Cosmology: Where in the $&#**¢

Total Page:16

File Type:pdf, Size:1020Kb

Cosmology: Where in the $&#**¢ THE UNIVERSE AT LARGE Cosmology: Where in the $&#**¢ by VIRGINIA TRIMBLE Being a compilation of tabular and narrative material designed to provide POWERS OF TEN a framework for the more A remarkably delicate balance between the small scale phe- detailed and technical nomena of atomic and nuclear physics and the large scale articles that appear phenomena of astronomy and cosmology is required for the elsewhere in this issue. Universe to be hospitable to chemically based life. Efforts to It can also be used as a prove that this must be so are sometimes dignified by the name “anthropic principle.” My goal here is the much more ready reference resource modest one of indicating where we fit into the range of ob- for when people ask you jects and events. A subsidiary goal is to use common astro- things like: “Are there nomical terms (solar system, galaxy, Local Group, and so forth) so many times in suitable contexts that you will never any other galaxies again have an excuse for forgetting which fits inside which in our solar system?” others. Time, length, and mass are advertised as the most funda- mental physical quantities (though the c = G = 1 relativists and the c = h = 1 particle physicists manage to survive with only one, length or energy). Taking one example of each, we find: • Geometric mean of diameter of atomic nucleus and dis- tance to the nearest star = 14 feet, the height of a dean at a prestigious university • Geometric mean of halflife of excited nucleus and age of the Universe = 2 minutes, upper limit to the time “Is it bigger than a bread you will listen to telephone solicitor box?” (Steve Allen, c. 1954, • Geometric mean of mass of hydrogen atom and mass of What’s My Line?) sun = 60 kg, large dog or small dog owner. 52 FALL 1997 % Universe Are You? Time Scales of Human and Astronomical Phenomena Log t Event (years) The first three tables provide addi- -50 Planck time tional examples of logarithmic steps -9 shortest human reaction time; rotation of Crab Nebula pulsar in length, time and mass that take -8 heart beat after running; QPOs in X-ray binaries us from atomic to astronomical -7 breath after running; core collapse in type II supernova, rotation scales. The units are centimeters, periods of old pulsars years, and grams. Some powers of 10 -6 time you expect to wait when told “just a minute”; most rapid rotation of are missing because I couldn’t think white dwarfs of anything interesting that exists or -5 attention span of freshman physics class; solar oscillations happens on that scale. Suggestions -4 the 50-minute hour; orbit periods of cataclysmic binaries from readers of items to fill the gaps -3 work day; most rapid variability in active galaxies, quasars, etc. would be much appreciated. -2 long weekend; pulsation and orbit periods of moderately compact stars In these days of energy- and binaries consciousness, one ought perhaps to -1 number of days I need in a month; pulsation periods of Cepheid variables; have one more table, of energies or a orbit periods of “hot Jupiters” related quantity. The one shown on 0 length of small NSF contract; orbit period of earth, detectable changes in luminosity of most active galaxies and in pulsation and orbit periods page 55 is called power if you are a of stars and binaries householder and paying for it, or lu- +I lifetime of breadbox; age of SN 1987A, evolution of stars undergoing minosity if you are an astronomer last helium flash and not paying for it. Students in in- +2 age of professor; life of nova shell troductory astronomy courses are al- +3 significant changes in spoken languages; age of Crab Nebula as now ways a little surprised by the enor- seen mity of the answer they find to the +4 neolithic culture (agriculture, cities, pottery, baskets, writing); lifetimes of question: What would it cost you planetary nebulae to keep the sun shining for a year if +5 paleolithic culture, anatomically modern man; ages of youngest detectable protostars and star bursts you had to pay Southern California +6 assorted hominids, earliest tools; lifetime of very massive star Edison Company 12¢ per kilowatt +7 giant mammals; lifetime of progenitor of SN 1987A, lifetimes of pulsars hour to do it? +8 dinosaurs; lifetime of moderate-mass stars, crossing times in dense cores of clusters of stars and galaxies A COOK’S TOUR OF THE +9 single-celled life; relaxation times in dense cluster cores UNIVERSE +9.66 age of solar system The Earth is a planet, and there are +10 lifetime of solar mass star, dynamical time scale of less dense clusters times when one feels that the most +10.2 age of Universe important issue is whether the BEAM LINE 53 capital E and the “the” are forbidden, compulsory, both, or neither. Planets are undoubtedly the most familiar of Sizes of Terrestrial and Celestial Objects and Systems astronomical objects, since most of us have lived on one most of our lives (if there is anyone out there for whom Log l Object (etc.) this is not true, I don’t want to know about it). The nine (cm) planets of our Solar System can be categorized as ter- -33 Planck length restrial or earthlike (meaning made of rocks and met- -13 atomic nucleus (1 fm) -8 Bohr orbit; divide between X-ray and gamma-ray als with at most thin layers of other stuff) and Jovian wavelengths (1 Angstrom) or Jupiterlike (meaning made mostly of gases, especially -4 near infrared wavelengths (1 µm), largest bound inter- hydrogen and helium). The former are Mercury, Venus, stellar atoms Earth, and Mars; the latter Jupiter, Saturn, Uranus, and -3 magnetic domains Neptune. Pluto is a misfit, possibly related to the moons 0 distance between atoms in interstellar space; rules of thumb of the outer Jovian planets or to the mostly-icy denizens +l small bread box of the Kuiper belt slightly further from the sun. Kuiper +2 distance between atoms in intergalactic space; belt objects are the source of comets with relatively small people, radio waves orbits. The (still unseen) objects that feed into the sup- +3 biggest animals ply of nearly-parabolic comets come from the Oort +4 to 5 biggest buildings and trees +6 tallest mountains, comets, small asteroids, and Cloud. moons; neutron stars, Schwarzschild radii of stellar We now know of a dozen or more planets orbiting oth- mass black holes (approximate division between er stars (Beam Line, Vol. 27, No. 2, p. 31–35), the largest dominance of solid body and gravitational forces) +7 to +8 moderate to big moons and asteroids class of which have masses like the Jovian planets but +9 earth, white dwarfs orbits like the terrestrial ones, and so are called hot +10 Jupiter, brown dwarfs Jupiters by their friends. We expect, but do not know, +11 sun and other main sequence stars that observations will eventually reveal large numbers +12 distance of “hot Jupiters” from parent stars of other planetary systems, both like and unlike ours, +13 sun-earth distance (1 astronomical unit) and that moons, comets, asteroids, meteors, and so forth +15 diameter of Pluto’s orbit, heliosphere will be common features. No comet with an orbit sug- +17 Oort cloud of comet progenitors (limit of solar system) gesting it originally belonged to another star has ever +18 widest bound star pairs; core of dense star cluster +19 diameter of globular star cluster (3 parsecs) been seen. Planets and subplanetary detritus are not a +20 giant molecular cloud major contributor to the mass or luminosity anywhere, +21 width of spiral arm in Milky Way but they are, of course, the only life-bearing entity we +22 thickness of disk of old stars in Milky Way know of. +23 diameter of visible part of Milky Way and other big- The Sun is a star, with a mass (2×1033 g), radius gish galaxies × 10 × 33 +24 diameter of massive halo of Milky Way and other big- (7 10 cm), luminosity (4 10 erg/sec), age (4.55 Gyr), gish galaxies, distance between galaxies in rich cluster heavy element abundance (1.7 percent everything that +25 core of rich cluster of galaxies is not hydrogen or helium), and all the other proper- +26 diameter of rich cluster of galaxies; our distance from ties you can think of, very much in the middle of the Virgo range for stars in general. The extremes of the ranges (for +27 largest scales on which we see structure and stream- ing in the Universe example all stellar masses are between 0.085 and 120 +28 distance light travels in 1010 years (radius of “observ- MO.) are understood in terms of the physics of gravita- able” Universe) tion, electromagnetism, and nuclear reactions, though the distributions through the ranges are not. We also 54 FALL 1997 almost. That we orbit a single star is Masses of Terrestrial A Few Powers and not, therefore, improbable. and Luminosities Celestial Objects Star clusters are the main or only and Systems Log L Object (etc.) sites of star formation (at least here (erg/sec) and now, and probably also there and Log M Object (etc.) (grams) -3 hardworking hydrogen then). The process of a large cloud of atom -27 electron +7 hardworking bread box cold gas collapsing and fragmenting -24 proton (thermal radiation into stellar mass cores is a collective -19 big molecule at room temperature) one, some times triggered by en- -16 small virus +9 human metabolism +10 hardworking horse counters with other clouds, expand- -5 Planck mass ing supernova remnants, or other -3 large cell (not ostrich +22 world energy consump- egg!) tion (very crude) shocks.
Recommended publications
  • Lecture 7: the Local Group and Nearby Clusters
    Lecture 7: the Local Group and nearby clusters • in this lecture we move up in scale, to explore typical clusters of galaxies – the Local Group is an example of a not very rich cluster • interesting topics include: – clusters and the structure of the Universe – the fate of galaxies: stable, destroyed or cannibals? Galaxies – AS 3011 1 the Local Group Galaxies – AS 3011 2 1 Inner Solar System Galaxies – AS 3011 3 Galaxies – AS 3011 4 2 some Local Group galaxies, roughly to the same physical scale: M31, Leo I LMC, M32 SMC MW M33 (images courtesy AAO) Galaxies – AS 3011 5 first impressions • there are some obvious properties of the Local Group: – it’s mostly empty, i.e. galaxies are quite distant from each other – with some exceptions like satellite galaxies – the three spirals are easily the biggest – dwarf galaxies are on the outskirts of the group • how typical is this of other galaxy groups? – turns out that the Local group is not very rich in galaxies Galaxies – AS 3011 6 3 groups and clusters • groups contain a smaller number of galaxies than clusters, and are more compact in both space and velocity spread: group: cluster: no. galaxies ~10+ >50 core radius ~300 kpc ~300 kpc median radius ~1 Mpc ~ 3Mpc v-dispersion 150 km/s 800 km/s M/L ~200 ~200 13 15 total mass few 10 Msolar few 10 Msolar Galaxies – AS 3011 7 classifying the Local Group • the Local Group has only about 10 significant galaxies 8 (L > 10 Lsolar), so does not qualify as a cluster – NB, dwarf spheroidals etc.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • 1410.0681V1.Pdf
    ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 05/12/14 THE QUENCHING OF THE ULTRA-FAINT DWARF GALAXIES IN THE REIONIZATION ERA1 THOMAS M. BROWN2, JASON TUMLINSON2, MARLA GEHA3, JOSHUA D. SIMON4,LUIS C. VARGAS3,DON A. VANDENBERG5,EVAN N. KIRBY6, JASON S. KALIRAI2,7,ROBERTO J. AVILA2, MARIO GENNARO2,HENRY C. FERGUSON2 RICARDO R. MUÑOZ8,PURAGRA GUHATHAKURTA9, AND ALVIO RENZINI10 Accepted for publication in The Astrophysical Journal ABSTRACT We present new constraints on the star formation histories of six ultra-faint dwarf galaxies: Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I. Our analysis employs a combination of high-precision photometry obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, medium-resolutionspectroscopy obtained with the DEep Imaging Multi-Object Spectrograph on the W.M. Keck Observatory, and updated Victoria-Regina isochrones tailored to the abundance patterns appropriate for these galaxies. The data for five of these Milky Way satellites are best fit by a star formation history where at least 75% of the stars formed by z ∼ 10 (13.3 Gyr ago). All of the galaxies are consistent with 80% of the stars forming by z ∼ 6 (12.8 Gyr ago) and 100% of the stars forming by z ∼ 3 (11.6 Gyr ago). The similarly ancient populations of these galaxies support the hypothesis that star formation in the smallest dark matter sub-halos was suppressed by a global outside influence, such as the reionization of the universe. Keywords: Local Group — galaxies: dwarf — galaxies: photometry — galaxies: evolution — galaxies: for- mation — galaxies: stellar content 1.
    [Show full text]
  • Astronomy 422
    Astronomy 422 Lecture 15: Expansion and Large Scale Structure of the Universe Key concepts: Hubble Flow Clusters and Large scale structure Gravitational Lensing Sunyaev-Zeldovich Effect Expansion and age of the Universe • Slipher (1914) found that most 'spiral nebulae' were redshifted. • Hubble (1929): "Spiral nebulae" are • other galaxies. – Measured distances with Cepheids – Found V=H0d (Hubble's Law) • V is called recessional velocity, but redshift due to stretching of photons as Universe expands. • V=H0D is natural result of uniform expansion of the universe, and also provides a powerful distance determination method. • However, total observed redshift is due to expansion of the universe plus a galaxy's motion through space (peculiar motion). – For example, the Milky Way and M31 approaching each other at 119 km/s. • Hubble Flow : apparent motion of galaxies due to expansion of space. v ~ cz • Cosmological redshift: stretching of photon wavelength due to expansion of space. Recall relativistic Doppler shift: Thus, as long as H0 constant For z<<1 (OK within z ~ 0.1) What is H0? Main uncertainty is distance, though also galaxy peculiar motions play a role. Measurements now indicate H0 = 70.4 ± 1.4 (km/sec)/Mpc. Sometimes you will see For example, v=15,000 km/s => D=210 Mpc = 150 h-1 Mpc. Hubble time The Hubble time, th, is the time since Big Bang assuming a constant H0. How long ago was all of space at a single point? Consider a galaxy now at distance d from us, with recessional velocity v. At time th ago it was at our location For H0 = 71 km/s/Mpc Large scale structure of the universe • Density fluctuations evolve into structures we observe (galaxies, clusters etc.) • On scales > galaxies we talk about Large Scale Structure (LSS): – groups, clusters, filaments, walls, voids, superclusters • To map and quantify the LSS (and to compare with theoretical predictions), we use redshift surveys.
    [Show full text]
  • Snake in the Clouds: a New Nearby Dwarf Galaxy in the Magellanic Bridge ∗ Sergey E
    MNRAS 000, 1{21 (2018) Preprint 19 April 2018 Compiled using MNRAS LATEX style file v3.0 Snake in the Clouds: A new nearby dwarf galaxy in the Magellanic bridge ∗ Sergey E. Koposov,1;2 Matthew G. Walker,1 Vasily Belokurov,2;3 Andrew R. Casey,4;5 Alex Geringer-Sameth,y6 Dougal Mackey,7 Gary Da Costa,7 Denis Erkal8, Prashin Jethwa9, Mario Mateo,10, Edward W. Olszewski11 and John I. Bailey III12 1McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Ave, 15213, USA 2Institute of Astronomy, University of Cambridge, Madingley road, CB3 0HA, UK 3Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA 4School of Physics and Astronomy, Monash University, Clayton 3800, Victoria, Australia 5Faculty of Information Technology, Monash University, Clayton 3800, Victoria, Australia 6Astrophysics Group, Physics Department, Imperial College London, Prince Consort Rd, London SW7 2AZ, UK 7Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 8Department of Physics, University of Surrey, Guildford, GU2 7XH, UK 9European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany 10Department of Astronomy, University of Michigan, 311 West Hall, 1085 S University Avenue, Ann Arbor, MI 48109, USA 11Steward Observatory, The University of Arizona, 933 N. Cherry Avenue., Tucson, AZ 85721, USA 12Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We report the discovery of a nearby dwarf galaxy in the constellation of Hydrus, between the Large and the Small Magellanic Clouds. Hydrus 1 is a mildy elliptical ultra-faint system with luminosity MV 4:7 and size 50 pc, located 28 kpc from the Sun and 24 kpc from the LMC.
    [Show full text]
  • Ml Driven Prediction of Collision of Milky Way & Andromeda
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-3, September 2019 Ml Driven Prediction of Collision of Milky Way & Andromeda Ansh Mittal, Anusurya, Deepika Kumar, Garima Kumar Abstract: The 3D position of Sun with respect to the galactic center of Milky Way can be used to understand its evolution. After Milky Way collides with Andromeda(M31), the same will hold true. Ensuing sections deal with the implementation of Regressive Analysis to predict the location of Sun in the galactic center after Galactic collision. This model utilizes results of previous studies of black hole mergers to predict the resultant mass of Sagittarius A* and M31’s black hole, which had been found to be (1.49±0.16) × Figure 1: Different types of Collisions between two 8 10 M☉. This mass has been used to calculate the centrifugal force galaxies as has been mentioned in [5] that Sun might experience during and after the galactic collision. The current position, inclination, and velocity of Sun (derived Galaxies may be of various types [7] like the dark galaxy, from aforementioned predictions) have been used to predict its Type CD galaxy, Type D galaxy, and Ultra Diffuse galaxy. distance and inclination after the collision which has been Out of these galaxies, UDG or the ultra-diffuse galaxy had o predicted as 63,362.83 ly and 32.75 , from the new galactic center been a galaxy which has very low luminosity. Although Milky and its plane (97.48% and 96.32% accurate) respectively. way and UDG galaxy share the same mass and size, only 1% Index Terms: Sun, Milky Way, Andromeda(M31), Regression of the visible star count has been observed there for UDG Analysis, Galactic collision, Sagittarius A*.
    [Show full text]
  • The Virgo Supercluster
    12-1 How Far Away Is It – The Virgo Supercluster The Virgo Supercluster {Abstract – In this segment of our “How far away is it” video book, we cover our local supercluster, the Virgo Supercluster. We begin with a description of the size, content and structure of the supercluster, including the formation of galaxy clusters and galaxy clouds. We then take a look at some of the galaxies in the Virgo Supercluster including: NGC 4314 with its ring in the core, NGC 5866, Zwicky 18, the beautiful NGC 2841, NGC 3079 with is central gaseous bubble, M100, M77 with its central supermassive black hole, NGC 3949, NGC 3310, NGC 4013, the unusual NGC 4522, NGC 4710 with its "X"-shaped bulge, and NGC 4414. At this point, we have enough distant galaxies to formulate Hubble’s Law and calculate Hubble’s Red Shift constant. From a distance ladder point of view, once we have the Hubble constant, and we can measure red shift, we can calculate distance. So we add Red Shift to our ladder. Then we continue with galaxy gazing with: NGC 1427A, NGC 3982, NGC 1300, NGC 5584, the dusty NGC 1316, NGC 4639, NGC 4319, NGC 3021 with is large number of Cepheid variables, NGC 3370, NGC 1309, and 7049. We end with a review of the distance ladder now that Red Shift has been added.} Introduction [Music: Antonio Vivaldi – “The Four Seasons – Winter” – Vivaldi composed "The Four Seasons" in 1723. "Winter" is peppered with silvery pizzicato notes from the high strings, calling to mind icy rain. The ending line for the accompanying sonnet reads "this is winter, which nonetheless brings its own delights." The galaxies of the Virgo Supercluster will also bring us their own visual and intellectual delight.] Superclusters are among the largest structures in the known Universe.
    [Show full text]
  • Challenges for Life in the Local Universe Paul A
    Challenges for Life in the Local Universe Paul A. Mason∗y New Mexico State University, Las Cruces, NM, USA Picture Rocks Observatory and Astrobiology Research Center, Las Cruces, NM, USA E-mail: [email protected] Peter L. Biermann PoS(GOLDEN2019)059 Max Planck Institute for Radio Astronomy, Bonn, Germany Karlsruhe Inst. für Tech. Karlsruhe, Germany Univ. of Alabama, Tuscaloosa, AL, USA Fachb. für Phys. & Astron., Univ. Bonn, Germany We address some of the major astrophysical challenges facing present day life, including humans, in the local universe. A truly successful species must break free of the cycle of evolutionary development punctuated by mass extinctions. This must be accomplished before the end of the relatively short habitability lifetime of its planet and within a window between major mass ex- tinctions. It is not inevitable that life will produce an apex species capable of understanding its vulnerability to extinction. Individuals must build a civilization - requiring hyper-social skills, and develop technology - requiring extraordinary mechanical skills. They must have the desire to understand the natural world and the universe well enough to anticipate, and even prevent, a variety of catastrophes. Ultimately, a space faring species is required; a quality not selected for naturally. Getting that far requires a great deal of luck. Getting beyond that, for humans and extraterrestrials alike, will require a sophisticated understanding of the physical universe and the accomplishment of tremendous feats of engineering. In particular, a successful species must learn to leave its home planet to avoid the demise of its host star. Eventually in fact, the Galaxy itself will become inhospitable to complex life during the Milky Way collision with the Andromeda galaxy.
    [Show full text]
  • Lecture Notes 2 the KINEMATICS of a HOMOGENEOUSLY EXPANDING UNIVERSE
    MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe September 15, 2018 Prof. Alan Guth Lecture Notes 2 THE KINEMATICS OF A HOMOGENEOUSLY EXPANDING UNIVERSE INTRODUCTION: Observational cosmology is of course a rich and complicated subject. It is described to some degree in Barbara Ryden's Introduction to Cosmology and in Steven Wein- berg's The First Three Minutes, and I will not enlarge on that discussion here. I will instead concentrate on the basic results of observational cosmology, and on how we can build a simple mathematical model that incorporates these results. The key properties of the universe, which we will use to build a mathematical model, are the following: (1) ISOTROPY Isotropy means the same in all directions. The nearby region, however, is rather anisotropic (i.e., looks different in different directions), since it is dominated by the center of the Virgo supercluster of galaxies, of which our galaxy, the Milky Way, is a part. The center of this supercluster is in the Virgo cluster, approximately 55 million light-years from Earth. However, on scales of several hundred million light-years or more, galaxy counts which were begun by Edwin Hubble in the 1930's show that the density of galaxies is very nearly the same in all directions. The most striking evidence for the isotropy of the universe comes from the observa- tion of the cosmic microwave background (CMB) radiation, which is interpreted as the remnant heat from the big bang itself. Physicists have measured the temperature of the cosmic background radiation in different directions, and have found it to be extremely uniform.
    [Show full text]
  • Clusters of Galaxy Hierarchical Structure the Universe Shows Range of Patterns of Structures on Decidedly Different Scales
    Astronomy 218 Clusters of Galaxy Hierarchical Structure The Universe shows range of patterns of structures on decidedly different scales. Stars (typical diameter of d ~ 106 km) are found in gravitationally bound systems called star clusters (≲ 106 stars) and galaxies (106 ‒ 1012 stars). Galaxies (d ~ 10 kpc), composed of stars, star clusters, gas, dust and dark matter, are found in gravitationally bound systems called groups (< 50 galaxies) and clusters (50 ‒ 104 galaxies). Clusters (d ~ 1 Mpc), composed of galaxies, gas, and dark matter, are found in currently collapsing systems called superclusters. Superclusters (d ≲ 100 Mpc) are the largest known structures. The Local Group Three large spirals, the Milky Way Galaxy, Andromeda Galaxy(M31), and Triangulum Galaxy (M33) and their satellites make up the Local Group of galaxies. At least 45 galaxies are members of the Local Group, all within about 1 Mpc of the Milky Way. The mass of the Local Group is dominated by 11 11 10 M31 (7 × 10 M☉), MW (6 × 10 M☉), M33 (5 × 10 M☉) Virgo Cluster The nearest large cluster to the Local Group is the Virgo Cluster at a distance of 16 Mpc, has a width of ~2 Mpc though it is far from spherical. It covers 7° of the sky in the Constellations Virgo and Coma Berenices. Even these The 4 brightest very bright galaxies are giant galaxies are elliptical galaxies invisible to (M49, M60, M86 & the unaided M87). eye, mV ~ 9. Virgo Census The Virgo Cluster is loosely concentrated and irregularly shaped, making it fairly M88 M99 representative of the most M100 common class of clusters.
    [Show full text]
  • Evidence of Enrichment by Individual SN from Elemental Abundance Ratios in the Very Metal-Poor Dsph Galaxy Boötes I
    A&A 508, L1–L4 (2009) Astronomy DOI: 10.1051/0004-6361/200912833 & c ESO 2009 Astrophysics Letter to the Editor Evidence of enrichment by individual SN from elemental abundance ratios in the very metal-poor dSph galaxy Boötes I S. Feltzing1,K.Eriksson2, J. Kleyna3, and M. I. Wilkinson4 1 Lund Observatory, Box 43, 221 00 Lund, Sweden e-mail: [email protected] 2 Department of Astronomy and Space Physics, Uppsala University, Box 515, 751 20 Uppsala, Sweden e-mail: [email protected] 3 Institute for Astronomy, Honululu, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 4 Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK e-mail: [email protected] Received 6 July 2009 / Accepted 18 September 2009 ABSTRACT Aims. We establish the mean metallicity from high-resolution spectroscopy for the recently found dwarf spheroidal galaxy Boötes I and test whether it is a common feature for ultra-faint dwarf spheroidal galaxies to show signs of inhomogeneous chemical evolution (e.g. as found in the Hercules dwarf spheroidal galaxy). Methods. We analyse high-resolution, moderate signal-to-noise spectra for seven red giant stars in the Boötes I dSph galaxy using standard abundance analysis techniques. In particular, we assume local thermodynamic equilibrium and employ spherical model atmospheres and codes that take the sphericity of the star into account when calculating the elemental abundances. Results. We confirm previous determinations of the mean metallicity of the Boötes I dwarf spheroidal galaxy to be −2.3 dex. Whilst five stars are clustered around this metallicity, one is significantly more metal-poor, at −2.9 dex, and one is more metal-rich at, −1.9 dex.
    [Show full text]
  • Never-Before-Seen Radio Waves Detected from Nearby Stars and Distant Galaxies 19 August 2021
    Never-before-seen radio waves detected from nearby stars and distant galaxies 19 August 2021 The researchers not only took the sharpest radio images of the Cloud ever recorded, but during their analysis they also studied the stars themselves which form the cloud's structure, including the Tarantula Nebula, the most active star-formation region in the Local Group. Furthermore, newly detected radio emission has also been studied from distant galaxies in the background as well as stars in the foreground from our own Milky Way. This study, published in Monthly Notices of the Royal Astronomical Society, forms part of the Evolutionary Map of the Universe (EMU) Early Science Project, which will observe the entire Southern sky and is predicted to detect around 40 Credit: Keele University million galaxies. The data will ultimately be used to give researchers a clearer picture of how galaxies, and their stars, have evolved throughout time. Scientists have measured thousands of nearby Lead author Clara Pennock from Keele University stars and far away galaxies that have never been said: "The sharp and sensitive new image reveals identified before at radio wavelengths, while thousands of radio sources we've never seen studying a galactic body that neighbors our own before. Most of these are actually galaxies millions Milky Way galaxy—the Large Magellanic Cloud. or even billions of light years beyond the Large Magellanic Cloud. We typically see them because Led by Keele University Ph.D. student Clara M. of the supermassive black holes in their centers Pennock and Reader in Astrophysics, Dr. Jacco which can be detected at all wavelengths, van Loon, the international team of researchers especially radio.
    [Show full text]