The Giant Butterfly-Moth Paysandisia Archon Has Spectrally Rich

Total Page:16

File Type:pdf, Size:1020Kb

The Giant Butterfly-Moth Paysandisia Archon Has Spectrally Rich University of Groningen The giant butterfly-moth Paysandisia archon has spectrally rich apposition eyes with unique light-dependent photoreceptor dynamics Pirih, Primoz; Ilić, Marko; Rudolf, Jerneja; Arikawa, Kentaro; Stavenga, Doekele; Belušič, Gregor Published in: Journal of Comparative Physiology A DOI: 10.1007/s00359-018-1267-z IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Pirih, P., Ilić, M., Rudolf, J., Arikawa, K., Stavenga, D., & Belušič, G. (2018). The giant butterfly-moth Paysandisia archon has spectrally rich apposition eyes with unique light-dependent photoreceptor dynamics. Journal of Comparative Physiology A, 204(7), 639-651. https://doi.org/10.1007/s00359-018- 1267-z Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Journal of Comparative Physiology A (2018) 204:639–651 https://doi.org/10.1007/s00359-018-1267-z ORIGINAL PAPER The giant butterfly-moth Paysandisia archon has spectrally rich apposition eyes with unique light-dependent photoreceptor dynamics Primož Pirih1,2 · Marko Ilić3 · Jerneja Rudolf3,4 · Kentaro Arikawa1 · Doekele G. Stavenga5 · Gregor Belušič3 Received: 3 December 2017 / Revised: 20 April 2018 / Accepted: 16 May 2018 / Published online: 4 June 2018 © The Author(s) 2018 Abstract The palm borer moth Paysandisia archon (Burmeister, 1880) (fam. Castniidae) is a large, diurnally active palm pest. Its compound eyes consist of ~ 20,000 ommatidia and have apposition optics with interommatidial angles below 1°. The omma- tidia contain nine photoreceptor cells and appear structurally similar to those in nymphalid butterflies. Two morphological ommatidial types were identified. Using the butterfly numbering scheme, in type I ommatidia, the distal rhabdom consists exclusively of the rhabdomeres of photoreceptors R1–2; the medial rhabdom has contributions from R1–8. The rhabdom in type II ommatidia is distally split into two sub-rhabdoms, with contributions from photoreceptors R2, R3, R5, R6 and R1, R4, R7, R8, respectively; medially, only R3–8 and not R1–2 contribute to the fused rhabdom. In both types, the pigmented bilobed photoreceptors R9 contribute to the rhabdom basally. Their nuclei reside in one of the lobes. Upon light adaptation, in both ommatidial types, the rhabdoms secede from the crystalline cones and pigment granules invade the gap. Intracellular recordings identified four photoreceptor classes with peak sensitivities in the ultraviolet, blue, green and orange wavelength regions (at 360, 465, 550, 580 nm, respectively). We discuss the eye morphology and optics, the photoreceptor spectral sensitivities, and the adaptation to daytime activity from a phylogenetic perspective. Keywords Palm borer moth · Compound eye · Spectral sensitivity · Lepidoptera · Phylogeny Introduction Electronic supplementary material The online version of this The palm borer moth Paysandisia archon (Burmeister, 1880) article (https ://doi.org/10.1007/s0035 9-018-1267-z) contains (Lepidoptera: Castniidae) is a large moth native to Uruguay supplementary material, which is available to authorized users. and Argentina. Its caterpillars live in galleries in palm tree * Primož Pirih trunks. The recent introduction to Europe has had a devastat- [email protected] ing effect on the decorative palm trees around the Mediter- ranean Sea and may potentially cause severe problems to the 1 Department of Evolutionary Studies of Biosystems, date production in North Africa and the Levant. The adult SOKENDAI The Graduate University for Advanced Studies, Paysandisia Shonan International Village, Hayama 240-0115, Kanagawa, male and female are diurnally active (Sarto i Japan Monteys et al. 2016; Frérot et al. 2017). The male emits 2 Department of Artificial Intelligence, University short-range pheromones and is territorial. As the female of Groningen, Nijenborgh 9, 9747 AG Groningen, probably does not produce long-range pheromones, to initi- The Netherlands ate mating, a male must first see a female before it starts 3 Department of Biology, Biotechnical faculty, University displaying its colours at close range, suggesting that the of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia large compound eyes play an important role in intraspecific 4 Sars International Centre for Marine Molecular Biology, recognition (Sarto i Monteys et al. 2012; Frérot et al. 2013; University of Bergen, Thormøhlensgt. 55, 5006 Bergen, Quero et al. 2017; review: Sarto i Monteys et al. 2016). Norway The compound eyes of Paysandisia have a conspicuous 5 Department of Computational Physics, Zernike Institute pattern of pseudopupils, resembling the pseudopupil pattern for Advanced Materials, University of Groningen, Nijenborgh of the apposition eyes of pierid and nymphalid butterflies 4, NL, 9747AG Groningen, The Netherlands Vol.:(0123456789)1 3 640 Journal of Comparative Physiology A (2018) 204:639–651 (Stavenga 1979), thus indicating that also Paysandisia has et al. 1979; Meinecke and Langer 1984) and in the corn apposition eyes. Paysandisia belongs to the family Cast- borer moth Ostrinia (Crambidae) by intracellular recordings niidae, part of the superfamily Cossioidea, which groups (Belušič et al. 2017). To our knowledge, there are no func- together with Zygaenidae (burnets). The two superfamilies tional studies of the visual system in apodytrisian moths, so are placed in the clade Apodytrisia, either just outside or in one has to rely on the interpretations of earlier collections the beginning of the subclade Obtectomera (Mutanen et al. of histological data (e.g. Ehnbom 1948; Tuurala 1954; Yagi 2010; Heikkilä et al. 2015; Mitter et al. 2017). The day- and Koyama 1963). flying apodytrisian moths have apposition eyes, e.g. mem- The structural and functional aspects of butterfly (papil- bers of the families Sesiidae (Eby et al. 2013), Epicopeiidae ionoid) eyes have been studied extensively. The emerging and Zygaenidae (Yagi and Koyama 1963). In the order of comparative picture is that butterfly compound eyes have Lepidoptera, however, the majority of species is nocturnally three ommatidial types, with each ommatidium containing active. Their superposition eyes provide a higher sensitivity nine photoreceptor (retinula) cells (Arikawa and Stavenga in low-light conditions (Land and Nilsson 2012). A recent 1997; Qiu et al. 2002; Ogawa et al. 2013; Chen et al. 2016; comparative morphological study of the microlepidopteran reviewed by: Stavenga and Arikawa 2006; Arikawa 2017). families basal to Apodytrisia has postulated an intermedi- The butterfly (B) numbering scheme maps to the dipteran ate eye morphology as an adaptation of minute-sized eyes (D) numbering scheme in the following manner: B1–2 → to nocturnal activity (Fischer et al. 2012, 2014). A similar D7, B3–8 → D1–6, B9 → D8 (Friedrich et al. 2011; Ari- morphology where the proximal rhabdom is thick, while the kawa 2017). The number of spectral receptor classes varies thin distal rhabdoms reach the dioptric apparatus, has also among different butterfly species. Intracellular recordings in been confirmed with ultrastructure in comparatively larger some nymphalids identified a basic set of spectral receptors eyes of some moth families, e.g. in Tortricidae (Satoh et al. with three visual pigments (Kinoshita et al. 1997), which 2017), Pyralidae (Horridge and Giddings 1971) and Cram- appears to be based on three opsins (Briscoe et al. 2003; bidae (Belušič et al. 2017) and may be present in some other Briscoe and Bernard 2005). The photoreceptor spectral groups (Yagi and Koyama 1963). Most “true butterflies”, sensitivities can be modified by multiple opsin expression the Papilionoidea, have apposition eyes with thin rhab- in one cell (Kitamoto et al. 1998; Ogawa et al. 2012) and doms, with the exception of the diurnal Hesperiidae (Hor- by screening pigments acting as spectral filters (Arikawa ridge et al. 1972; Shimohigashi and Tominaga 1986) and et al. 1999; Stavenga et al. 2001; Stavenga 2002; Qiu et al. nocturnal Hedylidae (Yack et al. 2007), which both have 2002; Zaccardi et al. 2006; Stavenga and Arikawa 2011). superposition eyes. The papilionoid Papilio xuthus employs both mechanisms A requirement of the superposition eye design is that the and appears to have five opsins that serve as the basis for dioptric apparatus has afocal (telescopic) optics (Nilsson six spectral receptor classes (Arikawa 2017). The modifica- 1989). The
Recommended publications
  • Predators As Agents of Selection and Diversification
    diversity Review Predators as Agents of Selection and Diversification Jerald B. Johnson * and Mark C. Belk Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, UT 84602, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-801-422-4502 Received: 6 October 2020; Accepted: 29 October 2020; Published: 31 October 2020 Abstract: Predation is ubiquitous in nature and can be an important component of both ecological and evolutionary interactions. One of the most striking features of predators is how often they cause evolutionary diversification in natural systems. Here, we review several ways that this can occur, exploring empirical evidence and suggesting promising areas for future work. We also introduce several papers recently accepted in Diversity that demonstrate just how important and varied predation can be as an agent of natural selection. We conclude that there is still much to be done in this field, especially in areas where multiple predator species prey upon common prey, in certain taxonomic groups where we still know very little, and in an overall effort to actually quantify mortality rates and the strength of natural selection in the wild. Keywords: adaptation; mortality rates; natural selection; predation; prey 1. Introduction In the history of life, a key evolutionary innovation was the ability of some organisms to acquire energy and nutrients by killing and consuming other organisms [1–3]. This phenomenon of predation has evolved independently, multiple times across all known major lineages of life, both extinct and extant [1,2,4]. Quite simply, predators are ubiquitous agents of natural selection. Not surprisingly, prey species have evolved a variety of traits to avoid predation, including traits to avoid detection [4–6], to escape from predators [4,7], to withstand harm from attack [4], to deter predators [4,8], and to confuse or deceive predators [4,8].
    [Show full text]
  • The Case of Deirocheline Turtles
    bioRxiv preprint doi: https://doi.org/10.1101/556670; this version posted February 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Body coloration and mechanisms of colour production in Archelosauria: 2 The case of deirocheline turtles 3 Jindřich Brejcha1,2*†, José Vicente Bataller3, Zuzana Bosáková4, Jan Geryk5, 4 Martina Havlíková4, Karel Kleisner1, Petr Maršík6, Enrique Font7 5 1 Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, Prague 6 2, 128 00, Czech Republic 7 2 Department of Zoology, Natural History Museum, National Museum, Václavské nám. 68, Prague 1, 110 00, 8 Czech Republic 9 3 Centro de Conservación de Especies Dulceacuícolas de la Comunidad Valenciana. VAERSA-Generalitat 10 Valenciana, El Palmar, València, 46012, Spain. 11 4 Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 128 43, 12 Czech Republic 13 5 Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and University 14 Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic 15 6 Department of Food Science, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life 16 Sciences, Kamýcká 129, Prague 6, 165 00, Czech Republic 17 7 Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ 18 Catedrátic José Beltrán Martinez 2, Paterna, València, 46980, Spain 19 Keywords: Chelonia, Trachemys scripta, Pseudemys concinna, nanostructure, pigments, chromatophores 20 21 Abstract 22 Animal body coloration is a complex trait resulting from the interplay of multiple colour-producing mechanisms.
    [Show full text]
  • Does Mutual Sexual Selection Explain the Evolution of Head Crests in Pterosaurs and Dinosaurs?
    LETHAIA REVIEW Does mutual sexual selection explain the evolution of head crests in pterosaurs and dinosaurs? DAVID W.E. HONE, DARREN NAISH AND INNES C. CUTHILL Hone, D.W.E., Naish, D. & Cuthill, I.C. 2011: Does mutual sexual selection explain the evolution of head crests in pterosaurs and dinosaurs? Lethaia, DOI: 10.1111/j.1502- 3931.2011.00300.x Cranial ornamentation is widespread throughout the extinct non-avialian Ornithodira, being present throughout Pterosauria, Ornithischia and Saurischia. Ornaments take many forms, and can be composed of at least a dozen different skull bones, indicating multiple origins. Many of these crests serve no clear survival function and it has been suggested that their primary use was for species recognition or sexual display. The distribution within Ornithodira and the form and position of these crests suggest sexual selection as a key factor, although the role of the latter has often been rejected on the grounds of an apparent lack of sexual dimorphism in many species. Surprisingly, the phenomenon of mutual sexual selection – where both males and females are ornamented and both select mates – has been ignored in research on fossil ornithodirans, despite a rich history of research and frequent expression in modern birds. Here, we review the available evidence for the functions of ornithodiran cranial crests and conclude that mutual sexual selection presents a valid hypothesis for their presence and distribution. The integration of mutual sexual selection into future studies is critical to our under- standing of ornithodiran ecology, evolution and particularly questions regarding sexual dimorphism. h Behaviour, Dinosauria, ornaments, Pterosauria, sexual selection.
    [Show full text]
  • Whole Genome Shotgun Phylogenomics Resolves the Pattern
    Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution Rémi Allio, Celine Scornavacca, Benoit Nabholz, Anne-Laure Clamens, Felix Sperling, Fabien Condamine To cite this version: Rémi Allio, Celine Scornavacca, Benoit Nabholz, Anne-Laure Clamens, Felix Sperling, et al.. Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution. Systematic Biology, Oxford University Press (OUP), 2020, 69 (1), pp.38-60. 10.1093/sysbio/syz030. hal-02125214 HAL Id: hal-02125214 https://hal.archives-ouvertes.fr/hal-02125214 Submitted on 10 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Running head Shotgun phylogenomics and molecular dating Title proposal Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syz030/5486398 by guest on 07 May 2019 Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution Authors Rémi Allio1*, Céline Scornavacca1,2, Benoit Nabholz1, Anne-Laure Clamens3,4, Felix
    [Show full text]
  • Biodiversity and Ecosystem Management in the Iraqi Marshlands
    Biodiversity and Ecosystem Management in the Iraqi Marshlands Screening Study on Potential World Heritage Nomination Tobias Garstecki and Zuhair Amr IUCN REGIONAL OFFICE FOR WEST ASIA 1 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN. Published by: IUCN ROWA, Jordan Copyright: © 2011 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Garstecki, T. and Amr Z. (2011). Biodiversity and Ecosystem Management in the Iraqi Marshlands – Screening Study on Potential World Heritage Nomination. Amman, Jordan: IUCN. ISBN: 978-2-8317-1353-3 Design by: Tobias Garstecki Available from: IUCN, International Union for Conservation of Nature Regional Office for West Asia (ROWA) Um Uthaina, Tohama Str. No. 6 P.O. Box 942230 Amman 11194 Jordan Tel +962 6 5546912/3/4 Fax +962 6 5546915 [email protected] www.iucn.org/westasia 2 Table of Contents 1 Executive
    [Show full text]
  • Chapter 22 Evolutionary Biology: the Next 150 Years
    Chapter 22 hill Evolutionary Biology: I 11.11 I~ i The Next 150 Years 1, Hopi E. Hoekstra Darwin was arguably the most prescient thinker that biology has ever wit­ nessed. But, if someone had asked him in 1859 where evolutionary biology would be in 150 years, would he have guessed correctly? He might have predicted that we would have a better understanding of how traits are in­ herited-a prediction borne nut almost 30 years later with the rediscovery of Mendel's laws in 1900. Darwin considered the Jack of understanding for how traits are inherited to be the missing link in his argument fnr evolution I by natural selection, and when pushed, he devised his own theory (i.e., ~jl !I pangenesis), which was one of his few major errors. Yet, the ramifications .I of Mendel's experiments or of subsequent discoveries, like that of the three­ dimensionaJ DNA structure by Watson and Crick (1953) a century after Tlzc Origin of Species was published, along with the resultant technological advances, such as the ability to sequence a complete genome in another 50 years, were unknowable in his day. \Jor could Darwin have anticipated the questions that have dominated the field since, such as the relative role of drift and selection in driving molecular evolution (Kimura 1968). With the acknowledgement that technologies, discoveril'S, and questions will arise that, likewise, ca1mnt be imagined, it is useful-perhaps even stimulating­ to speculate about what the next 150 (or more modestly, 50 or even 20) years will hold for evolutionary biology.
    [Show full text]
  • Computer Microworld Development Adapted to Children's Conceptions : a Case Study
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations 1896 - February 2014 1-1-2000 Computer microworld development adapted to children's conceptions : a case study. Russell L. Couturier University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1 Recommended Citation Couturier, Russell L., "Computer microworld development adapted to children's conceptions : a case study." (2000). Doctoral Dissertations 1896 - February 2014. 5386. https://scholarworks.umass.edu/dissertations_1/5386 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. COMPUTER MICROWORLD DEVELOPMENT ADAPTED TO CHILDREN'S CONCEPTIONS: A CASE STUDY A Dissertation Presented by RUSSELL L. COUTURIER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF EDUCATION February 2000 School of Education © Copyright by Russell L. Couturier 2000 All Rights Reserved COMPUTER MICROWORLD DEVELOPMENT ADAPTED TO CHILDREN'S CONCEPTIONS: A CASE STUDY A Dissertation Presented by RUSSELL L. COUTURIER Approved as to style and content by: Beverly Woolf, Member ACKNOWLEDGMENTS This work was made possible by the efforts of many. I have been most fortunate in having an extensive support system dedicated to the completion of this effort. Specifically, I would like to thank the following people. George Forman for his foresight, humor, and creativity. Beverly Woolf for her inspiration and high standards. Paul Mei for his editorial support.
    [Show full text]
  • How Much Biodiversity Is in Natura 2000?
    Alterra Wageningen UR Alterra Wageningen UR is the research institute for our green living environment. P.O. Box 47 We off er a combination of practical and scientifi c research in a multitude of How much Biodiversity is in Natura 2000? 6700 AA Wageningen disciplines related to the green world around us and the sustainable use of our living The Netherlands environment, such as fl ora and fauna, soil, water, the environment, geo-information The “Umbrella Eff ect” of the European Natura 2000 protected area network T +31 (0) 317 48 07 00 and remote sensing, landscape and spatial planning, man and society. www.wageningenUR.nl/en/alterra The mission of Wageningen UR (University & Research centre) is ‘To explore Technical report Alterra Report 2730B the potential of nature to improve the quality of life’. Within Wageningen UR, ISSN 1566-7197 nine specialised research institutes of the DLO Foundation have joined forces with Wageningen University to help answer the most important questions in the Theo van der Sluis, Ruud Foppen, Simon Gillings, Thomas Groen, René Henkens, Stephan Hennekens, domain of healthy food and living environment. With approximately 30 locations, 6,000 members of staff and 9,000 students, Wageningen UR is one of the leading Kim Huskens, David Noble, Fabrice Ottburg, Luca Santini, Henk Sierdsema, Andre van Kleunen, organisations in its domain worldwide. The integral approach to problems and Joop Schaminee, Chris van Swaay, Bert Toxopeus, Michiel Wallis de Vries and Lawrence Jones-Walters the cooperation between the various disciplines
    [Show full text]
  • Cornell University Insect Collection Papilionidae
    ! ! ! Cornell University Insect Collection Papilionidae Ana Paula dos Santos de Carvalho Determined species: 396 Updated: August, 2015 Subfamily Tribe Genus Species Author Zoogeography Baroniinae Baronia brevicornis ssp. Salvin NEA brevicornis brevicornis Hoffmann NEA Parnassiinae Parnassiini Archon apollinus ssp. (Herbst) PAL (Staudinger & apollinus amasina Rebel) PAL apollinus bellargus (Staudinger) PAL Hypermenestra helios ssp. (Nickerl) PAL Parnassius apollo ssp. (Linnaeus) PAL apollo agyiens Fruhstorfer PAL apollo agyllus Fruhstorfer PAL apollo alemanicus Fruhstorfer PAL apollo araganicus Bryk PAL apollo bellarius Fruhstorfer PAL apollo bosniensis Stichel PAL Rebel & apollo brittingeri Rogenhofer PAL apollo caloriferus Fruhstorfer PAL apollo candidus Verity PAL apollo carinthicus Stichel PAL Rebel & apollo carpathicus Rogenhofer PAL apollo claudius Belling PAL Rebel & apollo eperjes Rogenhofer PAL apollo eremita Belling PAL apollo escalarae Rothschild PAL apollo franconicus PAL apollo geminus Schawerda PAL apollo heliophilus Fruhstorfer PAL apollo interversus Bryk PAL apollo italicus Oberthür PAL apollo julianus Stauder PAL apollo leovigidus Fruhstorfer PAL Rebel & apollo liburnicus Rogenhofer PAL apollo lioranus Fruhstorfer PAL apollo marcianus Pagenstecher PAL apollo melliculus Stichel PAL apollo meridionalis Pagenstecher PAL apollo merzbacheri Fruhstorfer PAL apollo nevadensis Oberthür PAL apollo nivatus Fruhstorfer PAL apollo omotimoius Fruhstorfer PAL apollo piedemontanus Fruhstorfer PAL apollo provincialis Kheil PAL apollo pumilus Stichel PAL apollo pyrenaica Harcourt-Bath PAL apollo rubidus Fruhstorfer PAL apollo suevicus Pagenstecher PAL apollo sztrecsnoensis Pax PAL apollo uralicus Bryk PAL apollo valderiensis Verity PAL apollo valesiacus Fruhstorfer PAL apollo venustus Stichel PAL apollo vinningensis Stichel PAL apollo wenzeli Bryk PAL apollonius ssp. (Eversmann) PAL bremeri ssp. Bremer PAL clodius ssp. Ménétriés NEA clodius baldur Edwards NEA clodius claudianus Stichel NEA clodius menestriesii Edwards NEA delphius (Eversmann) PAL epaphus ssp.
    [Show full text]
  • Allio Et Al. 2021
    Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants Rémi Allio, Benoit Nabholz, Stefan Wanke, Guillaume Chomicki, Oscar Pérez-Escobar, Adam Cotton, Anne-Laure Clamens, Gaël Kergoat, Felix Sperling, Fabien L. Condamine To cite this version: Rémi Allio, Benoit Nabholz, Stefan Wanke, Guillaume Chomicki, Oscar Pérez-Escobar, et al.. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nature Communications, Nature Publishing Group, 2021, 12, pp.354. 10.1038/s41467-020-20507-3. hal-03143738 HAL Id: hal-03143738 https://hal.archives-ouvertes.fr/hal-03143738 Submitted on 17 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ARTICLE https://doi.org/10.1038/s41467-020-20507-3 OPEN Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants ✉ Rémi Allio 1 , Benoit Nabholz1, Stefan Wanke 2, Guillaume Chomicki3, Oscar A. Pérez-Escobar4, Adam M. Cotton 5, Anne-Laure Clamens6, Gaël J. Kergoat 6, Felix A. H. Sperling7 & ✉ Fabien L. Condamine 1,7 1234567890():,; The mega-diversity of herbivorous insects is attributed to their co-evolutionary associations with plants.
    [Show full text]
  • Nota Lepidopterologica
    ©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at Nota lepid. 16 (1) : 34-43 ; 31.VII.1993 ISSN 0342-7536 Critical comments on the phylogenetic relationships within the family Papilionidae (Lepidoptera) Christoph L. Häuser Zoologisches Forschungsinstitut und Museum Alexander Koenig, Adenauerallee 150-164, D-531 13 Bonn 1, Germany. Summary The current hypothesis about the phylogenetic relationships within the family Papilionidae is critically re-examined on the basis of available information about the exact distribution of individual characters. The position of the genus Hypermnestra within the subfamily Parnassiinae cannot be supported by any synapomorphy. The Parnassiinae are not recognizable as a monophyletic group even without the genus Hypermnestra, as all apomorphic character states also occur in the tribe Troidini of the Papilioninae. The monophyly of the Papilioninae still appears well supported, but two supposedly auta- pomorphic characters for this subfamily show incongruent distributions. The cubital crossvein in the forewing does not present an autapomorphy of the Papilioninae. An alternative and better supported cladogram for the Papi- lionidae cannot be presented until additional characters have been more care- fully examined. Zusammenfassung Die aktuell als gültig angesehene Hypothese der phylogenetischen Verwandt- schaftverhältnisse innerhalb der Papilionidae wird anhand der genauen Ver- teilung bekannter Merkmale kritisch überprüft. Für eine Zugehörigkeit der Gattung Hypermnestra zur Unterfamilie Parnassiinae finden sich keine synapo- morphen Merkmale. Die Parnassiinae lassen sich auch ohne die Gattung Hypermnestra nicht als Monophylum begründen, da alle als apomorph an- gesehenen Merkmalszustände auch innerhalb des Tribus Troidini der Papi- lioninae auftreten. Die Monophylie der Papilioninae scheint gegenwärtig besser begründbar, jedoch ist das Auftreten von zwei bisher als Autapomorphien angesehenen Merkmalen widersprüchlich.
    [Show full text]
  • Dinotopia (Books) Table of Contents
    1 Dinotopia (Books) Version 1.6 By Cataquack Warrior Welcome, ye travelers, to the island of Dinotopia. It is the year 1862 in the outside world, but this island, marooned by treacherous storms and reefs, lives an isolated, peaceful experience. But do not fear, you are certainly welcome here. Many different people and creatures, from dinosaurs to men and women from every land, have found their way here at some point, and everyone has brought something new to add to Dinotopia’s culture. So step forward, dear Jumper, for there is much to explore. Breathe Deep and Seek Peace. You have +1000 CP. Table of Contents Location .................................................................................................................. 2 Background ............................................................................................................ 4 Perks ....................................................................................................................... 5 Items .................................................................................................................... 12 Companions ......................................................................................................... 16 Cards of Fate ........................................................................................................ 18 Drawbacks ............................................................................................................ 22 Fin ........................................................................................................................
    [Show full text]