Light Echoes Reveal an Unexpectedly Cool Η Carinae During Its Nineteenth

Total Page:16

File Type:pdf, Size:1020Kb

Light Echoes Reveal an Unexpectedly Cool Η Carinae During Its Nineteenth LETTER doi:10.1038/nature10775 Light echoes reveal an unexpectedly cool g Carinae during its nineteenth-century Great Eruption A. Rest1, J. L. Prieto2,3, N. R. Walborn1, N. Smith4, F. B. Bianco5,6, R. Chornock7, D. L. Welch8, D. A. Howell5,6, M. E. Huber9, R. J. Foley7, W. Fong7, B. Sinnott8, H. E. Bond1, R. C. Smith10, I. Toledo11, D. Minniti12 & K. Mandel7,13 g Carinae is one of the most massive binary stars in the Milky itself, but in any case it must be weak, if present. By cross-correlating Way1,2. It became the second-brightest star in our sky during its each of our g Car echo spectra with the Ultraviolet and Visual Echelle mid-nineteenth-century ‘Great Eruption’, but then faded from view Spectrograph (UVES) spectral library14 (see Supplementary Figs 2 (with only naked-eye estimates of brightness3,4). Its eruption is and 3), we find the best agreement with supergiant spectral types in unique in that it exceeded the Eddington luminosity limit for ten the range of G2 to G5, with an effective temperature of around 5,000 K. years. Because it is only 2.3 kiloparsecs away, spatially resolved Spectral types of F7 or earlier are ruled out by our analysis (see studies of the nebula have constrained the ejected mass and velocity, Supplementary Information for more details). indicating that during its nineteenth-century eruption, g Car Doppler shifts of absorption features in the echo spectra provide ejected more than ten solar masses in an event that released ten direct information about the outflow speeds during the eruption. The 5,6 per cent of the energy of a typical core-collapse supernova , Ca II infrared triplet absorption features in the spectrum are noticeably without destroying the star. Here we report observations of light blueshifted (see Supplementary Fig. 2). By cross-correlation with echoes of g Carinae from the 1838–1858 Great Eruption. Spectra of G-type15 templates, we determine velocities of –202 6 9, –210 6 14 these light echoes show only absorption lines, which are blueshifted and –237 6 17 km s21 (errors are standard deviation) for our three by 2210 km s21, in good agreement with predicted expansion individual spectra and an average velocity of –210 6 30 km s21, which speeds6. The light-echo spectra correlate best with those of G2- includes an uncertainty for the dust sheet velocity. to-G5 supergiants, which have effective temperatures of around The bipolar nature of the Homunculus nebula shows that the g Car 5,000 kelvin. In contrast to the class of extragalactic outbursts Great Eruption was strongly aspherical. It has been predicted that the assumed to be analogues of the Great Eruption of g Carinae7–12, outflow speeds that one would derive from the spectra of g Car in the effective temperature of its outburst is significantly lower than outburst, looking at the poles and equator of the double lobes, would that allowed by standard opaque wind models13. This indicates that be about 2650 km s21 and 240 to 2100 km s21, (note that the speeds other physical mechanisms such as an energetic blast wave may have are negative because they are blueshifted, that is, the outflow is moving triggered and influenced the eruption. towards us) respectively16 (outflow speeds near the equator have a g-Car-like giant eruptions of luminous blue variable stars are steep latitude dependence). The light echo we investigate here arises characterized by significant mass-loss and an increase in luminosity from latitudes near the equator of g Car (see Supplementary Fig. 1), by several magnitudes8,9. It has been thought that this increase in and the measured blueshifted velocity of 2210 6 30 km s21 is in good luminosity drives a dense wind, producing an optically thick, cooler agreement with expansion speeds within 620u of the equatorial plane. pseudo-photosphere with a minimum effective temperature of 7,000 K We also find a strong asymmetry in the Ca II infrared triplet, extending and an F-type spectrum13. Within this model, g Car has been consid- to a velocity of 2850 km s21—well below the speed of the fastest polar ered the prototype of these ‘‘supernova imposters’’7–12. ejecta found previously6, but in good agreement with speeds observed We obtained images in proximity to g Car (Fig. 1) that, when in the blast wave at lower latitudes6. Future observations of light echoes differenced, show a rich set of light echoes. The largest interval between viewing the g Car eruption from different directions, in particular our images is eight years. We have also found similar echo candidates from the poles, has the potential to observe these very-high-velocity at other positions, which we are currently monitoring. The large ejecta and other asymmetries. brightening and long duration point to the Great Eruption as the A characteristic of luminous-blue-variable outbursts is their trans- source of the light echoes. We have also obtained a composite light ition from a hot quiescent state to a cooler outburst state, although this curve in the Sloan Digital Sky Survey (SDSS) i filter of the light echoes feature is less well observed for the giant eruptions (see Fig. 4). Two (see Fig. 2), showing a slow decline of several tenths of a magnitude potential models for luminous-blue-variable outbursts involve either over half a year. This light curve is most consistent with the historical an opaque stellar wind driven by an increase in luminosity, or a observations4 of a peak in 1843, part of the 1838–1858 Great Eruption, hydrodynamic explosion. The traditional mechanism for g-Car-like although further observations are necessary to be certain (see the giant eruptions has been that an unexplained increase in luminosity Supplementary Information). drives a denser wind, so that an optically thick pseudo-photosphere Spectra of the light echoes (see Fig. 3) show only absorption lines forms at a layer much larger and cooler than the hydrostatic stellar characteristic of cool stellar photospheres, but no evidence of emission surface13. This model predicts a minimum effective temperature of lines. In particular, the Ca II infrared triplet is only observed as absorp- 7,000 K, resembling A- or F-type supergiants8,17, because the wind tion lines in the spectrum. Because of bright ambient nebular emission, opacity depends on the temperature (see Fig. 4). A giant eruption it is difficult to determine whether there is any Ha emission from g Car evidently occurs as a massive star attempts to evolve redward and 1Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA. 2Carnegie Observatories, 813 Santa Barbara Street, Pasadena, California 91101, USA. 3Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, New Jersey 08544, USA. 4Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721, USA. 5Las Cumbres Observatory Global Telescope Network, Goleta, California 93117, USA. 6Department of Physics, University of California, Santa Barbara, California 93106, USA. 7Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA. 8Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada. 9Department of Physics and Astronomy, Johns Hopkins University, Baltimore, 3400 North Charles Street, Maryland 21218, USA. 10Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Colina el Pino S/N, La Serena, Chile. 11ALMA, KM 121 CH 23, San Pedro de Atacama, II Region, Chile. 12Department of Astronomy and Astrophysics, Pontificia Universidad Catolica de Chile, Santiago 22, Chile. 13Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK. 16 FEBRUARY 2012 | VOL 482 | NATURE | 375 ©2012 Macmillan Publishers Limited. All rights reserved RESEARCH LETTER 10 March 2003 (A) Difference image C – A η Carinae ′′ ′′ 120 120 10 May 2010 (B) Difference image C – B ′′ ′′ 120 120 6 February 2011 (C) C – A Difference image zoom 8.5′ × 8.5′ N ′ 15 ′′ ′′ E 30 120 Figure 1 | g Car light echoes. The left panel shows the positions of the star blue line. For all panels north is up and east is to the left. Applying the vector g Carinae and our images (white box), plotted on an image in the light of three method that previously allowed us to identify the source of the light echoes different emission lines: oxygen (blue), hydrogen (green) and sulphur (red). from the supernovae that produced the supernova remnants SNR 0509–67.5, (Photo taken by N.S.) The middle panels show the images obtained with the Cas A and Tycho24,25, we find that a dramatic brightening of g Car must be the CTIO 4-m Blanco telescope of a region about 0.5u to the south of g Car at 10 origin. In these echoes, unlike those of Galactic supernovae26, there is still March 2003 (epoch A), 10 May 2010 (epoch B), and 6 February 2011 (epoch C), significant spatial overlap even at separations of one light-year, suggesting that from top to bottom. The right panels show the difference images ‘C minus A’ the duration of the event causing them must be significantly longer than one and ‘C minus B’ at the top and middle, respectively. Example light-echo year. We also see brightening of two magnitudes or more within eight years. positions are indicated with blue (epoch A) and red (epochs B and C) arrows. Thus, the Lesser Eruption from 1887 to 1896, which brightened by only a The bottom right panel shows a zoom of the spectrograph slit, indicated with a magnitude, is excluded as the source. Historic visual light curve –1.0 Light echo light curve, year minus 174.20 13 Light echo light curve, encounters the Humphreys–Davidson limit , beyond which no stable –0.5 year minus 167.95 Light echo light curve, stars are observed.
Recommended publications
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • SCI/TSPM-PDR/001 Issue: 1.B Date: 20/10/2017 Pages
    TSPM Science Document Code: SCI/TSPM-PDR/001 Issue: 1.B Date: 20/10/2017 Pages: 86 Code: SCI/TSPM-PDR/001 TSPM Science Document Issue: 1.B Date: 20/10/2017 Page: 2 of 86 Fernando Fabián Rosales Ortega (Project Scientist) Authors: Jesús González William Lee Revised by: Approved by: Contributors Galactic and stellar astronomy Extragalactic astronomy & Cosmology Carmen Ayala Heinz Andernach Emmanuele Bertone César A. Caretta Mónica W. Blanco Cárdenas Alberto Carramiñana Miguel Chávez Dagostino Marcel Chow-Martínez Luis J. Corral Deborah Dultzin Kessler Arturo Gómez-Ruíz Héctor Javier Ibarra Medel Martin A. Guerrero Simon N. Kemp Silvana G. Navarro Jiménez Omar López Cruz Manuel Nuñez Divakara Mayya Lorenzo Olguín Daniel Rosa Gonzalez Gerardo Ramos Larios Juan Pablo Torres Papaqui Mauricio Reyes Ruíz Olga Vega Michael Richer Carlos Román Zúñiga Future instrumentation Laurence Sabin Edgar Castillo Domínguez Miguel Ángel Trinidad Perla Carolina García Flores Roberto Vázquez Meza Sebastián F. Sánchez Sánchez Juan Luis Verbena Contreras Laurence Sabin Code: SCI/TSPM-PDR/001 TSPM Science Document Issue: 1.B Date: 20/10/2017 Page: 3 of 86 Distribution List Name Affiliation TSPM team All partners Document Change Record Issue Date Section Page Change description 1.A 17/09/2016 All All First issue Document updated from previous version. New science cases and instrumentation proposals included. 1.B 20/10/2017 Comments from the previous PDR panel considered. Comments and contributions from the TSPM Core Science Group included. Applicable and Reference Documents Nº Document Name Code R.1 TSPM: List of acronyms and abbreviations TEC/TSPM/001 Code: SCI/TSPM-PDR/001 TSPM Science Document Issue: 1.B Date: 20/10/2017 Page: 4 of 86 INDEX 1.
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • Pos(BASH 2013)009 † ∗ [email protected] Speaker
    The Progenitor Systems and Explosion Mechanisms of Supernovae PoS(BASH 2013)009 Dan Milisavljevic∗ † Harvard University E-mail: [email protected] Supernovae are among the most powerful explosions in the universe. They affect the energy balance, global structure, and chemical make-up of galaxies, they produce neutron stars, black holes, and some gamma-ray bursts, and they have been used as cosmological yardsticks to detect the accelerating expansion of the universe. Fundamental properties of these cosmic engines, however, remain uncertain. In this review we discuss the progress made over the last two decades in understanding supernova progenitor systems and explosion mechanisms. We also comment on anticipated future directions of research and highlight alternative methods of investigation using young supernova remnants. Frank N. Bash Symposium 2013: New Horizons in Astronomy October 6-8, 2013 Austin, Texas ∗Speaker. †Many thanks to R. Fesen, A. Soderberg, R. Margutti, J. Parrent, and L. Mason for helpful discussions and support during the preparation of this manuscript. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Supernova Progenitor Systems and Explosion Mechanisms Dan Milisavljevic PoS(BASH 2013)009 Figure 1: Left: Hubble Space Telescope image of the Crab Nebula as observed in the optical. This is the remnant of the original explosion of SN 1054. Credit: NASA/ESA/J.Hester/A.Loll. Right: Multi- wavelength composite image of Tycho’s supernova remnant. This is associated with the explosion of SN 1572. Credit NASA/CXC/SAO (X-ray); NASA/JPL-Caltech (Infrared); MPIA/Calar Alto/Krause et al.
    [Show full text]
  • Iptf14hls: a Unique Long-Lived Supernova from a Rare Ex- Plosion Channel
    iPTF14hls: A unique long-lived supernova from a rare ex- plosion channel I. Arcavi1;2, et al. 1Las Cumbres Observatory Global Telescope Network, Santa Barbara, CA 93117, USA. 2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA. 1 Most hydrogen-rich massive stars end their lives in catastrophic explosions known as Type 2 IIP supernovae, which maintain a roughly constant luminosity for ≈100 days and then de- 3 cline. This behavior is well explained as emission from a shocked and expanding hydrogen- 56 4 rich red supergiant envelope, powered at late times by the decay of radioactive Ni produced 1, 2, 3 5 in the explosion . As the ejected mass expands and cools it becomes transparent from the 6 outside inwards, and decreasing expansion velocities are observed as the inner slower-moving 7 material is revealed. Here we present iPTF14hls, a nearby supernova with spectral features 8 identical to those of Type IIP events, but remaining luminous for over 600 days with at least 9 five distinct peaks in its light curve and expansion velocities that remain nearly constant in 10 time. Unlike other long-lived supernovae, iPTF14hls shows no signs of interaction with cir- 11 cumstellar material. Such behavior has never been seen before for any type of supernova 12 and it challenges all existing explosion models. Some of the properties of iPTF14hls can be 13 explained by the formation of a long-lived central power source such as the spindown of a 4, 5, 6 7, 8 14 highly magentized neutron star or fallback accretion onto a black hole .
    [Show full text]
  • Stats2010 E Final.Pdf
    Imprint Publisher: Max-Planck-Institut für extraterrestrische Physik Editors and Layout: W. Collmar und J. Zanker-Smith Personnel 1 PERSONNEL 2010 Directors Min. Dir. J. Meyer, Section Head, Federal Ministry of Prof. Dr. R. Bender, Optical and Interpretative Astronomy, Economics and Technology also Professorship for Astronomy/Astrophysics at the Prof. Dr. E. Rohkamm, Thyssen Krupp AG, Düsseldorf Ludwig-Maximilians-University Munich Prof. Dr. R. Genzel, Infrared- and Submillimeter- Scientifi c Advisory Board Astronomy, also Prof. of Physics, University of California, Prof. Dr. R. Davies, Oxford University (UK) Berkeley (USA) (Managing Director) Prof. Dr. R. Ellis, CALTECH (USA) Prof. Dr. Kirpal Nandra, High-Energy Astrophysics Dr. N. Gehrels, NASA/GSFC (USA) Prof. Dr. G. Morfi ll, Theory, Non-linear Dynamics, Complex Prof. Dr. F. Harrison, CALTECH (USA) Plasmas Prof. Dr. O. Havnes, University of Tromsø (Norway) Prof. Dr. G. Haerendel (emeritus) Prof. Dr. P. Léna, Université Paris VII (France) Prof. Dr. R. Lüst (emeritus) Prof. Dr. R. McCray, University of Colorado (USA), Prof. Dr. K. Pinkau (emeritus) Chair of Board Prof. Dr. J. Trümper (emeritus) Prof. Dr. M. Salvati, Osservatorio Astrofi sico di Arcetri (Italy) Junior Research Groups and Minerva Fellows Dr. N.M. Förster Schreiber Humboldt Awardee Dr. S. Khochfar Prof. Dr. P. Henry, University of Hawaii (USA) Prof. Dr. H. Netzer, Tel Aviv University (Israel) MPG Fellow Prof. Dr. V. Tsytovich, Russian Academy of Sciences, Prof. Dr. A. Burkert (LMU) Moscow (Russia) Manager’s Assistant Prof. S. Veilleux, University of Maryland (USA) Dr. H. Scheingraber A. v. Humboldt Fellows Scientifi c Secretary Prof. Dr. D. Jaffe, University of Texas (USA) Dr.
    [Show full text]
  • Ucalgary 2017 Welbankscamar
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2017 Photometric and Spectroscopic Signatures of Superluminous Supernova Events The puzzling case of ASASSN-15lh Welbanks Camarena, Luis Carlos Welbanks Camarena, L. C. (2017). Photometric and Spectroscopic Signatures of Superluminous Supernova Events The puzzling case of ASASSN-15lh (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/27339 http://hdl.handle.net/11023/3972 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Photometric and Spectroscopic Signatures of Superluminous Supernova Events The puzzling case of ASASSN-15lh by Luis Carlos Welbanks Camarena A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN PHYSICS AND ASTRONOMY CALGARY, ALBERTA JULY, 2017 c Luis Carlos Welbanks Camarena 2017 Abstract Superluminous supernovae are explosions in the sky that far exceed the luminosity of standard supernova events. Their discovery shattered our understanding of stellar evolution and death. Par- ticularly, the discovery of ASASSN-15lh a monstrous event that pushed some of the astrophysical models to the limit and discarded others. In this thesis, I recount the photometric and spectroscopic signatures of superluminous super- novae, while discussing the limitations and advantages of the models brought forward to explain them.
    [Show full text]
  • The Korean 1592--1593 Record of a Guest Star: Animpostor'of The
    Journal of the Korean Astronomical Society 49: 00 ∼ 00, 2016 December c 2016. The Korean Astronomical Society. All rights reserved. http://jkas.kas.org THE KOREAN 1592–1593 RECORD OF A GUEST STAR: AN ‘IMPOSTOR’ OF THE CASSIOPEIA ASUPERNOVA? Changbom Park1, Sung-Chul Yoon2, and Bon-Chul Koo2,3 1Korea Institute for Advanced Study, 85 Hoegi-ro, Dongdaemun-gu, Seoul 02455, Korea; [email protected] 2Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 08826, Korea [email protected], [email protected] 3Visiting Professor, Korea Institute for Advanced Study, Dongdaemun-gu, Seoul 02455, Korea Received |; accepted | Abstract: The missing historical record of the Cassiopeia A (Cas A) supernova (SN) event implies a large extinction to the SN, possibly greater than the interstellar extinction to the current SN remnant. Here we investigate the possibility that the guest star that appeared near Cas A in 1592{1593 in Korean history books could have been an `impostor' of the Cas A SN, i.e., a luminous transient that appeared to be a SN but did not destroy the progenitor star, with strong mass loss to have provided extra circumstellar extinction. We first review the Korean records and show that a spatial coincidence between the guest star and Cas A cannot be ruled out, as opposed to previous studies. Based on modern astrophysical findings on core-collapse SN, we argue that Cas A could have had an impostor and derive its anticipated properties. It turned out that the Cas A SN impostor must have been bright (MV = −14:7 ± 2:2 mag) and an amount of dust with visual extinction of ≥ 2:8 ± 2:2 mag should have formed in the ejected envelope and/or in a strong wind afterwards.
    [Show full text]
  • A Blast Wave from the 1843 Eruption of Eta Carinae
    1 A Blast Wave from the 1843 Eruption of Eta Carinae Nathan Smith* *Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720-3411 Very massive stars shed much of their mass in violent precursor eruptions [1] as luminous blue variables (LBVs) [2] before reaching their most likely end as supernovae, but the cause of LBV eruptions is unknown. The 19th century eruption of Eta Carinae, the prototype of these events [3], ejected about 12 solar masses at speeds of 650 km/s, with a kinetic energy of almost 1050ergs[4]. Some faster material with speeds up to 1000-2000 km/s had previously been reported [5,6,7,8] but its full distribution was unknown. Here I report observations of much faster material with speeds up to 3500-6000 km/s, reaching farther from the star than the fastest material in earlier reports [5]. This fast material roughly doubles the kinetic energy of the 19th century event, and suggests that it released a blast wave now propagating ahead of the massive ejecta. Thus, Eta Carinae’s outer shell now mimics a low-energy supernova remnant. The eruption has usually been discussed in terms of an extreme wind driven by the star’s luminosity [2,3,9,10], but fast material reported here suggests that it was powered by a deep-seated explosion rivalling a supernova, perhaps triggered by the pulsational pair instability[11]. This may alter interpretations of similar events seen in other galaxies. Eta Carinae [3] is the most luminous and the best studied among LBVs [1,2].
    [Show full text]
  • Central Engines and Environment of Superluminous Supernovae
    Central Engines and Environment of Superluminous Supernovae Blinnikov S.I.1;2;3 1 NIC Kurchatov Inst. ITEP, Moscow 2 SAI, MSU, Moscow 3 Kavli IPMU, Kashiwa with E.Sorokina, K.Nomoto, P. Baklanov, A.Tolstov, E.Kozyreva, M.Potashov, et al. Schloss Ringberg, 26 July 2017 First Superluminous Supernova (SLSN) is discovered in 2006 -21 1994I 1997ef 1998bw -21 -20 56 2002ap Co to 2003jd 56 2007bg -19 Fe 2007bi -20 -18 -19 -17 -16 -18 Absolute magnitude -15 -17 -14 -13 -16 0 50 100 150 200 250 300 350 -20 0 20 40 60 Epoch (days) Superluminous SN of type II Superluminous SN of type I SN2006gy used to be the most luminous SN in 2006, but not now. Now many SNe are discovered even more luminous. The number of Superluminous Supernovae (SLSNe) discovered is growing. The models explaining those events with the minimum energy budget involve multiple ejections of mass in presupernova stars. Mass loss and build-up of envelopes around massive stars are generic features of stellar evolution. Normally, those envelopes are rather diluted, and they do not change significantly the light produced in the majority of supernovae. 2 SLSNe are not equal to Hypernovae Hypernovae are not extremely luminous, but they have high kinetic energy of explosion. Afterglow of GRB130702A with bumps interpreted as a hypernova. Alina Volnova, et al. 2017. Multicolour modelling of SN 2013dx associated with GRB130702A. MNRAS 467, 3500. 3 Our models of LC with STELLA E ≈ 35 foe. First year light ∼ 0:03 foe while for SLSNe it is an order of magnitude larger.
    [Show full text]
  • NASA's Goddard Space Flight Center Laboratory for Astronomy & Solar Physics Greenbelt, Maryland, 20771
    NASA’s Goddard Space Flight Center Laboratory for Astronomy & Solar Physics Greenbelt, Maryland, 20771 The following report covers the period from Septem- istrator announced the cancellation of the next servicing ber 2003 through September 2004. mission (SM4) to the Hubble Space Telescope (HST), citing safety concerns about sending the Shuttle into an 1 INTRODUCTION orbit that did not have a “safe haven” (namely, the Inter- The Laboratory for Astronomy & Solar Physics national Space Station). Subsequently, the Administra- (LASP) is a Division of the Space Sciences Directorate tor authorized GSFC to begin study of a robotic repair at NASA’s Goddard Space Flight Center (GSFC). Mem- of HST, which would add new batteries, gyroscopes, and bers of LASP conduct a broad program of observational install both of the new instruments intended for installa- and theoretical scientific research. Observations are car- tion on SM4 – the Cosmic Origins Spectrograph (COS) ried out from space-based observatories, balloons, and and the Wide Field Camera 3 (WFC3). An intensive ground-based telescopes at wavelengths extending from engineering effort in the HST Project at Goddard is cur- the EUV to the sub-millimeter. Research projects cover rently underway to determine if this robotic repair is the fields of solar and stellar astrophysics, extrasolar technically possible within the allowed time-fame (be- planets, the interstellar and intergalactic medium, ac- fore the HST batteries die). WFC3 has completed a tive galactic nuclei, and the evolution of structure in the successful initial thermal vacuum test at Goddard under universe. the leadership of Instrument Scientist Randy Kimble. Studies of the sun are carried out in the gamma- However, on a decidedly sad note for LASP, the Space ray, x-ray, EUV/UV and visible portions of the spec- Telescope Imaging Spectrograph (STIS; Woodgate, PI), trum from space and the ground.
    [Show full text]
  • A PANCHROMATIC VIEW of the RESTLESS SN 2009Ip REVEALS the EXPLOSIVE EJECTION of a MASSIVE STAR ENVELOPE
    DRAFT VERSION SEPTEMBER 26, 2013 Preprint typeset using LATEX style emulateapj v. 11/10/09 A PANCHROMATIC VIEW OF THE RESTLESS SN 2009ip REVEALS THE EXPLOSIVE EJECTION OF A MASSIVE STAR ENVELOPE R. MARGUTTI1 , D. MILISAVLJEVIC1 , A. M. SODERBERG1 , R. CHORNOCK1 , B. A. ZAUDERER1 , K. MURASE2 , C. GUIDORZI3 , N. E. SANDERS1 , P. KUIN4 , C. FRANSSON5 , E. M. LEVESQUE6 , P. CHANDRA7 , E. BERGER1 , F. B. BIANCO8 , P. J. BROWN9 , P. CHALLIS7 , E. CHATZOPOULOS10 , C. C. CHEUNG11 , C. CHOI12 , L. CHOMIUK13,14 , N. CHUGAI15 , C. CONTRERAS16 , M. R. DROUT1 , R. FESEN17 , R. J. FOLEY1 , W. FONG1 , A. S. FRIEDMAN1,18 , C. GALL19,20 , N. GEHRELS20 , J. HJORTH19 , E. HSIAO21 , R. KIRSHNER1 , M. IM12 , G. LELOUDAS22,19 , R. LUNNAN1 , G. H. MARION1 , J. MARTIN23 , N. MORRELL24 , K. F. NEUGENT25 , N. OMODEI26 , M. M. PHILLIPS24 , A. REST27 , J. M. SILVERMAN10 , J. STRADER13 , M. D. STRITZINGER28 , T. SZALAI29 , N. B. UTTERBACK17 , J. VINKO29,10 , J. C. WHEELER10 , D. ARNETT30 , S. CAMPANA31 , R. CHEVALIER32 , A. GINSBURG6 , A. KAMBLE1 , P. W. A. ROMING33,34 , T. PRITCHARD34 , G. STRINGFELLOW6 Draft version September 26, 2013 ABSTRACT The double explosion of SN 2009ip in 2012 raises questions about our understanding of the late stages of massive star evolution. Here we present a comprehensive study of SN 2009ip during its remarkable re- brightenings. High-cadence photometric and spectroscopic observations from the GeV to the radio band ob- tained from a variety of ground-based and space facilities (including the VLA, Swift, Fermi, HST and XMM) 50 constrain SN 2009ip to be a low energy (E ∼ 10 erg for an ejecta mass ∼ 0:5M ) and asymmetric explo- sion in a complex medium shaped by multiple eruptions of the restless progenitor star.
    [Show full text]