IAWA Journal, Vol. 21 (1), 2000: 3–30

ECOLOGICAL TRENDS IN THE ANATOMY OF

SOME BRAZILIAN SPECIES. 1. GROWTH RINGS AND VESSELS by Edenise Segala Alves1 & Veronica Angyalossy-Alfonso2

SUMMARY

Some ecological trends based on wood were established in woody flor- ulas of several regions in . Growth rings and qualitative vessel features were analysed in belonging to the 22 most representative families of the Brazilian flora, including 133 genera, 491 species and 686 specimens. Some ecological trends were statistically proven by Pearsonʼs Standardised Residues. The presence of growth rings was as- sociated with seasonal environments. Vessels tended to show special arrangement patterns at higher latitudes and in environments affected by thermal seasonality. Vessels in multiples were more common in en- vironments that were seasonal for temperature and humidity. Although not statistically significant, there is a trend for multiple perforation plates and helical thickenings to be most common in higher latitudes and colder environments. Overall, the results for Brazilian species are compatible with trends established by other authors for other floras and/or taxa. Key words: Brazil, ecological wood anatomy, ecological trends, growth rings, vessels.

INTRODUCTION

Most papers focusing on wood ecological trends analyse quantitative vessel features, such as element diameter, length and frequency. On the other hand, trends associated with qualitative parameters of vessels and other wood components are rarely dis- cussed. Moreover, few studies on tropical floras have been conducted so far. In tropical regions, clearly defined by dry and humid seasons, cambial dormancy of deciduous species occurs together with an interruption of apical growth and fall, resulting in the formation of distinct growth rings. Tropical regions less affected by rainfall seasonality lack this pattern and there is little information on the wood behaviour of evergreen species (Sass et al. 1995). While observing tropical trees, Worbes (1995) noticed that an annual dry season that lasts 2 to 3 months, and with a monthly rainfall below 60 mm, may lead to the formation of annual rings. On the other hand, two annual dry seasons lead to the formation of two growth rings in this period. A relationship between growth rings in tropical species and the environment should be further explored.

1) Instituto de Botânica, Cx Postal 4005, CEP 01061-970, São Paulo, SP, Brazil. 2) Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Cx Postal 11461, CEP 05422-970, São Paulo, SP, Brazil.

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 4 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian 5

Vessels have been reported to show a tendency towards grouping in dry environ- ments, whereas they are more often solitary and only rarely grouped in humid envi- ronments (Carlquist 1966; Carlquist & Hoekman 1985; Barajas-Morales 1985; Fahn et al. 1986; Lindorf 1994). Apparent correlations between vessel grouping and latitude were also observed, although no consensus has been reached. Authors such as Carlquist (1966), and Van der Graaff and Baas (1974) observed larger vessel groupings at higher latitudes, whereas Baas et al. (1988), Zhang et al. (1988) and Baas and Schweingruber (1987) found the opposite relationship. Other correlations have been reported as to the scalariform perforation plates more commonly found in temperate and tropical montane floras than in tropical humid environments (Baas 1976) and at higher latitudes and altitudes (Baas & Schweingruber 1987). The presence of helical thickenings in vessel elements is clearly associated with temperate and subtropical environments, that is, with higher latitudes (Carlquist 1966; Baas 1973; Van der Graaff & Baas 1974; Van den Oever et al. 1981; Schmid & Baas 1984; Baas et al. 1988; Deng Liang & Baas 1990; Chen et al. 1993; Dong & Baas 1993) and, sometimes at least, with higher altitudes (Oskolski 1995) and drier envi- ronments as well (Carlquist & Hoekman 1985; Fahn et al. 1986). The objective of the present study is to establish any ecological trends of growth rings and vessel features by analysing the wood of Brazilian species from different environments, and by comparing the trends established with the results obtained for other floras or taxonomic groups.

MATERIALS AND METHODS

A microscopic analysis was carried out of the wood of species belonging to 22 families widely distributed within the Brazilian territory, covering 133 genera, 491 species, and totalling 686 specimens from different geographical regions in Brazil (Table 1, p. 5–15). Most of the material studied belongs to the permanent slide collection of the Calvino Mainieri Wood Collection, of the Institute of Technological Research of the State of São Paulo (IPT). Wood sections of species not represented in the slide collection were prepared in three planes, their thickness ranging from 15 to 20 μm, prepared accord- ing to standard techniques (Sass 1951; Johansen 1940); the sections were stained with safranin or fast green and permanently mounted in Permount.

Environmental parameters — Climate types, temperature, humidity, altitude and vege- tation type were recorded of 132 different localities in Brazil, grouped according to the five geographical regions of the Brazilian territory (Fig. 1). The 686 specimens studied could be assigned to these localities or their immediate vicinity. Nimerʼs cli- mate system (Nimer 1989) and IBGEʼs (IBGE 1993) vegetation map were used (see Table 1, p. 5–15).

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 4 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 5 ex- =

present. Veg of, df df df, cf df, mf df df df df, mf df, of df df df, sf of, ce df df sf df df df,ce,of,sf df df, mf ct df sf, of =

Alt 1, 2 1 1, 3 1, 4 1 1 4 4 1, 2, 4 1 1 1-3 2, 3 1 1 5 1 1 1-3, 5 1 1-4 4 1 1, 2 absent, 2

= = climate-temperature: Vessel grouping: 1 Vessel

=

C

Temp Humi hu hu hu, mh hu, ph hu hu hu hu, pu ph, hu hu hu ph, hu hu, mh hu ph ph ph hu hu, mh, ph ph ph mh hu hu

other. – other. Environmental features

=

Temp wa wa wa wa, md wa wa md md wa, md wa wa sw wa wa wa mm wa wa wa, mm wa md sw, wa wa wa = vegetation: ce = , ca = ,

Helical thickenings: 1 Veg =

diffuse, 3 diffuse, E

=

Climate eq tr, tr tr te tr, tr tr tr te tr, eq, tr tr tr te, tr tr tr eq tr eq tr tr me te tr, tr tr tr

1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E multiple. – Nimer 1989), te = temperate – =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D sensu

diagonal/radial, 2

=

3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 C = climate-humidity: ph = super-humid, hu = humid, mh = semi-humid, can be sw,md/ph. simple, 2 1-3 2-3 = te

Humi 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 Wood characters Wood B 1-2 1-2 1-2 2(1)

1 1 1 1 1 2 1 2 2 2 2 2 1 1 1 1 2 1 2 1 A 1-2 1-2 1-2 1-2

Vessel arrangement: 1 Vessel =

Perforation plates: 1

= B

D can be wa/ph,hu,mh,as; forest), sf = semi-deciduous seasonal forest, cf = deciduous seasonal forest, contact = ct (areas with Brazilian Regions N, MW SE SE SE, N, S N N SE SE, S N, SE N N S, SE N, MW N N SE N N SE N, MW, NE SE, S SE N SE, N

med

present. –

= Araucaria

absent, 2 = is always wa/ph;

eq

solitary and in multiples. –

= : type* – tr = tropical, eq = equatorial, me = ( ʻmediterraneanʼ

Wood collection (BCTw) Wood 14030, 17232 8659 210, 2776, 11123 2625, 8717, 13545, 16493 12529 12536 2725 5318, 8681 1062, 6479, 10032, 12019, 15316 10145 10155 5392, 12240 14251, 7363 16549 10075 6032 6558 9995 5165, 6031, 7453, 10475, 14283 14016 6313, 8792. 5486 14093 5860, 14234 Growth rings: 1 Growth rings: 1 Climate =

A — : in multiples, 3 = altitude: 1 = 0–100 m, 2 = 100–200 m, 3 = 200–500 m, 4 = 500–1000 m, 5 = 1000–2000 m –

= Table 1. Qualitative wood characters related to environmental features of the studied species from Brazil. Table

Alt : N = Northern, MW = Middle West, NE = Northeastern, SE = Southeastern, S = Southern. NE = Northeastern, SE Southeastern, West, = Middle : N = Northern, MW

can be: wa,sw,md,mm/ph,hu,mh,as;

tr

clusively solitary, 2 clusively solitary, wa = warm, sw = sub-warm, md = mild-mesothermic, mm = medium mesothermic – sa = semi-arid – df = dense forest, of = open forest, mf = mixed forest ( and ). including ʻrestingaʼ vegetation types in contact with each other, different * Species fraxinifolium graveolens lecointei ulei sericea sp surinamensis elongata paraensis sp brasiliensis emarginata nitida sp Brazilian Regions characters (A–E)Wood Environmental features Family giganteum Anacardium concinnum urundeuva Myracrodruon Schinus terebinthifolius guianensis Tapirira Annonaceae Annona paludosa Duguetia lanceolata Fusaea longifolia Guatteria candoleana Xylopia aromatica

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 6 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 7 Veg df df df df ce df df sf df df df df df df, sf ce ce df df df df df cf, df sf df ct df df, sf cf df, sf ca df df ct ct,ce,df,of df df df ct

Alt 1 1 1 1 5 1 4 4 1 4 1 1 1 1, 3 5 1 3 2 1 1 4 1, 3 5 1 4 4 1, 4 4 1, 3 3 1 1 1 1, 2, 4 1 1 1 1

Humi hu hu hu hu mh hu hu hu, ph ph hu hu hu hu hu mh hu hu ph ph hu hu mh, ph ph ph mh hu hu, ph ph mh, hu sa hu ph ph mh, hu, ph hu ph hu ph

Environmental features

Temp wa wa wa wa sw wa md md sw, sw sw wa wa wa wa sw wa wa wa wa wa sw wa mm wa wa md wa, md md wa, md wa wa sw md wa, sw wa sw wa md

Climate tr tr tr tr tr tr tr te tr, te tr tr tr tr tr tr tr tr eq eq tr tr eq tr, tr eq tr tr te tr, te tr me tr te, tr te me tr, tr tr tr te

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D 1(2)

1 1 1 1 1 1 3 3 2 3 3 1 1 1 2 2 2 2 3 1 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 C 1-3 2-3

2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 B Wood Wood characters 1-2-3 1-2-3

2 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 A 2(1)

Brazilian Regions N N N N MW N SE SE, S S SE N SE N SE MW N SE N N N SE SE, N SE N SE SE SE, S S SE NE N S, SE S SE, N, NE N SE SE, N S

Wood collection (BCTw) Wood 16451 9414 16490 16514 15963 16461 2179 2162, 16206 10252 2188 16430 18481 13142 2535, 5861 10302 7873 9950 10211 10134 16452 3200 3487, 6377 6043 6476 5205 291 158, 616, 16168, 18479 2237 162, 164, 8557 8574 11727 5913, 594 6340 13663, 16422 11260, 365, 11248, 16539 6312 8637, 9171 5882

Species

/

desmathum discolor eleatum macrocarpum megalocarpum parvifolium polyneuron populifolium ramiflorum sandwithianum sericeum villosii speciosa sucuuba pentaphylla sellowii sp copaia cuspidifolia mimosifolia puberula sp barbata cassinioides heptaphyla impetiginosa insignis obtusifolia roseo-alba rigida (Table 1 continued) (Table Family Apocynaceae Aspidosperma centrale Geissospermum laeve Hancornia sp Himatanthus lancifolia paraensis Rauvolfia Bignoniaceae Jacaranda caroba Paratecoma peroba aurea Tabebuia

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 6 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 7 df ct, df, of ce, df df of, df ce df df df, ce df df df df df, ct, df df df df df df df df df df, ce, sf df, cf df df df df, sf df df, cf df df df, cf df df of, df df

1 1, 2, 4 1, 3 1 1, 2 4 1 1 1, 2 1 1 1 4 1 1, 4 1 1 1 1 1 1 1 1 3, 4, 5 1, 3 1 1 1 1, 5 1 1, 2 1 4 1, 2 3 1 1 1

hu, ph mh, ph, hu mh, hu hu hu, ph hu hu ph ph, hu, mh ph hu hu hu hu mh, ph hu hu hu hu ph ph hu hu hu, mh, ph ph, mh hu hu ph hu, ph ph ph, hu hu ph ph, hu hu hu hu ph

wa wa, sw wa wa wa sw wa wa wa sw, wa wa wa md wa wa, sw wa wa wa wa wa wa wa wa mm, wa wa, sw wa wa wa wa, mm wa wa wa sw wa wa wa wa sw

tr, eq tr, me, eq tr, tr tr eq, me tr, tr tr eq te, eq, tr eq me tr tr tr te tr, tr tr tr tr eq eq tr tr tr me eq, tr, tr tr eq tr eq eq, tr tr tr me eq, tr, tr tr tr te

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 1 1

3 3 3 3 3 3 3 3 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3(1)

2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1-2 2(1) 1(3)

2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 2 2 1-2 1-2 2(1)

N SE, NE, N N MW, N N, NE SE N N S, MW N NE N SE N SE, S N N N N N N N SE SE, MW N, SE, NE N N N N, SE N N, NE N SE N, NE N N N S

13250, 6624, 13782 281,283,2747,4543,6522,6846,14308 7399, 8841 10141 12891, 15200, 17224 1008 9172 6468 10230, 14062, 14068, 14340 6493 9779 8827 669 8854 5185, 5353 10103 10097 10480 16470 6396 6622 14086 11099 6071, 6771, 7372 3890, 6297, 9076, 10039 16462 13849 10011 6040, 10550 6511 10149, 13682 8457, 13873 10915 4713, 9789, 9994, 13696 14731 11660 6342, 14052, 16515 16384

serratifolia sp pentandra sp rufa sp macrophylla sp heteromorpha incana latifolia licaniiflora macrophylla octandra rigida sp punctulata sp sp congesta grandis kleinii Bombacaceae Bombax sp Ceiba burchelli Pseudobombax endecaphyllum Rhodognophalopsis duckei Burseraceae heptaphyllum Protium Chrysobalanaceae Couepia paraensis Hirtella hebeclada Licania canescens Clusiaceae Calophyllum brasiliense Caraipa densifolia Clusia grandiflora macrophylla Garcinia Platonia insignis Rheedia sp Symphonia globulifera Combretaceae Buchenavia capitata

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 8 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 9 Veg df df df df df df ct df ct, ce, df ct df, of df df, ca df of df df df df ct, df, sf df df, mf sf df df ct df df of, sf sf df ce,sf,of,df df df df sf of sf df df

Alt 1 1 1 1 4 1 3 1 1, 4 4 1 1 3, 4 2 2 1, 4 1 1 4 4, 5 1 1, 4 5 4 1 4 1 1, 4 2, 4 4 1 2, 4 1 1, 2 1 4 1 4 4 2

Humi hu hu hu hu ph hu hu hu hu, mh mh hu hu hu, sa hu hu hu, ph ph ph ph hu, ph hu, ph ph ph hu hu hu ph hu hu hu hu hu hu hu ph ph hu ph hu ph

Environmental features

Temp wa wa wa wa md wa wa wa wa sw, wa wa wa wa sw, wa wa md, wa sw, wa wa md mm sw, wa md sw, mm sw wa sw wa wa, sw wa, sw md wa wa sw, wa wa wa md wa md sw wa

Climate tr tr tr tr tr tr eq tr tr tr tr tr tr tr tr me tr, eq eq tr tr eq tr, te tr, tr tr tr tr eq tr tr tr tr eq tr, tr tr eq te tr te tr tr

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D

3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 2 2 3 2 3 3 2 2 3 2 2 3 2 3 2 2 2 C 2-3 2-3 3(2) 2(1,3)

2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 2 1 1 2 2 2 2 1 2 Wood characters Wood B 1-2 1(2) 1(2)

2 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1 1 2 2 2 1 2 1 1 1 2 1 1 A 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2

Brazilian Regions N N N N SE N MW N SE, N SE N SE SE, NE SE N SE, NE N N SE SE N SE, S SE SE SE SE N N, SE N, SE SE N SE, N N N, SE N S N S SE NE

Wood collection (BCTw) Wood 14054 11630, 14747 14748 14751, 16437 14485 14056 14753 11503 16381, 16423, 11251, 3820 10466, 14723 11538 381, 16379 2553 14280 4432, 4705, 4708 1129, 12556 6426 1145 6041 1146, 1142, 11656 7973, 11654, 5149, 5995 6042 1113 11102 2312 6459 1205, 10041 289, 4253 6091 16505 15260, 17844–46, 1192, 17848, 17849 9929 2549, 12359 6546 16194 1169 16205 6661 11261

Species /

macrophylla ochroprumna oxycarpa parvifolia rabelloana sp tomentosa argentea brasiliensis guyanensis januarensis sp sp triplinervia draconoides echinocarpus floribundus matourensis sp urucurana paniculata sp glabrata sp glandulatum sp sp (Table 1 continued) (Table Family amazonia Terminalia Euphorbiaceae Alchornea glandulosa diasii Croton alchorneoides Hyeronima Joannesia princeps Mabea fistulifera guianensis Maprounea longifolium Pachystroma Pera bicolor Pogonophora schomburgkiana Sapium duckei Sebastiania klotzschiana Senefeldera sp

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 8 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 9 df df, ct, sf mf, df cf df df df df df df df, ct df df df df df df, cf df df df sf of df df df df df df df mf df df df df df df df df, mf df df, ct df

3 4 1, 5 3 1 1 1 1 1 1 1 1 4 4 4 4 1, 3 1, 4 1 1 4 2 1 4 1 1 1 1 1 4 4 1 1 1, 2 1 4 4 1, 3, 5 1 1, 4 1, 4

ph ph, hu ph, hu mh mh hu hu hu hu hu hu hu hu, ph hu ph hu hu, ph, mh hu hu hu ph ph hu, ph hu hu hu hu ph hu ph hu hu hu, ph hu, ph hu hu ph hu, ph hu ph, hu hu, ph

md md, sw md, wa wa wa wa wa wa wa wa wa wa md, sw md sw md md wa, sw, wa, md wa wa md wa wa md wa wa wa wa wa md md wa wa wa wa md sw wa, md wa wa sw, wa, sw

te te tr, te, tr tr tr tr tr tr tr tr tr tr tr tr tr tr te tr, tr tr tr te eq eq tr, tr tr tr tr eq tr te tr tr eq tr, eq tr, tr tr tr te tr, tr te, tr me tr,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1-2 1-2 1-2 1(2)

3 3 3 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2-3 2-3 2-3

2 2 2 1 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 2 1 2 1 2 1 2 2 2 2 1-2 1-2 2-3 2(1) 2(1)

2 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 1-2 1-2 2(1)

S SE, S S, N, SE SE NE N N N N N N, SE N SE SE SE SE N, S, SE N, SE SE N S N N SE N N N N SE S SE N N N, MW N SE SE N, S N S, SE SE, NE

3371 3178, 3208, 5123, 7707, 16212 3570, 6248, 10438 2766 11491 16503 14120 11495 16531 10759 5004, 13173 16463 3649, 10912 3665 10911 6108 13825 11559, 3473, 10229, 11553, 13826 6110, 18477 13817 16213 13827 8938, 10007, 12498, 13821, 16548 3664 13819, 13828, 16523 13823 8906 6516 18518 8694 3176 13829 5026, 10445, 13822 6376, 14020, 16433, 16441 16477 3177 10919 3310, 6251, 16450 13824 838, 10893, 11613 4451, 12865, 12880

sp sp rigida lindaviana mahuba sp grandiflora oppositifolia puberula reticulata sp argentea caniculata catharinensis cymbarum guianensis lanata longifolia magnilimba neesiana nitida odorifera puberula pulchella rigens rubra sp splendens tristis sp legalis Lauraceae Cinnamomum stenophyllum Cryptocarya moschata Dicypellium caryophyllatum Licaria canella Mezilaurus itauba Nectandra cissiflora Ocotea aciphylla Persea pyrifolia Phoebe paniculata Lecythidaceae Cariniana estrellensis

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 10 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 11 Veg df df df df df of df, ce, cf df df df, ct of, of mf df df df df df df of cf, of, mf df df df of, df df df df, sf, ce df df df, ct df sf, df df, ca df, ce df sf sf df df df

Alt 1 1 1 1 1 2 1, 3, 4 1 1 1, 4 1, 2 4 4 2 1 1 1 1 1 2, 3, 4 1 1 1 1 4 1 1, 4 1 1 1 1 1, 4 1, 2 1, 2 1 3, 5 3 1 1 1

Humi hu hu hu ph ph mh hu, mh hu, ph hu hu, mh hu, ph ph hu hu ph hu ph hu hu mh, ph hu hu hu hu hu hu hu, ph, mh hu hu hu, ph hu hu hu, sa ph, hu, sa hu hu, ph ph hu hu hu

Environmental features

Temp wa wa wa wa wa wa wa, sw wa wa wa, sw wa md sw wa wa wa wa wa wa wa, md wa wa wa wa md wa md wa, sw, wa wa wa wa wa sw, wa wa wa mm sw, sw wa wa wa

Climate tr tr tr eq eq me tr eq tr, tr me tr, eq, tr te tr tr eq tr eq tr tr me, te tr, tr tr tr tr tr tr me tr, tr tr eq tr, tr tr tr eq, tr me tr tr tr me tr

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D

3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 C 2-3 2-3 2-3 3(2)

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Wood characters Wood B 2-1 1-2 1-2

2 1 1 1 1 2 1 2 1 2 2 2 1 1 1 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 1 2 A 1-2 1-2 1-2 1-2 1-2

Brazilian Regions SE N N N N NE SE, N, MW N N N, SE, NE N, SE S SE SE N N N N N SE, NE, S N N N N, SE SE SE, N N, SE, NE N N N N SE, N N, NE, SE N, SE, NE NE SE S N NE SE

Wood collection (BCTw) Wood 822, 823, 9368 17741 14169 6402 6463 13667 3897, 9307, 10461, 13551, 16460 841, 10451, 14469 10472 834, 10847, 12658, 13552, 14087 6477, 10136, 13541, 15327, 17169 8774 5418 2555 6436 11718 6400 1367 17163, 17230 3484, 8697, 13664 9044 16459 17747 13564, 17234, 17239 4115 14464 12582, 14117, 11100, 8584, 12879, 14461, 16264, .434, 17605 15915 14804 14803, 15917 14116, 15914 1532, 14801 16458, 16851, 18238 6508, 8528, 9908, 15936 13669 12237, 6055 10367 9955, 16454 10223 13538

Species

/

sp oblongifolia coriacea luschnatthii sp lurida sp rufa adiantifolia ensiformis scleroxylon langsdorfii martii officinalis reticulata sp trapezifolia intermedia palustris parvifolia reticulata sp sp dubium nitens paradoxa recifensis sp (Table 1 continued) (Table Family Couratari guianensis Eschweilera compressa Lecythis idatimon Legum.–Caesalpinioideae Apuleia leiocarpa Bauhinia forficata Caesalpinia peltophoroides Cassia faustuosa Copaifera duckei Dialium guianense Hymenaea courbaril mediterraneum Martiodendron Peltogyne confertiflora

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 10 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 11 mf, ct, of df ct ct ce, sf ct df, sf df sf df df df df df df df df df df ct df ce, sf df, sf ce, sf, cf df df, ce df df ct df cf df df of df ca sf df ct df df

2, 4 1 4 4 4, 5 4 1, 4 1 5 1 1 1 1 1 1 1 1 4 1 1 1 4 1, 4 2, 3 1 1, 2, 5 4 1 1 1 3 1 1 2 1, 4 4 5 1 4 1 1

ph, hu hu hu hu mh, hu mh hu hu ph hu, ph hu hu hu hu hu hu hu hu hu ph ph hu, ph ph sa, mh hu mh hu ph hu hu mh hu hu hu hu sa ph ph hu hu hu

md, sw, wa md, sw, wa sw sw wa, sw wa wa, sw wa mm wa wa wa wa wa wa wa wa md wa md wa md sw, md sw, wa wa wa, sw md wa wa wa wa wa wa wa wa sw, wa mm wa sw wa wa

te, tr, eq te, tr, tr tr tr tr tr tr tr tr eq tr, tr tr tr tr tr tr tr tr tr te eq te tr, te tr tr tr tr eq tr tr tr tr tr tr tr tr tr me tr tr tr

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2-3

1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 2 2 1 1 1 1 1 1 1 1 2 1 2 2 2 2 2 1-2 1-2 1-2 1-2 1-2

S, SE, N SE SE SE SE, MW SE N, SE N SE N N N N N N N N SE N S N SE, S S NE, SE N SE, MW SE N SE N SE N N N SE NE SE NE SE SE N

1294, 8769, 15202 13549 1361 1362 12903 1505, 11793, 5497 14446 1511, 14105 7496 16757 14113, 10236, 10457, 14111, 16550 10112 10063 10151 10038 16439 16489 2270 10027 5886 6488 1785, 16181 10249, 16179 2760, 6182, 15930 13245, 16494 1920, 4647, 6183, 10738, 11794 1309 9949 9804 9165 2753 1629, 13091 10143 4214 4449, 13530 7831 6058 12763 1588 11010 10821

tweedie gunniferum maximum schomburgkii sp capitata edulis gracilifolia heterophylla nobilis paraensis rubiginosa sellowiana thibaudiana flava gonoacantha sp inermis legalis parvifolia sp virgilioides tomentosum frutecens incexis miscolobium nigra spruceana Legum.– Acacia polyphylla Albizia pedicellaris Calliandra sp contortisiliquum Enterolobium alba Piptadenia excelsa Plathymenia reticulata sp Stryphnodendron Legum.–Papilionoideae Amburana cearensis Andira anthelmia Bowdichia nitida paraense Centrolobium cearensis Dalbergia

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 12 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 13 Veg df, of df ct, ce cf df, cf mf, sf df mf, sf mf, df df mf df ce sf df sf df df ce df df ct, ce, df ct sf df df ct ce df, ct df df df df df df df ce df sf, df

Alt 1, 2 1 2, 4 2 1-2 4 1 4 4 4 4 4 5 4 2 4 2 1, 2 5 1 1, 2 4 4 4 4 1 4 2 1, 4 1 1 1 1 1 1 1 2 1, 4 1, 3, 4

Humi hu, mh hu hu, mh hu hu ph hu ph ph, hu hu ph hu mh ph hu ph hu hu mh hu hu ph,mh, hu hu ph hu hu hu mh hu, ph hu hu hu hu hu hu hu sa ph ph, hu

Environmental features

Temp wa wa wa sw, wa wa md wa md md, sw sw md md sw md wa md wa wa sw wa wa sw sw md sw wa sw wa wa sw, wa wa wa wa wa wa wa wa md, sw wa sw,

Climate me tr, tr tr tr tr te tr te te, tr tr te tr tr te tr te tr tr tr tr tr tr tr te tr tr tr tr eq tr, tr tr tr tr tr tr tr tr te eq tr,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D

3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 C

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Wood characters Wood B 2(1)

1 1 2 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 2 A 1-2 1-2 1-2 1-2 1-2

Brazilian Regions N, NE N SE, MW NE N, NE S N S S, SE SE S SE MW S SE S SE SE MW SE SE S, SE SE S SE SE SE MW SE, N SE N N N N N N NE S S, SE, N

Wood collection (BCTw) Wood 10105, 13668 13120 9442, 10719 13671 8476, 9986, 10815, 13677 8706, 16167 2846 6235, 16191 3242, 8725 3686 8794 1577 12692 16211 11550 16193 11548 11549 11006, 12693 18474 6352, 11005 3 252, 8592, 10226 1581 16210 4452 13554 1665 10723 3325, 5945, 12579 18476 13461 10046 13465 13460 13462 13459, 14174 15932 7066, 10251 1335, 1336, 6432, 7639, 10372, 12236

Species

/

racemosa ferrea odorata guilleminianus sericeus sp acutifolium brasiliense incorruptibile lanatum legale leucopterum opacum ovolifolium pedicelatum scleroxylon sp stipitatum villosum frondosus sp coccinea coutinhoi flava macrocalyx nobilis paraensis sp (Table 1 continued) (Table Family purpurea Diplotropis Dipteryx alata Erythrina falcata Lonchocarpus denudatus auriculata Luetzelburgia Machaerium aculeatum fastigiatus Myrocarpus peruiferum Myroxylon Ormosia arborea Platymiscium floribundum Poecilanthe parviflora

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 12 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 13 df df df ce, ct df df df df df sf df df df df, sf df df df df df df df sf df df df cf, ce sf df ct sf, ct df df df ct df df sf, df df df df

4 1 1, 4 2, 4, 5 1 1 4 1 1 3 1 1 1 2, 4 1 1 1 1 1 1 1 2 1 1 1 2 5 4 4 4 1 1 1 4 2 1 2, 4 1 1 1

ph ph ph, hu mh, hu ph hu ph ph ph hu hu hu hu hu, ph hu hu hu hu hu hu hu mh ph hu hu hu, sa ph hu hu ph, hu hu hu hu hu hu hu mh, hu ph hu hu

md wa md, wa wa sw, wa wa md wa sw md wa wa wa wa, md wa wa wa wa wa wa wa wa wa wa wa wa mm sw sw md, sw wa wa wa sw wa wa wa sw, wa wa wa

tr eq te,tr tr tr tr tr eq tr tr tr tr tr te tr, tr tr tr tr tr tr tr tr eq tr tr tr tr tr tr te, tr tr tr tr tr tr tr eq tr, eq tr tr

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 3 3 3 3 2-3 2(3)

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 1 2 2 2 2 2 1-2 2-3 2-3

2 2 2 1 2 1 2 2 1 2 1 1 2 1 1 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 2 1-2 1-2 1-2 2(1)

SE N S, SE SE MW, NE N SE N SE SE N N N SE, S N N N SE N N SE SE N N SE NE SE SE SE S, SE N N N SE SE N SE, MW N N N

11867 8002 7040, 13533 3339, 4645, 10734, 11138 11543 10764 1911, 4433 6461 13288 3961 16040 11172, 8421, 16526 11714 2527, 16196 9198 13267 10037, 13265, 13469 13543 9418 14103 13548 6184 13466 2872 13539 12493, 15931 6066 12661 13884 13885, 16208, 16244 13104 11494, 16525 16466 3324 2547 14143 4285, 14063 6481 17742 13838, 16743

sp violaceus laevicarpa langsdorfii laxiflora multijuga myrtifolia panaccoco polyphylla recurva sp ulei guianensis heptocarpa paraensis sericea sp araroba inglesiasii speciosa paraensis sp fissilis odorata purusana sp rubra sp guianense Pterocarpus draco Pterocarpus emarginatus Pterodon Swartzia euxylophora erythrocarpa Vatairea Zollernia falcata Meliaceae Cabralea canjerana angustifolia Cedrela grandifolia Guarea pallida Trichilia Moraceae Acanthinophyllum ilicifolia acutifolium Brosimum

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 14 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 15 Veg df df of, df df df df, ct df df sf, ct df df df df df df df df, of df df df ct sf df df sf df df ct, sf ct df sf df df ce sf df, cf, of

Alt 1 1 1, 2 1 1 1, 4 1, 2 1 4 4 1 1 1 1 1 1 1-2 1 1 1 4 3 1 1 3 1 4 1, 4 1 1, 4 5 1, 4 4 3 4 1, 2, 3

Humi hu hu mh, hu hu hu hu ph, hu hu ph hu hu ph, hu hu hu hu hu ph, mh hu hu hu mh hu hu hu hu hu hu ph ph hu, ph hu hu, ph hu mh ph hu, mh, ph

Environmental features

Temp wa wa wa wa wa wa, sw wa wa md md wa wa wa wa wa wa wa wa wa wa wa md wa wa sw wa md md wa wa, md mm wa, sw md wa md wa, sw

Climate tr tr me, tr tr tr tr eq me, tr, tr te, tr tr tr eq, tr tr tr tr tr me, tr tr tr tr tr tr tr tr tr tr tr te tr te tr, tr me tr, tr tr te te, eq tr,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E 1-2

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 2 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1 D 1-2 1-2

3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 2 3 3 3 2 3 3 3 1 1 3 1 1 3 2 3 C 2-3 1-3 1-3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 Wood characters Wood B 1-2 1-2 2(3)

1 2 1 1 1 1 1 2 2 2 1 2 1 2 2 2 1 1 2 1 1 2 2 1 2 2 1 1 1 1 A

1-2 1-2 1-2 1-2 1-2 1(2)

Brazilian Regions N N NE, N SE N N, SE NE, N, SE, MW N S, SE SE N N N N N N NE N N N SE SE N N SE N SE S SE SE, S SE SE, NE SE MW S N, SE, S

Wood collection (BCTw) Wood 13842, 17252 10833, 13839 10857, 13702, 16420, 17140 9911 11629 3337, 13836 10831,12886, 13544, .832, .918, 14441 11532 3258, 16180 2684 13758 6536, 13755 13761 13747 13757, 13759 11467, 13760 12766, 12874, 13666 13750 13756 12358, 16529 5203 542 13749 10024 11868 10033, 13748, 16557 7602 4858, 6650, 16199 18183 9329, 18514 2038 4709, 10917, 13536 6113 7375 16168 3710, 5360, 10949, 15216

ovatifolium

Species

subsp /

parinarioides potabile rubescens sp utile sp carinata coelhoi duckei elongata flexuosa gardneri michelli minutiflora multinervia officinalis oleifera pavanis sebifera sp surinamensis xanthocarpa sp sp (Table 1 continued) (Table Family tinctoria Chorophora Clarisia racemosa Ficus pulchella bonplandii Sorocea calophylla Myrtaceae Campomanesia sp Eugenia copacabanensis Pimenta pseudocaryophyllus Psidium sp Rubiaceae Alibertia myrcifolia Amaioua guianensis Genipa americana

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 14 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 15 ct ce mf, df df df cf, mf, sf df df df, of df, sf df df, cf, sf ct, sf df, sf df df df df df df df df df df df, ct df df df df df df mf df df df df sf ce, df

4 3 4 4 1, 4 1, 3, 4 1 4 2 1, 4 1 1, 4, 5 1, 4 4 1 1 1 1 1 1 1 1 1 1 1, 2 1, 4 1, 4 1 1 4 4 4 1 1 1 1, 2 5 4, 5

mh mh ph, hu hu ph ph, hu hu hu hu hu, ph hu ph ph hu, ph hu hu ph hu ph hu hu ph ph hu hu, mh ph, hu ph, hu ph hu, ph ph hu ph hu hu hu hu, ph ph mh, hu

wa wa md, sw sw sw md, wa wa md wa wa, md wa mm sw, md md wa wa sw wa sw wa wa wa wa wa wa wa sw, md, wa wa wa, sw md md md wa wa wa wa,sw,mm md md sw,

tr tr te, tr tr te, tr te, tr tr tr eq, tr te tr, tr te tr, te te tr, tr tr tr tr te tr tr me me tr me tr, tr tr eq te tr, tr tr te tr tr tr tr,eq,te,me tr tr

1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1-2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 3 3 2 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 2-3 2-3

1 2 2 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 3 1 1 1 1 2 2 2 2 2 2 2 2 2 1-2 1-2 1-2 1-2 1-3 2(1)

2 2 1 2 2 2 2 2 2 2 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1-2 1-2 1-2 1-2 1-2 2(1)

SE MW S, SE SE S, SE S, MW SE SE N MW, N, S N SE, S S SE, S N N SE N S N N NE NE N SE, NE SE, N SE N SE, S SE SE S N N N N, NE, S SE SE MW,

5492 7460 5151, 7430, 8747 4098 292, 5361, 10909 861, 862, 8750, 10963, 16190 9899 2340 14072, 14249 10154, 16178, .421, .464 16474 740, 2244, 6075, 6076, 7532 4863, 16170 10077, 10785 10068 1285 16486 10238 10788, 13170, 14134 14133 13662 12872 10073 4740, 11150 10005, 10918, 14076 13547 11974, 6570 4791, 11626 24 3675 8745 9982 10828, 14151 14148 4960, 5351, 5363, 6612, 14148, 17668 6081 3655, 14955

sp suterella sp sp vernalis prieurii obovata ramiflora sp cavalcantei longifolia guianensis sp sp sp bifalcata emarginata guianensis maxima obidens sp thyrsoides tucanorum Guettarda viburnoides Guettarda Psychotria longipes Simira sp Rutaceae riedelianum Balfourodendron Hortia sp sp Metrodorea Zanthoxylum rhoifolium Sapindaceae Cupania cinera Sapotaceae Chrysophyllum marginatum Ecclinusa guianensis Manilkara bidentata gardneriana Micropholis Pouteria caiamito paraense Sideroxylon Vochysiaceae acuminata Vochysia

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 16 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 17

Northern

Northeastern

Middle West

Southeastern

Southern

Fig. 1. Brazilian Regions.

As to environmental parameters, the five Brazilian geographical regions can be char- acterised as follows:

Northern Region (N) — This region is subjected to small thermal oscillation and little humidity variation throughout the year and by dense forest. According to Nimer (1989), the climate in the Northern Region is warm, humid, or super-humid. Warm = temperature above 18 °C all year round; super-humid = sub-dry* or no drought at all; humid = 1 to 3 dry months/year**. * sub-dry: P ≤ 3T; ** dry month: P ≤ 2T; P: monthly rainfall (mm); T: average temperature (°C).

Northeastern Region (N) — This region shows a small annual thermal oscillation (warm) but humidity varies a lot: there are areas (near the coast) where humidity is high almost throughout the year (super-humid/humid) and others where humid peri- ods are concentrated in a few months of the year, and there are long, dry periods (semi-humid/semi-arid)***. About 70% of the samples of the Northeastern Region

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 16 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 17

analysed in this study came from coastal areas that are super-humid or humid and there the vegetation is dense and open forest; only 9% of the samples came from caatinga-semi-arid climate, the type of vegetation and climate typical for inner areas of this region. *** semi-humid: 4 to 5 dry months/year; semi-arid: 6 dry months or more/year.

Middle West Region (MW) — This region is heterogeneous as far as temperature and rainfall are concerned, with moderate, dry winters and hot, rainy summers. The temperature in the region can be warm/sub-warm = high temperatures in the summer with mild winters with an average temperature of the coldest month from 18 to 15 °C. The humidity varies from humid to semi-humid. The main vegetation type is the cerrado.

Southeastern Region (SE) — The region has different climates in terms of tempera- ture and rainfall, with moderate/cold (mild-mesothermic/medium-mesothermic)**** and dry winters and hot, rainy summers. There are various types of vegetation: dense forest, semi-deciduous forest, deciduous forest, cerrado.

**** mild-mesothermic: winter, at least one month with the temperature below 15 °C, average of the coldest month ranging from 15 to 10 °C; hot-to-mild summer; medium-mesothermic: mild temperatures in the summer; average temperature of the hottest month below 20 °C; cool winter, average of the coldest month between 10 and 0 °C.

Southern Region (S) — The region has a well-balanced rainfall distribution all year round resulting in high, nearly constant humidity throughout the year (super-humid), and high annual thermal oscillation (sub-warm/mild-mesothermic), with hot-to-mod- erate summers and cold winters. The vegetation types are: dense forest, mixed forest (known as Araucaria forest), semi-deciduous forest and deciduous forest.

Anatomical parameters — An analysis was conducted to verify the presence or ab- sence of growth rings, as well as microscopic qualitative vessel features, such as: arrangement, groupings, type of perforation plate and presence of helical thickenings in vessel elements. The IAWA Committee (1989) recommendations were adopted for terminology and character definition.

Statistics — Anatomical and environmental data were statistically analysed. At first, a unidimensional analysis was conducted in order to highligth the most frequent levels of the qualitative anatomical variables involved. A bidimensional analysis was then conducted. In other words, relative frequencies were calculated by means of double entry tables with both variable types: anatomical and environmental. In order to test the dependence between variables, two statistical tests were conducted: Pearsonsʼs Chi-Square and Likelihood Ratio, followed by Pearsonʼs Standardised Residue analy- sis (Bussab & Morettin 1987), which allowed us to establish existing trends among qualitative variables. (text continued on page 22)

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 18 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 19

Fig. 2–7. Growth rings distinct (TS). – 2 & 3: Boundary marked by marginal parenchyma; 2:Virola venosa; 3: Aspidosperma centrale. – 4: Boundary marked by distended rays, Fagara rhoifolia. – 5: Boundary marked by differences in fibre thickness, Cupania cinerea. – 6: Wood semi-ring-porous, Piptadenia sp. – 7: Boundary marked by fibre zones, Campomanesia xanthocarpa. — Scale bars = 300 μm in Fig. 2, 3, 5–7; 100 μm in Fig. 4. → Fig. 8–13. Vessel arrangement (TS). – 8: Diffuse-porous, Virola multinervia. – 9: Vessels in diagonal pattern, Ocotea guianensis.– 10: Vessels in radial pattern, Manilkara longifolia. –

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 18 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 19

11–13: Others. – 11: Vessels in tangential bands, Jacaranda mimosifolia. – 12: Vessels in dendritic pattern, Sideroxylon sp. – 13: Wood semi-ring-porous, Cedrela odorata. — Scale bars = 300 μm.

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 20 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 21

Fig. 14–17. Vessel groupings (TS). – 14: Vessels exclusively solitary, Caraipa sp. –15 & 16: Vessels almost all in multiples; 15: Radial multiples, Syderoxylon sp.; 16: Multiples and clus- ters, Psychotria longipes. – 17: Vessels solitary and in multiples, Inga sellowiana. — Scale bars = 300 μm.

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 20 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 21

Fig. 18–20. Perforation plates. –18: Simple perforation plates (RLS), Virola pavanis. – 19 & 20: Multiple perforation plate; 19: Scalariform perforation plate (RLS), Persea pyrifolia; 20: Foraminate perforation plate (TS), Tabebuia sp. — Fig. 21. Helical thickenings in vessel ele- ments of Schinus terebinthifolius (TLS). — Scale bars = 50 μm in Fig. 18, 20, 21; 30 μm in Fig. 19.

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 22 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 23

Residual values ≥ 2.0 were used as strong affinity indicators, that is, of the exis- tence of a strong positive association between the environmental and anatomical vari- ables. On the other hand, a residual value ≤ –2.0 indicates a negative relationship for that feature in that environment.

Terminology The anatomical parameters considered were as follows: Growth rings — defined as present when one or more of the following features occurred: marginal parenchyma (Fig. 2, 3); distended rays (Fig. 4); smaller diameter fibres and/or thicker walls in the latewood (Fig. 5); semi-ring porosity (Fig. 6). Be- sides these features, fibre zones which correspond to regularly spaced regions, con- taining only fibres and rays, were also taken into account (Fig. 7). Vessel arrangement — both porosity and arrangement were treated under the des- ignation ʻarrangementʼ. The following conditions were scored: diffuse porosity (Fig. 8), diagonal/radial vessel pattern (Fig. 9, 10), and a category ʻothersʼ, which covers tangential (Fig. 11) and dendritic vessel patterns (Fig. 12), plus semi-ring porosity (Fig. 13). Vessel grouping — the following categories were considered: vessels exclusively solitary (90% or more) (Fig. 14), vessels predominantly in multiples (found both in radial lines and in clusters) (Fig. 15, 16) and vessels both solitary and in multiples (Fig. 17). Perforation plates — simple (Fig. 18) and multiple perforation plates. The latter includes scalariform and foraminate types (Fig. 19, 20). The presence of helical thickenings in the vessel walls (Fig. 21) was also scored.

RESULTS

Table 1 shows the species studied and their regions of origin, environmental param- eters and the anatomical features observed. When the anatomical features, indicated by numbers, varied for the same species, the numbers represented are separated by dashes, while the least frequent conditions are put between parentheses. Figure 22 shows the absolute frequencies of the five anatomical features assessed. Figure 23 shows the values of Pearsonʼs Standardised Residues according to environ- mental parameters, only for situations in which residual values were significant, that is, close to or over +/– 2.0 and Table 2 shows the frequency of multiple perforation plate types and helical thickenings in relation to environmental parameters.

DISCUSSION Growth rings The presence of growth rings in 48% (Fig. 22A) of the species studied reveals that the wood of many tropical species has an anatomical growth marker. This has already been noted by Mainieri et al. (1983), who found growth rings in approximately 35% of the nearly 300 species macroscopically analysed.

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 22 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 23

The presence of growth rings showed a significant relationship with mild and me- dium mesothermic climates (Fig. 23). The former is characterised by average winter temperatures below 15 °C for at least one month, and warm to mild summers. As to the latter, the coldest winter month average temperature ranges from 0 to 10 °C, and the hottest summer month average temperature is below 20 °C (Nimer 1989). Sum- mer and winter are very well defined in both types of climate. Therefore, there is a thermal seasonality throughout the year that affects the cambial activity, thus leading to the development of growth rings. The presence of growth rings was negatively related to super-humid environments (Fig. 23), confirming the relationship between continuous cambial activity and humid tropical climates. The absence of growth rings showed a statistical relationship with the ʻmediterranean climateʼ (sensu Nimer 1989) (Fig. 23). This climate occurs in the Northeastern Re- gion, but in the coastal areas it is warm, super-humid or humid with a slightly rainy summer and a very wet winter, so without a large variation in humidity or tempera- ture. This is different from the typical mediterranean climates of California, Europe, South Australia and South Africa, with seasonality in both rainfall and temperature. Some earlier studies in Brazil focused on the development of growth rings and re- lated them to seasonality in temperature and humidity. Gomez and Muñiz (1986) studied three species of and observed a gradation in growth rings according to humi- dity and temperature gradients in the regions in question. By analysing approximately 30 species of the unflooded Amazon forests, Vetter and Botosso (1989) concluded that even in a humid forest there are significant variations in the water supply, chang- ing the treesʼ growth rates and contributing to the development of growth rings. Still referring to Amazonian species, Worbes (1985) assessed the presence of an- nual growth rings resulting from lengthy annual floods and noticed that growth ring width depends on how long a tree remains submersed. Worbes compared the growth limiting effects of flooding with that produced by drought or by low winter tempera- tures of temperate regions. In a later paper, Worbes (1989) confirmed that in tropical regions, where there is an annual drought or flood, wood also shows annual growth rings. Silva et al. (1991) reported for two tropical species that rainfall variations affected cambial activity and led to the development of growth rings. Luchi (1998), studying representatives of Hymenaea courbaril from gallery for- ests, concluded that the dry season, which lasts 4 months on average and has a rainfall index of 50 mm, leads to the development of annual growth rings marked by marginal parenchyma that is formed at the end of the growth season. As one can see, even in the tropics, growth rings are common and environmental factors, although apparently more homogeneous than in temperate climates, and may lead to cyclic responses of tree growth. According to Metcalfe and Chalk (1983) and Carlquist (1988), such factors are, in essence, physiological, and have not yet been fully understood. Oscillations in water supply, temperature, light intensity, photoperiod and hormone gradients, especially auxines related to growth, are important interrelated factors.

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 24 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 25

others 2% diagonal/radial A B 14%

present absent 48% 52%

diffuse-porous 84% solitary multiple 7% 5%

C multiples D 17%

sol. and mult. simple 76% 95% present 2% E

absent 98% Fig. 22. Absolute frequency (%). A: Growth rings. B: Vessel arrangement. C: Vessel groupings. D: Perforation plates. E: Helical thickenings.

Vessel arrangement and vessel grouping Of all species analysed, 84% are diffuse-porous (Fig. 22B) which supports the general conclusion that this situation prevails in dicotyledons (Metcalfe & Chalk 1950, 1983). Statistically significant relationships have been established between vessel arrange- ment and environmental parameters. Diagonal/radial arrangement was positively re- lated to the sub-warm climate (Fig. 23). This climate type is characterised by high temperatures in the summer and mild ones in winter, and values of the coldest month range from 15 to 18 °C (Nimer 1989). ʻOtherʼ types of vessel arrangement showed a

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 24 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 25

N

SE

eq

me

sw

md

mm

ph

sf

-3 -2 -1 0 1 2 3

Fig. 23. Pearsonʼs Standardised Residues. % growth rings absent, $ growth rings present, : vessel arrangement diagonal/radial, ⊗ vessel arrangement of ʻotherʼ types, 6 vessels mainly in multiples. N = Northern, SE = Southeastern, eq = equatorial climate, me = mediterranean climate, sw = sub-warm climate, md = mild-mesothermic climate, mm = medium-mesothermic climate, ph = super-humid climate, sf = semi-deciduous forest.

positive relationship with the mild-mesothermic climate (Fig. 23), which also has distinct summers and winters. Therefore, in environments subjected to thermal seasonality, the species studied tend to show some deviation from diffuse porosity. In Brazil, sub-warm and mild- mesothermic climates occur at higher latitudes, thus showing the relationships be- tween vessel arrangement and higher latitudes. These results were confirmed by Baas et al. (1988), Zhong et al. (1992), and Li et al. (1995), who also reported special ves- sel arrangements, especially semi-ring porosity, at higher latitudes and in seasonal environments. As to vessel-grouping, a statistically significant relationship was found for vessels predominantly in multiples (Fig. 22C). Vessel multiples showed a positive relation- ship with the Southeastern Region and with the semi-deciduous seasonal forest, and a negative one with the Northern Region of Brazil (Fig. 23). When analysing both regions from a macroclimate point of view, the Southeastern is located at higher latitudes than the Northern (Fig. 1). According to Nimer (1989), the Southeastern Region is dominated by a sub-warm climate and presents a wide range of climates in terms of temperature and precipitation, with moderate/cold and dry winters and hot, rainy summers. In the Northern, the climate tends to be more homogeneous, especially with respect to temperature. Therefore, one can conclude that at higher latitudes and in environments with stronger oscillations in temperature and humidity, as occur in the Southeastern Re-

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 26 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 27 gion and in areas where the semi-deciduous seasonal forest is common, tree species are more likely to show vessels in multiples. Such a trend could functionally be explained by a clustering strategy to improve safety for hydraulic conduction, during periods of physical or physiological drought. According to Zimmermann (1983), vessel multiples are safer, since they provide al- ternative paths for the xylem sap to bypass embolisms. Such a strategy could be a general response to stress factors, since authors such as Alves (1995) and Mazzoni- Viveiros (1996) have found a higher number of vessel multiples in Cecropia glazioui and Tibouchina pulchra, subjected to air pollution.

Perforation plates Simple perforation plates were found in 95% of the specimens studied (Fig. 22D). The low frequency of multiple plates were confirmed by Baas (1976, 1986), Baas and Schweingruber (1987), and Carlquist and Hoekman (1985), who reported that multi- ple perforation plates are rarely found in low altitude tropical forests and are more common in cold, arctic temperate regions and in tropical high mountain floras. Apart from absolute frequencies, relative frequencies (Table 2) also support this, since mul- tiple perforation plates are more common in temperate and mild-mesothermic cli- mates, characterised by low temperatures during winter. Multiple plates are adaptive to environments with frosts, given their capacity to trap the bubbles formed during sap thaw (Wheeler & Baas 1991). However, embo- lisms may result from physiological drought, even in environments with tempera- tures not low enough to freeze the sap. This explains why multiple plates are more commonly found in temperate and mild-mesothermic climates. As to humidity, multiple plates showed higher relative frequencies in more humid environments (super-humid and humid) (Table 2). The explanation offered by Wheeler and Baas (1991) may apply here; they related the elimination of scalariform plates in arid, hot tropical regions to the high transpiration rates imposed by high tempera- tures, which would require, in turn, high conduction rates, for which simple plates are adaptive. The results obtained based on Brazilian flora species also agree with those of Baas et al. (1983) and Fahn et al. (1986) for the flora of Israel, where no scalariform plates were found in desert species exposed to intense water deficits.

Helical thickenings Helical thickenings are usually found in temperate floras and rare in tropical floras (Van der Graaff & Baas 1974; Van den Oever et al. 1981; Baas 1986; Carlquist 1988; Carlquist & Hoekman 1985); moreover, they are found more frequently at higher altitudes (Metcalfe & Chalk 1983). The low frequency in tropical floras was con- firmed by the present study, since helical thickenings were present in only 2% of the specimens analysed (Fig. 22E). The results obtained here also confirmed the relationship between helical thickenings and higher altitudes, since higher frequencies were found in the 1000 to 2000 metre range (Table 2).

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 26 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 27

Table 2. Frequency of multiple perforation plates and helical thickenings in relation to regional and environmental parameters.

Environmental features Multiple Helical perforation plates (%) thickenings (%) Region Northern 6.0 0.3 Northeastern 4.5 0 Middle West 0 0 Southeastern 4.7 1.7 Southern 6.6 6.6 Climate / type Tropical 5.4 0.8 Equatorial 3.6 0 Mediterranean (sensu Nimer 1989) 3.2 1.6 Temperate 6.8 6.8 Climate / temperature Warm 4.6 0.4 Sub-warm 4.6 0 Mild-mesothermic 8.9 5.9 Medium-mesothermic 6.2 12.5 Climate / humidity Super-humid 5.8 3.7 Humid 5.4 0.5 Semi-humid 3.3 1.6 Semi-arid 0 0 Altitude (m) 0–100 5.0 0.3 100–200 1.6 1.6 200–500 13.5 2.7 500–1000 4.9 3.0 1000–2000 7.7 7.7 Vegetation Cerrado 2.7 0 Caatinga 0 0 Dense forest 6.2 0.4 Open forest 2.9 2.9 Mixed forest 5.6 5.6 Semi-deciduous forest 4.5 4.5 Deciduous forest 0 10.5 Contact zones 2.4 2.4

Higher frequencies (Table 2) were also found for: 1) the Southern Region, 2) tem- perate and medium mesothermic climates, and 3) deciduous seasonal forests, a type of vegetation typical of environments subjected to two well-defined climatic seasons, alternating from rainy seasons to long, cold or physiologically dry periods. The three environmental parameters mentioned above are indicators of higher latitudes.

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 28 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 29

CONCLUSIONS

At higher latitudes and in environments with stronger seasonality in temperature growth rings are most frequent and vessels tend to be more often in multiples or with some type of special arrangement deviating from diffuse porosity. Multiple perforation plates and helical thickenings in vessel elements are more often found at higher latitudes. Positive relationships between anatomical features and altitude were found only for helical thickenings in vessel elements. The results obtained support those found for some floras that have already been investigated. The Brazilian floristic diversity and huge latitudinal, altitudinal and other ecological ranges show great potentional for further integrated studies of ecological adaptations in wood structure.

ACKNOWLEDGEMENTS

We express our thanks to the Instituto de Pesquisas Tecnológicas de São Paulo for having allowed the use of the slide collection, to Mr. Antonio C.F. Barbosa (IPT) and Mrs. Luci J. Guedes (IBt) for their valuable assistance in the preparation of slides, to Dr. Gilberto A. Paula, Mr. Paulo A. Jordá and Dr. Rubens D. Humphreys for advice on statistical analysis, and to Mrs. Maria Cecília Tomasi for making Figure 1, and to FAPESP (Proc. 1997/6195-3).

REFERENCES

Alves, E.S. 1995. The effects of pollution on wood of Cecropia glazioui (Cecropiaceae). IAWA J. 16: 69–80. Baas, P. 1973. The wood anatomical range in Ilex (Aquifoliaceae) and its ecological and phylo- genetic significance. Blumea 21: 193–258. Baas, P. 1976. Some functional and adaptative aspects of vessel member morphology. In: P. Baas, A.J. Bolton & D.H. Catling (eds.), Wood structure in biological and technological research. Leiden Bot. Series 3: 157–181. Leiden University Press, The Hague. Baas, P. 1986. Ecological patterns in xylem anatomy. In: T.J. Givnish (ed.), On the economy of plant form and function: 327–352. Cambridge University Press , Cambridge, New York. Baas, P., P.M. Esser, M.E.T. van der Westen & M. Zandee. 1988. Wood anatomy of the Oleaceae. IAWA Bull. n.s. 9: 103–182. Baas, P. & F.H. Schweingruber. 1987. Ecological trends in the wood anatomy of trees, and climbers from Europe. IAWA Bull. n.s. 8: 245–274. Baas, P., E. Werker & A. Fahn. 1983. Some ecological trends in vessel characters. IAWA Bull. n.s. 4: 141–159. Barajas-Morales, J. 1985. Wood structural differences between trees of two tropical forests in Mexico. IAWA Bull. n.s. 6: 355–364. Bussab, W.O. & P.A. Morettin. 1987. Estatística Básica. 4th ed. Atual Editora, São Paulo. Carlquist, S. 1966. Wood anatomy of Compositae: a summary, with comments on factors con- trolling wood evolution. Aliso 6: 25–44. Carlquist, S. 1988. Comparative wood anatomy. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo. Carlquist, S. & D.A. Hoekman. 1985. Ecological wood anatomy of the woody Southern Cali- fornian flora. IAWA Bull. n.s. 6: 319–347.

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 28 IAWA Journal, Vol. 21 (1), 2000 Alves & Angyalossy-Alfonso — Ecological trends in Brazilian woods 29

Chen, B.L., P. Baas, E.A. Wheeler & S.M. Wu. 1993. Wood anatomy of trees and shrubs from China. VI. Magnoliaceae. IAWA J. 14: 391–412. Deng Liang & P. Baas. 1990. Wood anatomy of trees and shrubs from China. II. Theaceae. IAWA Bull. n.s. 11: 337–378. Dong, Z. & P. Baas. 1993. Wood anatomy of trees and shrubs from China. V. Anacardiaceae. IAWA J. 14: 87–102. Fahn, A., E. Werker & P. Baas. 1986. Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. The Israel Acad. of Sciences and Humanities. Jerusalem. Gomez, A.V. & G.I.B. Muñiz. 1986. Wood structure and ultrastructure of Prosopis caldenia, P. chilensis and P. juliflora and influence of ecological factors. Prosopis International Con- ference, FAO: 195–216. IAWA Committee. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bull. n.s. 10: 219–332. IBGE-Instituto Brasileiro de Geografia e Estatística. 1993. Mapa da Vegetação do Brasil. Rio de Janeiro. Johansen, D.A. 1940. Plant microtechnique. MacGraw-Hill Book Co, New York. Li, Baizhong, B.J.H. ter Welle & R.K.W.M. Klaassen. 1995. Wood anatomy of trees and shrubs from China . VII. Sapindaceae. IAWA J. 16:191–215. Lindorf, H. 1994. Eco-anatomical wood features of species from a very dry tropical forest. IAWA J. 15: 363–376. Luchi, A.E. 1998. Periodicidade de crescimento em Hymenaea courbaril L. e anatomia ecológica do lenho de espécies de mata ciliar. Tese de doutorado. Universidade de São Paulo, São Paulo. Mainieri, C., J.P. Chimelo & V.A. Alfonso. 1983. Manual de identificação das principais ma- deiras comerciais brasileiras. Promocet, São Paulo. Mazzoni-Viveiros, S.C. 1996. Aspectos estruturais de Tibouchina pulchra Cogn. (Melasto- mataceae) sob o impacto de poluentes atmosféricos provenientes do complexo industrial de Cubatão, SP - Brasil. Tese de doutorado. Universidade de São Paulo, São Paulo. Metcalfe, C.R. & L. Chalk. 1950. Anatomy of the dicotyledons. 2 Vols. Clarendon Press, Oxford. Metcalfe, C.R. & L. Chalk 1983. Anatomy of the dicotyledons. 2nd ed. Vol. 2. Clarendon Press, Oxford. Nimer, E. 1989. Climatologia do Brasil. 2nd ed. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro. Oskolski, A.A. 1995. Wood anatomy of Schefflera and related taxa (Araliaceae). IAWA J. 16: 159–190. Sass, J.E. 1951. Botanical microtechnique. 2nd ed. State College Press, Iowa. Sass, U., W. Killmann & D. Eckstein. 1995. Wood formation in two species of Dipterocarpaceae in Peninsular Malaysia. IAWA J. 16: 371–384. Schmid, R. & P. Baas. 1984. The occurrence of scalariform perforation plates and helical vessel thickenings in wood of Myrtaceae. IAWA Bull. n.s. 5: 197–215. Silva, E.A.M. da, L.F.R. Pereira, A.L. Pinheiro & R. da S. Ramalho. 1991. Variação sazonal na atividade cambial de três espécies florestais na região de Viçosa-MG. Seiva 50: 49–52. Van den Oever, L., P. Baas & M. Zandee. 1981. Comparative wood anatomy of Symplocos and latitude and altitude of provenance. IAWA Bull. n.s. 2: 3–24. Van der Graaff, N.A. & P. Baas. 1974. Wood anatomical variation in relation to latitude and altitude. Blumea 22: 101–121. Vetter, R.E. & P.C. Botosso. 1989. Remarks on age and growth rate determination of Amazonian trees. IAWA Bull. n.s. 10: 133–145.

Downloaded from Brill.com10/05/2021 10:10:15PM via free access 30 IAWA Journal, Vol. 21 (1), 2000

Wheeler, E.A. & P. Baas. 1991. A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Bull. n.s. 12: 275–332. Worbes, M. 1985. Structural and other adaptations to long-term flooding by trees in Central Amazonia. Amazonia 9: 459–484. Worbes, M. 1989. Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the Neotropics. IAWA Bull. n.s. 10: 109–122. Worbes, M. 1995. How to measure growth dynamics in tropical trees - A review. IAWA J. 16: 337–351. Zhang, X., L. Deng & P. Baas. 1988. The ecological wood anatomy of the lilacs (Syringa oblata var. giraldii) on Mount Taibei in northwestern China. IAWA Bull. n.s. 9: 24–30. Zhong, Y., P. Baas & E.A. Wheeler. 1992. Wood anatomy of trees and shrubs from China. IV. Ulmaceae. IAWA Bull. n.s. 13: 419–453. Zimmermann, M.H. 1983. Xylem structure and the ascent of sap. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.

Downloaded from Brill.com10/05/2021 10:10:15PM via free access