Geoquímica Alerson Rodrigues Bezerra
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1.CEINTURE DE FEU, Paris
Cette ligne est matérialisée par une rainure dans la façade, dans laquelle sera logée une ligne de néons rouge/orangé, couleurd’origine dugaznéon. danslafaçade, danslaquelleseralogéeunelignedenéonsrouge/orangé, Cette ligneestmatérialisée parunerainure estla plus intense que l’activitéterrestre Ce qui projet, se déploie sur les 4 façades du bâtiment central de est la de la Ceinture Feu, représentation ligne qui par imaginaire relie, 352 points, tous les volcans le émergés long de la plaque Pacifique. C’est dans cette zone ontdatél’originedusystèmesolaire. del’IPGPqui,lespremiers, etàsonétudescientifique.Cesontleschercheurs àlaTerre dePhysiqueduGlobe,rueCuvieràParis,estundes10lieuxaumondeconsacrés L’Institut Vinson Murphy Takahe Toney Frakes Steere Siple Hampton Sidley Waesche Andrus Moulton Berlin Morning Discovery Terror Erebus - · · Melbourne autre. Overlord DE FEU. JUIN 2009 Burney Lautaro Hudson Macá AGENCE PIECES MONTEES Melimoyu Corcovado ANGELA DETANICO, RAFAEL LAIN Minchinmávida Tronador INSTITUT DE PHYSIQUE DU GLOBE, PARIS Osorno Nouvelle-Zélande dans le Pacifique Sud. LA CEINTURE DE FEU Puntiagudo Cette zone est également caractérisée par de l’Amérique Centrale et des zones côtières de Un très grand nombre des volcans mondiaux est plus de la moitié des volcans en activité au- Cette intense activité volcanique et sismique Lanín actifs sont situés dans la ceinture de feu, et d’enfoncement d’une plaque tectonique sous une l’Australie pour englober les îles Fidji et la La CEINTURE DE FEU est une ligne imaginaire qui Elle suit en grande partie la plaque pacifique. rassemblé sur cette ligne de 40 000 km de long. Parmi les 1500 volcans sur la planète, les plus dessus du niveau de la mer forme cette CEINTURE correspond à des zones de subduction, processus Cette longue guirlande d’îles volcaniques prend naissance à la pointe méridionale de l’Amérique relie les 452 volcans qui bordent l’Océan Pacifique. -
Magmatic Evolution of the Nevado Del Ruiz Volcano, Central Cordillera, Colombia Minera1 Chemistry and Geochemistry
Magmatic evolution of the Nevado del Ruiz volcano, Central Cordillera, Colombia Minera1 chemistry and geochemistry N. VATIN-PÉRIGNON “‘, P. GOEMANS “‘, R.A. OLIVER ‘*’ L. BRIQUEU 13),J.C. THOURET 14J,R. SALINAS E. 151,A. MURCIA L. ” Abstract : The Nevado del RU~‘, located 120 km west of Bogota. is one of the currently active andesitic volcanoes that lies north of the Central Cordillera of Colombia at the intersection of two dominant fault systems originating in the Palaeozoïc basement. The pre-volcanic basement is formed by Palaeozoïc gneisses intruded by pre-Cretaceous and Tertiarygranitic batholiths. They are covered by lavas and volcaniclastic rocks from an eroded volcanic chain dissected during the late Pliocene. The geologic history of the Nevado del Ruiz records two periods of building of the compound volcano. The stratigraphie relations and the K-Ar dating indicate that effusive and explosive volcanism began approximately 1 Ma ago with eruption of differentiated andesitic lava andpyroclastic flows and andesitic domes along a regional structural trend. Cataclysmic eruptions opened the second phase of activity. The Upper sequences consist of block-lavas and lava domes ranging from two pyroxene-andesites to rhyodacites. Holocene to recent volcanic eruptions, controled by the intense tectonic activity at the intersection of the Palestina fawlt with the regional fault system, are similar in eruptive style and magma composition to eruptions of the earlier stages of building of the volcano. The youngest volcanic activity is marked by lateral phreatomagmatic eruptions, voluminous debris avalanches. ash flow tuffs and pumice falls related to catastrophic collapse during the historic eruptions including the disastrous eruption of 1985. -
Appendix A. Supplementary Material to the Manuscript
Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study. -
Full-Text PDF (Final Published Version)
Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H. -
Sr–Pb Isotopes Signature of Lascar Volcano (Chile): Insight Into Contamination of Arc Magmas Ascending Through a Thick Continental Crust N
Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera To cite this version: N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera. Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust. Journal of South American Earth Sciences, Elsevier, 2020, 101, pp.102599. 10.1016/j.jsames.2020.102599. hal-03004128 HAL Id: hal-03004128 https://hal.uca.fr/hal-03004128 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Manuscript File Sr-Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust 1N. Sainlot, 1I. Vlastélic, 1F. Nauret, 1,2 S. Moune, 3,4,5 F. Aguilera 1 Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France 2 Observatoire volcanologique et sismologique de la Guadeloupe, Institut de Physique du Globe, Sorbonne Paris-Cité, CNRS UMR 7154, Université Paris Diderot, Paris, France 3 Núcleo de Investigación en Riesgo Volcánico - Ckelar Volcanes, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 4 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 5 Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Av. -
Tracing a Major Crustal Domain Boundary Based on the Geochemistry of Minor Volcanic Centres in Southern Peru
7th International Symposium on Andean Geodynamics (ISAG 2008, Nice), Extended Abstracts: 298-301 Tracing a major crustal domain boundary based on the geochemistry of minor volcanic centres in southern Peru Mirian Mamani1, Gerhard Wörner2, & Jean-Claude Thouret3 1 Georg-August University, Goldschmidstr. 1, 37077 Göttingen, Germany ([email protected], [email protected]) 2 Université Blaise Pascal, Clermont Ferrand, France ([email protected]) KEYWORDS : minor volcanic centres, crust, tectonic erosion, Central Andes, isotopes Introduction Geochemical studies of Tertiary to Recent magmatism in the Central Volcanic Zone have mainly focused on large stratovolcanoes. This is because mafic minor volcanic centres and related flows that formed during a single eruption are relatively rare and occur in locally clusters (e.g. Andagua/Humbo fields in S. Peru, Delacour et al., 2007; Negrillar field in N. Chile, Deruelle 1982) or in the back arc region (Davidson and de Silva, 1992). These studies showed that the "monogenetic" lavas are high-K calc-alkaline and their major, trace, and rare elements, as well as Sr-, Nd- and Pb- isotopes data display a range comparable to those of the Central Volcanic Zone composite volcanoes (Delacour et al., 2007). It has been argued that the eruptive products of these minor centers bypass the large magma chamber systems below Andean stratovolcanoes and thus may represent magmas that were derived from a deeper level in the crust (Davidson and de Silva, 1992; Ruprecht and Wörner, 2007). This study represents a continuation of our work to understand the regional variation in erupted magma composition in the Central Andes (Mamani et al., 2008; Wörner et al., 1992). -
Three-Dimensional Resistivity Image of the Magmatic System Beneath
PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Three-dimensional resistivity image of the magmatic system 10.1002/2015GL064426 beneath Lastarria volcano and evidence for magmatic Key Points: intrusion in the back arc (northern Chile) • Electrical resistivity images of the Lastrarria volcano Daniel Díaz1,2, Wiebke Heise3, and Fernando Zamudio1 • The magmatic source is located to the south of Lastarria volcano 1Departamento de Geofísica, Universidad de Chile, Santiago, Chile, 2Centro de Excelencia en Geotermia de Los Andes, • Deep conductor in the back arc 3 suggests magmatic intrusion Santiago, Chile, GNS Science, Lower Hutt, New Zealand Supporting Information: Abstract Lazufre volcanic center, located in the central Andes, is recently undergoing an episode of uplift, • Readme conforming one of the most extensive deforming volcanic systems worldwide, but its magmatic system and • Text S1 • Figure S1 its connection with the observed uplift are still poorly studied. Here we image the electrical resistivity structure • Figure S2 using the magnetotelluric method in the surroundings of the Lastarria volcano, one of the most important • Figure S3 features in the Lazufre area, to understand the nature of the magmatic plumbing, the associated fumarolic • Figure S4 activity, and the large-scale surface deformation. Results from 3-D modeling show a conductive zone at 6 km Correspondence to: depth south of the Lastarria volcano interpreted as the magmatic heat source which is connected to a shallower D. Díaz, conductor beneath the volcano, showing the pathways of volcanic gasses and heated fluid. A large-scale [email protected] conductive area coinciding with the area of uplift points at a magma intrusion at midcrustal depth. -
Informe Final De La Trigésima Sexta Reunión Consultiva Del Tratado Antártico – Volumen I
Informe Final de la Trigésima Sexta Reunión Consultiva del Tratado Antártico REUNIÓN CONSULTIVA DEL TRATADO ANTÁRTICO Informe Final de la Trigésima Sexta Reunión Consultiva del Tratado Antártico Bruselas, Bélgica del 20 al 29 de mayo de 2013 Volumen I Secretaría del Tratado Antártico Buenos Aires 2013 Publicado por: Secretariat of the Antarctic Treaty Secrétariat du Traité sur l’ Antarctique Секретариат Договора об Антарктике Secretaría del Tratado Antártico Maipú 757, Piso 4 C1006ACI Ciudad Autónoma Buenos Aires - Argentina Tel: +54 11 4320 4260 Fax: +54 11 4320 4253 Este libro también está disponible en: www.ats.aq (versión digital) y para compras en línea. ISSN 2346-9889 Índice VOLUMEN I Acrónimos y siglas 9 PRIMERA PARTE. INFORME FINAL 11 1. Informe Final 13 2. Informe de la XVI Reunión del CPA 93 3. Apéndices 183 Comunicado de la XXXVI RCTA 185 Programa preliminar de la XXXVII RCTA 187 SEGUNDA PARTE. MEDIDAS, DECISIONES Y RESOLUCIONES 189 1. Medidas 191 Medida 1 (2013) ZAEP N.° 108 (Isla Green, Islas Berthelot, Península Antártica): Plan de Gestión revisado 193 Medida 2 (2013) ZAEP N.° 117 (Isla Avian, Bahía Margarita, Península Antártica): Plan de Gestión revisado 195 Medida 3 (2013) ZAEP N.° 123 (Valles Barwick y Balham, sur de la Tierra Victoria): Plan de Gestión revisado 197 Medida 4 (2013) ZAEP N.° 132 (Península Potter, Isla Rey Jorge (Isla 25 de Mayo), Islas Shetland del Sur): Plan de Gestión revisado 199 Medida 5 (2013) ZAEP N.° 134 (Punta Cierva e islas offshore, Costa Danco, Península Antártica): Plan de Gestión revisado -
Geomorfología Del Área De Putre, Andes Del Norte De Chile
Nº 54, 2017. Páginas 7-20 Diálogo Andino GEOMORFOLOGÍA DEL ÁREA DE PUTRE, ANDES DEL NORTE DE CHILE: ACCIÓN VOLCÁNICA Y CLIMÁTICA EN SU MODELADO* GEOMORPHOLOGY OF THE PUTRE AREA, NORTHERN ANDES OF CHILE: VOLCANIC AND CLIMATE ACTION IN ITS MODELING Alan Rodríguez Valdivia**, Cristián Albornoz Espinoza*** y Alejandro Tapia Tosetti**** El área de Putre se localiza en una subcuenca de montaña a 3.500 msnm, en la vertiente oeste de la cordillera occidental Andina (extremo norte de Chile), en el que predominan formas de relieve asociadas a la acción volcánica y del clima. Dicho relieve es producto de la evolución geológica del Complejo Volcánico Taapaca (CVT), cuyos procesos eruptivos han dado paso a morfolito- logías constructivas que configuran la subcuenca estudiada, en las que el factor climático ha actuado constantemente, meteorizando y erosionando los materiales, dando como resultado formas derivadas de procesos gravitacionales, fluviales y, en menor medida, periglaciales. Se reconoce en el modelado existente, la acción ejercida por procesos de tipo gravitacional que se han traducido en movimientos en masa de tipo derrumbes y flujos de detritos, mientras que la acción fluvial ha favorecido la formación de profundas y angostas quebradas en el área. Palabras claves: Putre, Complejo Volcánico Taapaca, Geomorfología, Movimientos en masa. The Putre area is located in a sub-basin at an altitude of 3,500 m on the west slope of the Western Andean mountain range (in the northernmost part of Chile), with volcanoes and the climate forming the predominant landforms. This relief is the result of the geological evolution of the Taapaca Volcanic Complex (CVT) whose eruptions have given rise to constructive morpho-lithologies shaping the sub-basin, and the climate consistently weathering and eroding, leading to forms which resulte primary from gravi- tational and fluvial processes and secundary from periglacial mechanisms. -
Final Report of the Thirty-Sixth Antarctic Treaty Consultative Meeting
Final Report of the Thirty-sixth Antarctic Treaty Consultative Meeting ANTARCTIC TREATY CONSULTATIVE MEETING Final Report of the Thirty-sixth Antarctic Treaty Consultative Meeting Brussels, Belgium 20–29 May 2013 Volume I Secretariat of the Antarctic Treaty Buenos Aires 2013 Published by: Secretariat of the Antarctic Treaty Secrétariat du Traité sur l’ Antarctique Секретариат Договора об Антарктике Secretaría del Tratado Antártico Maipú 757, Piso 4 C1006ACI Ciudad Autónoma Buenos Aires - Argentina Tel: +54 11 4320 4260 Fax: +54 11 4320 4253 This book is also available from: www.ats.aq (digital version) and online-purchased copies. ISSN 2346-9897 Contents VOLUME I Acronyms and Abbreviations 9 PART I. FINAL REPORT 11 1. Final Report 13 2. CEP XVI Report 87 3. Appendices 169 ATCM XXXVI Communiqué 171 Preliminary Agenda for ATCM XXXVII 173 PART II. MEASURES, DECISIONS AND RESOLUTIONS 175 1. Measures 177 Measure 1 (2013) ASPA No 108 (Green Island, Berthelot Islands, Antarctic Peninsula): Revised Management Plan 179 Measure 2 (2013) ASPA No 117 (Avian Island, Marguerite Bay, Antarctic Peninsula): Revised Management Plan 181 Measure 3 (2013) ASPA No 123 (Barwick and Balham Valleys, Southern Victoria Land): Revised Management Plan 183 Measure 4 (2013) ASPA No 132 (Potter Peninsula, King George Island (Isla 25 de Mayo), South Shetland Islands): Revised Management Plan 185 Measure 5 (2013) ASPA No 134 (Cierva Point and offshore islands, Danco Coast, Antarctic Peninsula): Revised Management Plan 187 Measure 6 (2013) ASPA No 135 (North-east Bailey -
Persistent Uplift of the Lazufre Volcanic Complex (Central 10.1002/2014GC005370 Andes): New Insights from PCAIM Inversion of Insar Time
PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Persistent uplift of the Lazufre volcanic complex (Central 10.1002/2014GC005370 Andes): New insights from PCAIM inversion of InSAR time Key Points: series and GPS data InSAR and GPS analysis using PCAIM D. Remy1, J. L. Froger2, H. Perfettini3, S. Bonvalot1, G. Gabalda1, F. Albino2,4, V. Cayol2, 5,6 1 Correspondence to: D. Legrand , and M. De Saint Blanquat D. Remy, 1 2 [email protected] GET/UMR 5563 (UPS, CNRS, IRD, CNES), Observatoire Midi-Pyren ees, Universite P. Sabatier, Toulouse, France, LMV/UMR 6524 (UBP-CNRS-IRD), Observatoire de Physique du Globe de Clermont-Ferrand, Universite B. Pascal, Clermont-Ferrand, France, 3ISTERRE/UMR 5275 (UJF, CNRS, IRD), Observatoire des Sciences de l’Univers de Grenoble, Universite Joseph Fou- Citation: 4 Remy, D., J. L. Froger, H. Perfettini, rier, Grenoble, France, Now at Department of Earth Sciences, Cartography & Remote Sensing Unit, Royal Museum for S. Bonvalot, G. Gabalda, F. Albino, Central Africa, Tervuren, Belgium, 5Departamento de Geofısica, Universidad de Chile, Santiago, Chile, 6Now at Instituto de V. Cayol, D. Legrand, and M. Saint Geofisica, Universidad Nacional Autonoma de Mexico, Coyoacan, Mexico Blanquat (2014), Persistent uplift of the Lazufre volcanic complex (Central Andes): New insights from PCAIM inversion of InSAR time series and GPS Abstract We reanalyzed the surface displacements observed at the Lazufre volcanic complex in the data, Geochem. Geophys. Geosyst., 15, Southern Andean Central Volcanic Zone using GPS measurements made between 2006 and 2008 and a doi:10.1002/2014GC005370. large InSAR data set. We performed a detailed spatiotemporal analysis of the displacements using a princi- pal component analysis inversion method (PCAIM). -
Glacier Evolution in the South West Slope of Nevado Coropuna
Glacier evolution in the South West slope of Nevado Coropuna (Cordillera Ampato, Perú) Néstor Campos Oset Master Project Master en Tecnologías de la Información Geográfica (TIG) Universidad Complutense de Madrid Director: Prof. David Palacios (UCM) Departamento de Análisis Geográfico Regional y Geografía Física Grupo de Investigación en Geografía Física de Alta Montaña (GFAM) ACKNOWLEDGEMENTS I would like to gratefully and sincerely thank Dr. David Palacios for his help and guidance during the realization of this master thesis. I would also like to thank Dr. José Úbeda for his assistance and support. Thanks to GFAM-GEM for providing materials used for the analysis. And last but not least, a special thanks to my family, for their encouragement during this project and their unwavering support in all that I do. 2 TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 4 1.1 Geographic settings ................................................................................................ 4 1.2 Geologic settings .................................................................................................... 6 1.3 Climatic setting....................................................................................................... 8 1.4 Glacier hazards ..................................................................................................... 10 1.5 Glacier evolution .................................................................................................