PDoT: Private DNS-over-TLS with TEE Support Yoshimichi Nakatsuka Andrew Paverd∗ Gene Tsudik University of California, Irvine Microsoft Research University of California, Irvine
[email protected] [email protected] [email protected] ABSTRACT practicality of DNS-over-TLS in real-life applications. Several open- Security and privacy of the Internet Domain Name System (DNS) source recursive resolver (RecRes) implementations, including Un- have been longstanding concerns. Recently, there is a trend to pro- bound [23] and Knot Resolver [12], currently support DNS-over- tect DNS traffic using Transport Layer Security (TLS). However, TLS. In addition, commercial support for DNS-over-TLS has been at least two major issues remain: (1) how do clients authenticate increasing, e.g., Android P devices [18] and Cloudflare’s 1.1.1.1 DNS-over-TLS endpoints in a scalable and extensible manner; and RecRes [9]. However, despite attracting interest in both academia (2) how can clients trust endpoints to behave as expected? In this pa- and industry, some problems remain. per, we propose a novel Private DNS-over-TLS (PDoT) architecture. The first challenge is how clients authenticate the RecRes. Certificate- PDoT includes a DNS Recursive Resolver (RecRes) that operates based authentication is natural for websites, since the user (client) within a Trusted Execution Environment (TEE). Using Remote Attes- knows the URL of the desired website and the certificate securely tation, DNS clients can authenticate, and receive strong assurance binds this URL to a public key. However, the same approach cannot of trustworthiness of PDoT RecRes. We provide an open-source be used to authenticate a DNS RecRes because the RecRes does not proof-of-concept implementation of PDoT and use it to experimen- have a URL or any other unique long-term user-recognizable iden- tally demonstrate that its latency and throughput match that of the tity that can be included in the certificate.