new developments. Signage should be clear and include the distance to key facilities and approximate timings to encourage and promote walking and cycling. Consideration should be given to providing seating/resting places along well used routes to assist less mobile persons to reach key facilities. Case Study For an example of how to make developments more pedestrian friendly, please see the Case Study of Northgate, Warwick in Section V7 (Case Study 2) V.2.3 Integrated Active Travel Development should be directed to areas that minimise the need to travel and maximise the use of sustainable modes of transport, with walking and cycling actively being promoted to and from the development site. All developments should ensure that key facilities such as schools, shops, GP surgeries and bus stops are well connected by walking, cycling or public transport provision. Cycling and walking provision should provide suitable crossing facilities where necessary as well as appropriate lighting levels and security measures to ensure the safety and security of pedestrians and cyclists. When considering the provision of pedestrian and cycling routes and facilities these should be designed for all users including elderly and disabled residents. Where there is existing pedestrian/cycling provision, developments should consider whether it is suitable for its proposed use taking into consideration existing and future links to public transport. These should be improved where appropriate. The National Design Guide (Oct. 2019) identifies ‘movement’ as one of ten characteristics of well-designed places, and highlights the need for an integrated network for all modes of transport giving people maximum choice in how to make their journeys, prioritizing pedestrians and cyclists. Case Study An example of how a residential development can be designed to promote walking, cycling and public transport as realistic modes of travel is in the
Recommended publications
  • Hydropower Or Private Power
    HYDROPOWER OR PRIVATE POWER River Development Resistance in the Chilean Landscape Lydia M. Bleifuss A thesis written in partial fulfillment of the requirements for the degree of Bachelor of Arts. Department of Environmental Studies Lewis & Clark College Portland, Oregon May 2016 DEDICATION To Ella Bump 1 ACKNOWLEDGEMENTS I would fist like to extend my greatest appreciation to those who made time to speak with me in Chile, despite my less than impressive Spanish. This thesis would not have been possible without the insights of both the interviewees who are cited here, and the many other conversations that filled my travels. Special thanks to Thomas, Anthony, Gabriel, Adele, Coto, Matias, Raketa, and Rocio for their hospitality and kindness. I would also like to thank the SAAB Research Grant Board and the Renewable Energy Fee Fund Committee for the finances to both conduct and translate my research. Specifically, Julie Jacobs’ and Marlon Jimenez Oviendo’s guidance was instrumental in the grant processes. I would also like to acknowledge Jim Proctor and the Environmental Studies 2016 senior class for their intellectual support and constant inspiration. Jhana Taylor Valentine was the most wonderful academic companion and friend throughout this year, to whom I owe my sanity. Special thanks to Alistair Bleifuss for wading through a very rough draft and coming through with excellent advice. For their unwavering love and support, I would finally like to extend my constant gratitude to my comrades and housemates, Bear, Izzy, Analise, and Alex, and to my magnificent parents. 2 ABSTRACT This thesis centers on hydropower development and questions its continuing expansion as subsequent ecological and social challenges compound.
    [Show full text]
  • Reduce, Reuse and Reimagine
    2019 URBAN ENERGY REPORT REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY URBAN INSIGHT 2019 URBAN ENERGY REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY iii URBAN INSIGHT 2019 URBAN ENERGY REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY PETER WEINEM JOHNNY IVERSEN MARCIN BALCEREK 1 URBAN INSIGHT 2019 URBAN ENERGY REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY SMART ENERGY RE-USE IS GAINING IMPORTANCE IN URBAN DEVELOPMENT, PARTICULARLY IN ADDRESSING GLOBAL CLIMATE CHANGE CHALLENGES AND FUTURE LIMITED FOSSIL FUEL RESOURCES. 2 URBAN INSIGHT 2019 URBAN ENERGY REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY CONTENTS 1 INTRODUCTION 4 2 WHAT IS “RE-USE OF ENERGY” IN URBAN DEVELOPMENT? 6 3 WHICH KINDS OF ENERGY DO WE FINALLY CONSUME? 10 4 EFFICIENT UTILISATION OF FUEL 14 5 WASTE AS A MEASURE OF ENERGY RE-USE 22 6 SMART ENERGY SYSTEMS 30 7 CONCLUSIONS AND RECOMMENDATIONS 36 8 ABOUT THE AUTHORS 44 9 REFERENCES 46 FOR FOOTNOTES, SEE REFERENCES, PAGE 47. 3 URBAN INSIGHT 2019 URBAN ENERGY REDUCE, REUSE AND REIMAGINE – SUSTAINABLE ENERGY DEVELOPMENT IN THE CITY 1. Designing and planning the communities and cities of the future will INTRODUCTION involve not only saving energy, but also developing smart energy-efficient solutions focused on the re-use of energy. Great amounts of energy are currently wasted in our cities. We need to identify creative new ways to reuse this energy. Energy that can be harvested and reused will be an essential part of the future energy system.
    [Show full text]
  • Energy Hierarchy and Building Design
    Energy Hierarchy and Building Design Andrew Cruse, AIA LEED AP Assistant Professor of Architecture Ohio State University 2 O O R R Image: Transsolar Building Sustainability Renewable Codes Standards Technologies 3 4 Waste Hierarchy 5 CONVER T CONTRO L CONSERV E Waste Hierarchy Energy Hierarchy 6 CONVERT Get energy from renewable sources CONVERT CONTROL Make sure energy that is being used is used efficiently through a review of Mechanical and Electrical Equipment CONTROL CONSERV PErevent unnecessary energy use through Passive Climate Control Strategies and Behavioral Strategies CONSERV E Energy Hierarchy 7 CONVER T CONTROL CONSERVE Passive Building and Behavioral Strategies • largest impact with the least expense • pre-schematic design choices about building siting and orientation, passive solar and ventilation CONSERV options, landscape choices. • schematic design choices about the building enve- lope, both opaque and transparent walls. E • building occupant education and awareness Energy Hierarchy 8 Passive Climate Control System typically does not rely on purchased energy and uses basic elements of the building such as windows, walls, floors, etc. Active Climate Control Systems typically relies on purchased energy and dedicated equipment within the building (ducts, motors, wires, etc.) CONSERVE 9 Typical Project Potential for Phases Impact CONSERVE 10 Urba Suburba Rura n n l Context matters CONSERVE 11 The Environmental Value of Building Reuse - National Trust for Historic Preservation New Construction versus Rehabilitation CONSERVE
    [Show full text]
  • The Energy Hierarchy Approach to Optimum Use of Energy Infrastructure - Sharing Ideas from the Uk and Other Parts of Europe
    Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan THE ENERGY HIERARCHY APPROACH TO OPTIMUM USE OF ENERGY INFRASTRUCTURE - SHARING IDEAS FROM THE UK AND OTHER PARTS OF EUROPE - Ian M. ARBON1 1 EurIng Prof Ian M. Arbon MSc, MBA, CEng, CEnv FIMechE, FASME, FEI, FInstR, FIES Sustainable Energy Consultant, Engineered Solutions, Girvan, Scotland, UK, Immediate Past Chairman, Energy, Environment & Sustainability Group, Institution of Mechanical Engineers [email protected] ABSTRACT: This paper focuses on how the Energy Hierarchy could be used to guide new energy infrastructure policies in Japan, in the context of the 2011 earthquake, examining parallels with Europe, particularly the UK. The Hierarchy approach considers pragmatic pathways towards a sustainable energy future for Japan with reference to all forms of energy, not just electricity. Although engineering solutions are crucial, the Hierarchy recognises that a primary influence on energy consumption is human behaviour. INTRODUCTION The stated aim of The Institution of Mechanical Engineers (IMechE) is “Improving the world through engineering”. There are 100,000 IMechE members, and a large number of those have signed up to the Energy, Environment and Sustainability Group (EESG). IMechE, specifically EESG, was instrumental in formulating the “Energy Hierarchy”, a sustainability framework for advocating the prioritisation of energy-saving as the most important step in a whole-system energy strategy (followed by energy efficiency and renewable energy) to provide a logical framework for the development of technically coherent sustainable energy policies. This was launched internationally at ICOMES in 2007 and has gained acceptance across many of the world’s engineering societies.
    [Show full text]
  • Renewable Energy and Sustainable Construction Study
    Centre for Sustainable Energy Teignbridge District Council Renewable Energy and Sustainable Construction Study Final Report, 7 December 2010 (Amended version) Document revision 1.1 3 St Peter’s Court www.cse.org.uk We are a national charity that shares Bedminster Parade 0117 934 1400 our knowledge and experience to Bristol [email protected] help people change the way they BS3 4AQ reg charity 298740 think and act on energy. Teignbridge Renewable Energy and Sustainable Construction Study Table of Contents EXECUTIVE SUMMARY .................................................................................................................................... 5 1) INTRODUCTION .............................................................................................................................. 5 2) SUSTAINABLE ENERGY RESOURCES IN TEIGNBRIDGE ...................................................................... 5 3) POTENTIAL FOR DISTRICT HEATING ................................................................................................. 6 4) ENERGY OPPORTUNITIES PLANS .................................................................................................... 7 5) COST OF ZERO CARBON DEVELOPMENT .......................................................................................... 8 6) POLICY IMPLEMENTATION .............................................................................................................. 9 7) CONCLUSIONS AND RECOMMENDATIONS .......................................................................................
    [Show full text]
  • Energy Performance Assessment Framework for Residential Buildings in Saudi Arabia
    sustainability Article Energy Performance Assessment Framework for Residential Buildings in Saudi Arabia Mohammad AlHashmi 1 , Gyan Chhipi-Shrestha 1,* , Rajeev Ruparathna 2, Kh Md Nahiduzzaman 1 , Kasun Hewage 1 and Rehan Sadiq 1 1 School of Engineering, University of British Columbia (Okanagan), 3333 University Way, Kelowna, BC V1V1V7, Canada; [email protected] (M.A.); [email protected] (K.M.N.); [email protected] (K.H.); [email protected] (R.S.) 2 Department of Civil and Environmental Engineering, University of Windsor, 2285 Wyandotte St. W., Windsor, ON N9B 3P4, Canada; [email protected] * Correspondence: [email protected] Abstract: The residential sector consumes about 50% of the electricity produced from fossil fuels in Saudi Arabia. The residential energy demand is increasing. Moreover, a simple building energy performance assessment framework is not available for hot arid developing countries. This research proposes an energy performance assessment framework for residential buildings in hot and arid regions, which focuses on three performance criteria: operational energy, GHG emissions, and cost. The proposed framework has been applied to three types of residential buildings, i.e., detached, attached, and low-rise apartments, in five geographical regions of Saudi Arabia. Design Builder® was used to simulate the energy demand in buildings over a whole year. Four types of efficiency improvement interventions, including double-glazed windowpanes, triple-glazed windowpanes, LED lighting, and split air conditioners, were introduced in 12 combinations. Overall, 180 simulations Citation: AlHashmi, M.; were performed which are based on 12 intervention combinations, three building types, and five Chhipi-Shrestha, G.; Ruparathna, R.; Nahiduzzaman, K.M.; Hewage, K.; regions.
    [Show full text]
  • Summary of Renewable Energy Potential Study
    West Somerset Local Planning Authority Area Renewable & Low Carbon Energy Potential Study 2. Headline Summary 2.1 This section summarises the main findings of the renewable, low and zero carbon study. More detailed analysis can be found in the main body of the report with supporting material included in the accompanying Appendices. WHY DO THE STUDY? 2.2 Government guidance (Planning Policy Guidance and Statements or PPGs and PPSs) requires Local Development Framework Core Strategies (and other development plan documents) and the policies within them to be supported by robust evidence, which includes the development of an understanding of renewable, low and zero carbon resources and potential. Policies for consideration in the Core Strategy should be drafted on the basis of this evidence base. Recent Government draft guidance (the draft National Planning Policy Framework or NPPF) which will replace current PPGs and PPSs also suggests a need for evidence to support planning policy development in new style Local Plans. In addition, other factors drive the need for a better understanding of energy potential, including: • a changing climate; • national carbon dioxide (CO2) reduction targets enforced for new development through Building Regulations and renewable energy generation targets; • security of energy supply; • rising costs of energy to the consumer and energy producer; and, • employment and business opportunities presented by a low carbon economy. CONTEXT 2.3 This document reports the findings of a study compiling an evidence base on renewable, low and zero carbon energy potential for the developing West Somerset Core Strategy (or future new style Local Plan) and the policy response to the need to meet renewable energy generation and carbon dioxide emissions reduction targets set nationally.
    [Show full text]
  • Monmouthshire Renewable Energy and Energy Efficiency Supplementary Planning Guidance March 2016 Monmouthshire Renewable Energy and Energy Efficiency SPG
    Monmouthshire Renewable Energy and Energy Efficiency Supplementary Planning Guidance March 2016 Monmouthshire Renewable Energy and Energy Efficiency SPG Image: Llancayo Solar Farm, Source: Morspan Ltd, Llancayo, Usk We print on 100% recycled paper from sustainable suppliers accredited to ISO 14001. i Monmouthshire Renewable Energy and Energy Efficiency SPG Document Control Sheet Project Name: Monmouthshire Renewable Energy and Energy Efficiency Project Ref: 26703 Report Title: Supplementary Planning Guidance Doc Ref: R001/rev012 Date: March 2016 Name Position Signature Date Associate Claire Mitcham 15 May 2013 Prepared by: Director of Paul Maryan Sustainability Claire Mitcham Associate 15 May 2013 Reviewed by: John Baker Partner 15 May 2013 Approved by: For and on behalf of Peter Brett Associates LLP Revision Date Description Prepared Reviewed Approved C Rev 00 9 October 2012 Final Draft C Mitcham J Baker Mitcham P Maryan Changes to structure and C Rev 01 15 May 2013 J Baker J Baker content Mitcham 18 December S Jones M Davies M Davies Rev 02 Factual update 2014 (MCC) (MCC) (MCC) February/March S Jones M Davies M Davies Rev 03 Factual update 2016 (MCC) (MCC) (MCC) Peter Brett Associates LLP disclaims any responsibility to the Client and others in respect of any matters outside the scope of this report. This report has been prepared with reasonable skill, care and diligence within the terms of the Contract with the Client and generally in accordance with the appropriate ACE Agreement and taking account of the manpower, resources, investigations and testing devoted to it by agreement with the Client. This report is confidential to the Client and Peter Brett Associates LLP accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known.
    [Show full text]
  • Energy Guidance Note
    Energy Guidance Note www.naturalresourceswales.gov.uk Version History: Document Date Summary of Changes Version Published 1.0 XX February Document created 2017 Notice All Natural Resources Wales Guidance Notes are covered by copyright. Please be aware that the use of any material within this document must be carried out in line with the NRW Copyright Statement and Disclaimer Standard Notice, a copy of which is available from the Access to Information Team on [email protected]. Any re-use of this information will be determined by the Re-use of Public Sector Information Regulations 2005, again details available from the Access to Information Team. Published by: Natural Resources Wales Cambria House 29 Newport Road Cardiff CF24 0TP 0300 065 3000 (Mon-Fri 8am-6pm) [email protected] www.naturalresourceswales.gov.uk © Natural Resources Wales All rights reserved. This document may only be reproduced with the written permission of Natural Resources Wales Page 2 of 25 www.naturalresourceswales.gov.uk Contents 1.0 Introduction ................................................................................................................ 5 1.1 Background ................................................................................................................ 5 1.2 Purpose of Statement ................................................................................................. 5 2.0 Policy Context ...........................................................................................................
    [Show full text]
  • Energy Efficiency and Adaptation
    Camden Planning Guidance | Energy efficiency and adaptation Camden Planning Guidance .1 Energy efficiency and adaptation January 2021 Camden Planning Guidance I Energy efficiency and adaptation CPG Energy efficiency and adaptation 1 Introduction 3 2 The Energy Hierarchy 4 3 Making buildings more energy efficient 5 4 Decentralised energy 10 5 Renewable energy technologies 16 6 Energy statements 25 7 Energy reduction 31 8 Energy efficiency in existing buildings 36 9 Reuse and optimising resource efficiency 43 10 Sustainable design and construction principals 49 11 Sustainable assessment tools 58 Appendix 1 62 Presentation of carbon reductions calculations for the Energy Assessment Appendix 2 64 Policy application for mixed use developments Appendix 3 69 CHP and District Heating Feasibility Assessment Checklists Appendix 4 73 Low and Zero Carbon technology comparison 2 Camden Planning Guidance I Energy efficiency and adaptation 1. Introduction What is Camden Planning Guidance? 1.1 The Council has prepared this Camden Planning Guidance (CPG) on Energy and resources to support the policies in the Camden Local Plan 2017. This guidance is therefore consistent with the Local Plan and forms a Supplementary Planning Document (SPD) which is an additional “material consideration” in planning decisions. 1.2 This document should be read in conjunction with and within the context of the relevant policies in Camden's Local Plan, other Local Plan documents and other Camden Planning Guidance documents What does this guidance cover? 1.3 This guidance provides information on key energy and resource issues within the borough and supports Local Plan Policies CC1 Climate change mitigation and CC2 Adapting to climate change.
    [Show full text]
  • Put Some Energy Into a Smart, Green Strategy
    Put Some Energy Into a Smart, Green Strategy The Government of Ontario has given some positive signals on the energy front: coal- powered plants are being phased out and the Premier has called for a culture of conservation. Ontario must take the next step on this path with a smart, green approach. Jurisdictions like California and Europe, which faced energy challenges earlier than Ontario, can point the way. Critical long-term decisions about Ontario’s energy future are being made right now. The time has come for Premier McGuinty and the Ontario Government to lead the way to a smart, green energy future without coal or nuclear power that will keep the lights on and protect Ontario’s health, environment and economy. Produced as a collaborative effort of WWF-Canada, Greenpeace Canada, Pembina Institute for Appropriate Development, Sierra Club of Canada, Ontario Clean Air Alliance, and the David Suzuki Foundation working together for a smart, green energy future for Ontario. For more information, visit wwf.ca ���������������������������� Ontario Clean Air Alliance California has already built the equivalent of 12 ‘conservation power plants’ with energy efficiency investments, that has replaced the need for 12,000 MW of generation capacity (or almost 50 per cent of Ontario’s peak demand on a hot summer day). Renewable energy in California provides another 6,257 MW of capacity in 2005, or almost one-quarter of peak demand. Smart and Green Is Practical Reject the OPA Plan Accepting the Ontario Power Authority (OPA) The OPA plan would repeat many of the mistakes recommendation would be a step in the opposite that left Ontarian’s choking on a $39 billion debt direction.
    [Show full text]
  • Draft Energy Assessment Guidance 2020
    Energy Assessment Guidance Greater London Authority guidance on preparing energy assessments as part of planning applications (April 2020) DRAFT DRAFT ENERGY ASSESSMENT GUIDANCE COPYRIGHT Greater London Authority April 2020 Published by Greater London Authority City Hall The Queen’s Walk More London London SE1 2AA www.london.gov.uk enquiries 020 7983 4100 ISBN Photographs © Copies of this report are available from www.london.gov.uk DRAFT ENERGY ASSESSMENT GUIDANCE CONTENTS Summary of guidance updates 1 Purpose of energy assessments 3 1. Introduction 3 2. Requirements for different types of planning application 6 3. Integration with supporting documents for planning applications 8 Structure and content of energy assessments 9 4. Executive summary of the energy assessment 9 5. Carbon emission factors 11 6. Establishing CO2 emissions 13 7. Demand reduction (Be Lean) 20 8. Cooling and overheating 24 9. Heating infrastructure (Be Clean) 31 10. Renewable energy (Be Green) 45 11. Flexibility and peak energy demand 49 Glossary 53 References 55 Appendix 1 56 Appendix 2 58 Appendix 3 60 Appendix 4 64 Appendix 5 66 Appendix 6 67 DRAFT ENERGY ASSESSMENT GUIDANCE Summary of guidance updates The following updates have been made to the Energy Assessment Guidance: • Section 1: a. Introduction of the ‘be seen’ policy applicable to all major developments with links to separate detailed guidance b. Introduction of the whole life cycle policy applicable to all referable applications with links to separate detailed guidance c. Reference to the London Plan energy hierarchy (Policy SI 2) • Section 2: Further explanation setting out what is required for different types of planning application • Section 5: Further explanation on when applicants will be expected to use SAP 10.0 carbon emission factors and when SAP 2012 will still be allowed • Section 6: a.
    [Show full text]