Structured Cabling Organizations and Standards
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Operaing the EPON Protocol Over Coaxial Distribuion Networks Call for Interest
Operang the EPON protocol over Coaxial Distribu&on Networks Call for Interest 08 November 2011 IEEE 802.3 Ethernet Working Group Atlanta, GA 1 Supporters Bill Powell Alcatel-Lucent Steve Carlson High Speed Design David Eckard Alcatel-Lucent Hesham ElBakoury Huawei Alan Brown Aurora Networks Liming Fang Huawei Dave Baran Aurora Networks David Piehler Neophotonics Edwin MalleIe Bright House Networks Amir Sheffer PMC-Sierra John Dickinson Bright House Networks Greg Bathrick PMC-Sierra Ed Boyd Broadcom ValenWn Ossman PMC-Sierra Howard Frazier Broadcom Alex Liu Qualcomm Lowell Lamb Broadcom Dylan Ko Qualcomm Mark Laubach Broadcom Steve Shellhammer Qualcomm Will Bliss Broadcom Mike Peters Sumitomo Electric Industries Robin Lavoie Cogeco Cable Inc. Yao Yong Technical Working CommiIee of China Radio & Ma SchmiI CableLabs TV Associaon Doug Jones Comcast Cable Bob Harris Time Warner Cable Jeff Finkelstein Cox Networks Kevin A. Noll Time Warner Cable John D’Ambrosia Dell Hu Baomin Wuhan Yangtze OpWcal Technologies Co.,Ltd. Zhou Zhen Fiberhome Telecommunicaon Ye Yonggang Wuhan Yangtze OpWcal Technologies Co.,Ltd. Technologies Zheng Zhi Wuhan Yangtze OpWcal Technologies Co.,Ltd. Boris Brun Harmonic Inc. Marek Hajduczenia ZTE Lior Assouline Harmonic Inc. Meiyan Zang ZTE David Warren HewleI-Packard Nevin R Jones ZTE 2 Objec&ves for This Mee&ng • To measure the interest in starWng a study group to develop a standards project proposal (a PAR and 5 Criteria) for: Operang the EPON protocol over Coaxial DistribuWon Networks • This meeWng does not: – Fully explore the problem – Debate strengths and weaknesses of soluWons – Choose any one soluWon – Create PAR or five criteria – Create a standard or specificaon 3 Agenda • IntroducWon • Market PotenWal • High Level Concept • Why Now? • Q&A • Straw Polls 4 The Brief History of EPON 2000 EPON Today.. -
Draft Revised Optical Transport Networks & Technologies
INTERNATIONAL TELECOMMUNICATION UNION STUDY GROUP 15 TELECOMMUNICATION TD 107 Rev.2(PLEN/15) STANDARDIZATION SECTOR STUDY PERIOD 2013-2016 English only Original: English Question(s): 3/15 1-12 July 2013 TD Source: Rapporteur Q3/15 Title: Draft Revised Optical Transport Networks & Technologies Standardization Work Plan, Issue 17 This TD includes the draft of Revised Optical Transport Networks & Technologies Standardization Work Plan, Issue 17. Contact: Yoshinori Koike Tel: +81-422-59-6723 NTT Corporation Fax: +81-422-59-3493 Japan Email: [email protected] Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T. - 2 - TD 107 (PLEN/15) Optical Transport Networks & Technologies Standardization Work Plan Issue 167, September July 20123 1. General Optical and other Transport Networks & Technologies Standardization Work Plan is a living document. It may be updated even between meetings. The latest version can be found at the following URL. http://www.itu.int/ITU-T/studygroups/com15/otn/ Proposed modifications and comments should be sent to: Yoshinori Koike [email protected] Tel. +81 422 59 6723 2. Introduction Today's global communications world has many different definitions for Optical and other Transport networks and many different technologies that support them. This has resulted in a number of different Study Groups within the ITU-T, e.g. -
Structured Cabling
The SIMPLIFIED Guide to STRUCTURED CABLING - Terms - Uses - Categories - Set Up How much do you know about structural cabling? Alien Crosstalk is… A) When extraterrestrials have a casual conversation while crossing the road B) Confusing political rhetoric about immigrants C) Interference caused by one of the twisted pairs of wires in a cable affecting another pair of wires in an adjacent cable. Propagation Delay A) Waiting to start a family until you're 40 B) When your small airplane won't start C) The time it takes for a signal to move down a cable. Don’t worry if you had no idea what those terms meant. Only a few people do, and you probably want them working on your communication infrastructure! Like most technical work, there are quite a few jargon words and phrases that make sense to us, but sound like gibberish to most people. What follows is a nuts and bolts review that will familiarize you with the process of structural cabling so you can actually understand the technician who is working on your project. Let’s start with an easy one: What is "cabling?" There's a lot of name-calling when you talk to electricians and cable installers. No, not that kind… we're talking about a lot of different names for the same kinds of things, like these: VDV: Means "Voice, Data, Video" Backbones: The inter- and intra-building cable connections between entrance facilities, equipment rooms and telecommunications closets Premises Cabling: Any application that introduces wiring for its LAN (Local Area Network) computers, phones, fire alarms, audio or video into a building or campus as opposed to cabling for a municipality or geographically distant centers. -
Ethernet (IEEE 802.3)
Computer Networking MAC Addresses, Ethernet & Wi-Fi Lecturers: Antonio Carzaniga Silvia Santini Assistants: Ali Fattaholmanan Theodore Jepsen USI Lugano, December 7, 2018 Changelog ▪ V1: December 7, 2018 ▪ V2: March 1, 2017 ▪ Changes to the «tentative schedule» of the lecture 2 Last time, on December 5, 2018… 3 What about today? ▪Link-layer addresses ▪Ethernet (IEEE 802.3) ▪Wi-Fi (IEEE 802.11) 4 Link-layer addresses 5 Image source: https://divansm.co/letter-to-santa-north-pole-address/letter-to-santa-north-pole-address-fresh-day-18-santa-s-letters/ Network adapters (aka: Network interfaces) ▪A network adapter is a piece of hardware that connects a computer to a network ▪Hosts often have multiple network adapters ▪ Type ipconfig /all on a command window to see your computer’s adapters 6 Image source: [Kurose 2013 Network adapters: Examples “A 1990s Ethernet network interface controller that connects to the motherboard via the now-obsolete ISA bus. This combination card features both a BNC connector (left) for use in (now obsolete) 10BASE2 networks and an 8P8C connector (right) for use in 10BASE-T networks.” https://en.wikipedia.org/wiki/Network_interface_controller TL-WN851ND - WLAN PCI card 802.11n/g/b 300Mbps - TP-Link https://tinyurl.com/yamo62z9 7 Network adapters: Addresses ▪Each adapter has an own link-layer address ▪ Usually burned into ROM ▪Hosts with multiple adapters have thus multiple link- layer addresses ▪A link-layer address is often referred to also as physical address, LAN address or, more commonly, MAC address 8 Format of a MAC address ▪There exist different MAC address formats, the one we consider here is the EUI-48, used in Ethernet and Wi-Fi ▪6 bytes, thus 248 possible addresses ▪ i.e., 281’474’976’710’656 ▪ i.e., 281* 1012 (trillions) Image source: By Inductiveload, modified/corrected by Kju - SVG drawing based on PNG uploaded by User:Vtraveller. -
Network Working Group A. Clemm Internet-Draft J
Network Working Group A. Clemm Internet-Draft J. Medved Intended status: Experimental E. Voit Expires: September 22, 2013 Cisco Systems March 21, 2013 Mounting YANG-Defined Information from Remote Datastores draft-clemm-netmod-mount-00 Abstract This document introduces a new capability that allows YANG datastores to reference and incorporate information from remote datastores. This is accomplished using a new YANG data model that allows to define and manage datastore mount points that reference data nodes in remote datastores. The data model includes a set of YANG extensions for the purposes of declaring such mount points. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on September 22, 2013. Copyright Notice Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. -
Introduction to Structured Cabling
Introduction to Structured Cabling History Until the beginning of 1980’s, the majority of computer networks worked in a host/terminal mode. Applications as well as data were stored centrally on a host computer and user stations called terminals handled them in this centralized way. Considering the text character of this type of communication, it was not necessary to build special high capacity transmission paths for terminal networks. However, their prevalence ended in 1981 when IBM launched their fi rst personal computer onto the market. This new type of workstation was equipped with a local memory and outputs for connecting various peripherals. This resulted in a different—decentralized—mode of operation. This greater independence brought two important issues: (1.) diffi cult administration and (2.) mutual user co-operation. Therefore, it was necessary to fi nd a way that would enable to connect new PCs‘ into a computer network through which it would be possible to share fi les, applications, and costly peripherals in the same manner as previously in terminal networks. In the beginning, several solutions arose from different producers. However, differences in technologies and diversity in components of these new systems led to their mutual incompatibility. A solution to this situation was to design a universal system that would set recommended standards determining electrical and physical characteristics of cables as well as connecting hardware. At the beginning of 1990’s, American National Standards Institute (ANSI) asked Telecommunications Industry Association (TIA) and Electronic Industries Alliance (EIA) to propose a universal standard for metallic cabling systems. One of the most suitable ways for the new cabling system design was to use the already existing solution introduced by AT&T. -
Ethernet (IEEE 802.3)
Ethernet (IEEE 802.3) • Ethernet is a family of computer networking technologies for local area (LAN) and larger networks. • It was commercially introduced in 1980 while it was first standardized in 1983 as IEEE 802.3, and has since been refined to support higher bit rates and longer link distances. • Over time, Ethernet has largely replaced competing wired LAN technologies such as token ring, FDDI, and ARCNET. • The Ethernet standards comprise several wiring and signaling variants of the OSI physical layer in use with Ethernet. • The original 10BASE5 Ethernet used coaxial cable as a shared medium. • Later the coaxial cables were replaced with twisted pair and fiber optic links in conjunction with hubs or switches. 9 Various standard defined for IEEE802.3 (Old Ethernet) 10Base5 -- thickwire coaxial 10Base2 -- thinwire coaxial or cheapernet 10BaseT -- twisted pair 10BaseF -- fiber optics 9 Fast Ethernet 100BaseTX and 100BaseF • Old Ethernet: CSMA/CD, Shared Media, and Half Duplex Links • Fast Ethernet: No CSMA/CD, Dedicated Media, and Full Duplex Links • Data rates have been incrementally increased from the original 10 megabits per second to 100 gigabits per second over its history. • Systems communicating over Ethernet divide a stream of data into shorter pieces called frames. Each frame contains source and destination addresses and error-checking data so that damaged data can be detected and re-transmitted. • As per the OSI model, Ethernet provides services up to and including the data link layer. • Evolution: 9 Shared media 9 Repeaters and hubs 9 Bridging and switching 9 Advanced networking • Varieties of Ethernet: Ethernet physical layer: 9 The Ethernet physical layer is the physical layer component of the Ethernet family of computer network standards. -
Appendix for Acceptable Cable Types
STRUCTURED CABLING GUIDELINES for PALM BEACH STATE COLLEGE Palm Beach State College 4200 Congress Avenue Lake Worth, Florida 33461-4796 Prepared by: IT Department, Palm Beach State College Revision #8 October 8, 2014 TABLE OF CONTENTS SECTION NO. TITLE PAGE NO. SECTION 1 INTRODUCTION ........................................................................................ 3 SECTION 2 CONTRACTUAL RESPONSIBILITIES AND QUALIFICATIONS ......... 3 SECTION 3 PROVISIONS FOR FUTURE GROWTH ................................................... 4 SECTION 4 RESPONSIBILITIES ................................................................................... 4 SECTION 5 SYSTEM REQUIREMENTS....................................................................... 5 SECTION 6 THE STRUCTURED CABLING SYSTEM ................................................ 6 SECTION 6.1 BUILDING ENTRANCE/ENTRANCE FACILITIES (EF) ........................ 6 SECTION 6.2 EQUIPMENT ROOM (EF) .......................................................................... 8 SECTION 6.3 BACKBONE CABLING ............................................................................. 9 SECTION 6.4 TELECOMMUNICATIONS ROOM (TR) ................................................ 14 SECTION 6.5 HORIZONTAL CABLING (HC) .............................................................. 18 SECTION 6.6 WORK AREA (WA) .................................................................................. 21 SECTION 6.7 HORIZONTAL DISTANCES OF COPPER LINKS ................................. 22 SECTION 6.8 CALBE DIAMETER -
Draft Revised Optical Transport Networks & Technologies
- 1 - OTN Work Plan – September 2012 (issue 16) Optical Transport Networks & Technologies Standardization Work Plan Issue 16, September 2012 1. General Optical and other Transport Networks & Technologies Standardization Work Plan is a living document. It may be updated even between meetings. The latest version can be found at the following URL. http://www.itu.int/ITU-T/studygroups/com15/otn/ Proposed modifications and comments should be sent to: Yoshinori Koike [email protected] Tel. +81 422 59 6723 2. Introduction Today's global communications world has many different definitions for Optical and other Transport networks and many different technologies that support them. This has resulted in a number of different Study Groups within the ITU-T, e.g. SG 11, 12, 13, and 15 developing Recommendations related to Optical and other Transport. Moreover, other standards development organizations (SDOs), forums and consortia are also active in this area. Recognising that without a strong coordination effort there is the danger of duplication of work as well as the development of incompatible and non-interoperable standards, WTSA-08 designated Study Group 15 as Lead Study Group on Optical and other Transport Networks and Technology, with the mandate to: study the appropriate core Questions (Question 6, 7, 9, 10, 11, 12, 13, 14 and 15/15), define and maintain overall (standards) framework, in collaboration with other SGs and SDOs), coordinate, assign and prioritise the studies done by the Study Groups (recognising their mandates) to ensure the development of consistent, complete and timely Recommendations, Study Group 15 entrusted WP 3/15, under Question 3/15, with the task to manage and carry out the Lead Study Group activities on Optical and other Transport Networks and Technology. -
SCP Structured Cable Products
TM ISSUE NO. 016 CATALOG Low Voltage Cables and Accessories for the Commercial and Residential Custom Installation, A/V and Pro A/V, Security, Datacom, Satellite/Cable, and Electrical markets. USA Toll Free 866-470-5742 Direct Line: +1-954-327-5770 Email: [email protected] www.scpcat5e.com 2 Structured Cable Products, Inc. (“SCP”) - Ft. Lauderdale, FL USA, is a leading manufacturer and global supplier of Low Voltage Cables and Accessories for the commercial and residential Custom Installation, AV and Pro AV, Security, Datacom, and Electrical markets. SCP has three stocking locations in the USA that serve the USA, Canada, Caribbean, and Latin American regions. Our distribution center in The Netherlands serves Europe, Middle East, and African regions. SCP has become a worldwide brand because of the dedication of our national and regional distributors and our commitment to provide you with the best quality, price, selection, and service in our industry. This commitment is unmatched and has been the foundation for our success and the success of our distribution partners. Corporate Office and East Coast Warehouse : 3490 SW 30TH AVE Quality, Price, Selection, and Service Dania Beach, FL 33312 Toll Free: 866-470-5742 Direct Line: (954) 327-5770 We know how important it is to have product available when you need Fax: (954) 327-8176 it. That is why we maintain a large inventory at each of our stocking locations. These strategically located stocking centers enable SCP to process, fill, and ship orders quickly and efficiently… and usually the same day. Texas Warehouse : 1184 W. Corporate Dr. Ste D We are also able to assist you with your OEM or private label Arlington, TX 76006 requirements for bulk cables, HDMI, and other accessory items. -
Fttx Networks
FTTx Networks TELCOMA Copyright © TELCOMA. All Rights Reserved Introduction to FTTx Copyright © TELCOMA. All Rights Reserved Physical Technologies for Communication ❏ The twisted pair copper wire is the oldest, and still widely deployed technology that supports a single analog telephone line to the home. ❏ Digital Subscriber Line (DSL) technology is used to transport digital data. ❏ The TV signals are brought into homes by using coaxial cable from a master antenna which are called community antenna television (CATV) systems. Copyright © TELCOMA. All Rights Reserved (contd...) Physical Technologies for Communication ❏ But now a days, there is an evolution of the technology from coaxial cable emanating from the central receive point, to hybrid fiber-coax (HFC) systems in which the signal is taken by the fiber optic cable from the headend or hub to a node. ❏ The low signal loss compared to that of coax is the advantage of fiber. ❏ Hence, the signal is transmitted to larger distances without amplifying it. ❏ Therefore, this technology provides better reliability, better quality, and lower operational expenses (op-ex). Copyright © TELCOMA. All Rights Reserved (contd...) Physical Technologies for Communication ❏ HFC extension to the smallest node that serves only one home brings the third technology called fiber-to-the-home (FTTH). ❏ Only passive components are used to build FTTH systems that improves reliability and no need to made provision to obtain power from commercial sources and no need of backup power. ❏ As a result, there is reduction in both capital and operational expenses and enhancement in the reliability and quality of the received signals. Copyright © TELCOMA. All Rights Reserved (contd...) Terminology ❏ In telephone background, a central office (CO) is the point where signals are assembled to go to subscribers and is called headend in a cable TV background. -
Structured Cabling Systems
Courtesy of Steven Engineering , Inc. ! 230 Ryan Way, South San Francisco, CA 94080-6370 ! Main Office: (650) 588-9200 ! Outside Local Area: (800) 258-9200 ! www.stevenengineering.com Structured Cabling Systems T-600 Courtesy of Steven Engineering , Inc. ! 230 Ryan Way, South San Francisco, CA 94080-6370 ! Main Office: (650) 588-9200 ! Outside Local Area: (800) 258-9200 ! www.stevenengineering.com Contact Information Contact Information Contact Function Phone Fax E-Mail Leviton Voice & Data Division - USA Customer Service Product Ordering (800) 722-2082 (425) 483-5270 Applications Engineering Technical Assistance (800) 722-2082 (425) 483-5270 visit www.levitonvoicedata.com Main Business Line (USA) General Business (425) 486-2222 (425) 483-3373 [email protected] CCS Program Certified Cabling System Program (800) 922-2222 (425) 485-0112 [email protected] Sales Support Literature Requests (800) 922-6229 (425) 485-0112 [email protected] Leviton Voice & Data Division - International Department Customer Service International Product Ordering (425) 486-2222 (425) 485-9170 Sales International Sales Support (425) 486-2222 (425) 485-9170 [email protected] International Offices Location Phone Australia Leviton Voice & Data Division Sydney - 39 Mentmore Ave, Rosebery, New South Wales 2018 Australia 61-2-9697-0977 Melbourne - 117 Thistlewaite Street, South Melbourne VA 3105 Australia 61-3-9686-0699 Melbourne - Suite 3, Ground Floor, 263-267 City Road, South Melbourne, Australia Canada Leviton Canada 165 Hymus Blvd, Point-Claire, Quebec, Canada H9R-1G2 (514) 954-1840 Chile Leviton S.A. de C.V. Agencia en Chile Antonio Varas 421, Providencia, Santiago de Chile (562) 235-5727 Mexico Leviton S.A.