Forum on Biogeography: Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Forum on Biogeography: Introduction 53 (4) • November 2004: 889–891 Ebach • Forum on biogeography: introduction FORUM ON BIOGEOGRAPHY: INTRODUCTION Malte C. Ebach Forum Editor Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BC U.K. male@nhm. ac.uk The process of unifying biogeography has had its Malte C. Ebach poor fossil record. The cladis- many champions. Originally, in pre-evolutionary tic revolution in systematics Europe, biogeography was unified by the common aim also highlighted the need for of uncovering the centre of origin, a concept derived monophyletic groups in order from biblical texts. Organisms either were created in the to discover historical patterns places they were found or they moved there from else- of taxa (Williams & Ebach, where (Buffon, 1766; Sclater, 1858). Whether or not the 2004). Biogeography under organisms evolved was not an issue in biogeography. the Croizatian unification was Organisms had a centre of origin (either by creation or historical and focused on dis- evolution) from which they moved, thus forming the covering patterns and then strange distribution patterns both in living and fossil explaining them. Discovery species. The advent of Darwinian evolutionary theory, a for some, however, is not separate from explanation or process (natural selection) proposed to explain biogeo- mechanical processes (see Hull, 1988). graphical distribution, was seen to be a unifying theme. Proponents of phylogenetic systematics are con- Organisms had one centre of origin. Ernst Haeckel, who vinced that transformational optimizations in phyloge- was deeply influenced by Darwin’s work, proposed a netic trees offer the best way to approach biogeography. centre of origin for mankind. At first he believed it was All phylogenetic lineages have separate centres of origin the lost island of Lemuria, sunk off the coast of Pakistan. which by way of discovery, offer a better explanation for In a later revision he moved it to present day Afghanistan distributions and diversity. Recently, Brooks (in press) (see Haeckel, 1876). Earth at this time was thought to be and Donoghue & Moore (2003) have argued that Life static, continents were set rigid and only oceans and cli- and Earth, in fact, do not evolve together, thus leaving mate were seen to be dynamic. The unifying theme of the pursuit of centres of origin and direction of dispersal biogeography relied on the actions of ocean currents and once again open for debate. Naturally each author realis- climate to explain odd distributions of living and fossil es the impact of a dynamic Earth, but not as the main aim taxa. Matthew (1915), Darlington (1957), Simpson of biogeography. (1965) and MacArthur & Wilson (1967) were champions A similar reaction had occurred in molecular sys- of static Earth biogeography, a theme united by disper- tematics. The advent of molecular data in systematics sals and centres of origin. But unity did not last long. and its eventual focus on biogeography is the next and The discovery of diverging plate margins after the latest unification in biogeography. All unifications before Second World War was the final clinching argument for were based on morphological data and aimed at species continental drift and a dynamic Earth (see Hess, 1962). level and above. Molecular data in biogeography, cham- The works of Taylor (1910), Wegner (1915), du Toit pioned by phenetists such as Sokal (1979), were con- (1937) and Carey (1976) finally came to the forefront. cerned with comparing genetic with geographical dis- The role of continental drift explained disjunct fossil dis- tance. Unification came in the form of the most accurate tributions, but more importantly it highlighted the speed measurement for genetic distance and genetic relation- at which plates could move and topology could change. ships. Phylogeography is now the leading molecular bio- Léon Croizat was the first to champion the idea that Life geographical theory. and Earth evolved together as a unifying theme for bio- The island biogeographers stemming from Mac- geography (Croizat, 1958, 1964). Donn Rosen (1978), Arthur & Wilson (1967) relied on unification via statisti- Gareth Nelson, Norman Platnick (see Nelson & Platnick, cal measurement of diversity and proposing accurate 1981), Robin Craw, Michael Heads and John Grehan models with which to predict future and past distribu- (see Craw & al., 1999) developed Croizat’s ideas further. tions. The dynamic Earth had little effect on island bio- The search for centres of origin was a task that no longer geography, as it is still mostly concerned with ecology, or unified biogeography. Earth was dynamic, older areas simply biological interactions. Walter (2004) states that were impossible to find, and many living species had a unification can be achieved by integrating “all available 889 Ebach • Forum on biogeography: introduction 53 (4) • November 2004: 889–891 historic and present biogeographic information for the active and dynamic areas. development of predictive distribution models” (Walter, 2004). Unification in biogeography exists in three different states: LITERATURE CITED 1. Unification as life and Earth evolving together. Avise, J. C. 2004. What is the field of biogeography, and where 2. Unification as the most appropriate method. is it going? Taxon 53: 893–898. 3. Unification as a relevant model. Brooks, D. R. In press. Reticulations in historical biogeogra- phy: the triumph of time over space in evolution. In: Biogeography as one independent field is unified in Lomolino, M. & Heaney, L. R.(eds.), The Foundations of three different ways by the proponents of integrated Biogeography. Sinauer Associates, Sunderland, fields. An ecologist is more likely to be an island bio- Massachusetts. geographer, a molecular systematist a phylogeographer Buffon, C. de. 1766. Histoire Naturelle Generale et and a morphologist a historical biogeographer. These Particuliere, vol. 14. Imprimerie Royale, Paris. associations are not exclusive but rather highlight the Carey, S. W. 1976. The Expanding Earth. Elsevier, areas from which the calls for unification originate. Amsterdam. Craw, R. C., Grehan, J. R. & Heads, M. 1999. Panbiogeo- Unification is not an easy task for biogeography. The graphy: Tracking the History of Life. Oxford Univ. Press, different answers given by Avise, Parenti and Oxford. Humphries, and Walter in this forum, highlight the vari- Croizat, L. 1958. Panbiogeography. Published by the author, ous affinities of biogeographers. The question of unifica- Caracas. tion, however, still remains open. Do we return to Croizat, L. 1964. Space, Time, Form: the Biological Synthesis. Darlington and Matthew and find centres of origin and Published by the author, Caracas. explain pathways of dispersal unified by a method (sensu Darlington, P. J., Jr. 1957. Zoogeography: The Geographical Distribution of Animals. John Wiley and Sons, New York. Lieberman, 2003)? Can we continue to unify an integrat- Donoghue, M. J. & Moore, B. R. 2003. Toward an integrative ed field of ecology, genetics, geology and history by historical biogeography. Integr. Comp. Biol. 43: 261–270. uncovering patterns caused by a dynamic Earth? Are we du Toit, A. L. 1937. Our Wandering Continents: An Hypothesis bound to find one universal statistical model that unifies of Continental Drifting. Oliver and Boyd Ltd., London and biotic distribution (see Hubbell, 2001)? Edinburgh. Biogeography is an historical science, but at the Haeckel, E. 1876. The History of Creation, or, the Develop- same time is shaped by history. The path we as biogeog- ment of the Earth and its Inhabitants by the Action of Natural Causes: Doctrine of Evolution in General, and of raphers or as students in biogeography choose now will that of Darwin, Goethe, and Lamarck in particular (from influence decisions and the way we do biogeography in the German of Ernst Haeckel, the translation revised by E. the future. Unification will also be challenged and bear Ray Lankester), 2 vols. Henry S. King, London. its champions. In order for us to know how biogeography Hess, H. H. 1962. History of Ocean Basins. Pp. 599–620 in: is to be unified and where it will progress lies in our abil- Engel, A. E., James, J. H. L. & Leonard, B. F. (eds.), ity to understand its past. Petrologic Studies: A Volume in Honour of A. F. The purpose of this Forum is to analyze biogeogra- Buddington. Geological Society of America, Colorado. Hubbell, S. P. 2001. The Unified Theory of Biodiversity and phy for the researcher and student of biology, geography, Biogeography. Princeton Univ. Press, Princeton. and palaeontology currently faced with a daunting num- Hull, D. L. 1988. Science as a Process: An Evolutionary ber of theories and methods. It explores the wide range Account of the Social and Conceptual Development of of differing approaches to biogeography told in the Science. Univ. Chicago Press, Chicago. words of some of today’s leading biogeographers. Lieberman, B. S. 2003. Unifying theory and methodology in Biologists representing historical biogeography, island biogeography. Evol. Biol. 33: 1–25. biogeography and phylogeography, have been asked to MacArthur, R. H. & Wilson, E. 1967. The Theory of Island Biogeography. Princeton Univ. Press, Princeton. respond to four basic questions: Matthew, W. D. 1915. Climate and evolution. Ann. New York 1. How would you define biogeography and its goals? Acad. Sci. 24: 171–318. 2. Why are there so many biogeographical theories and Nelson, G. & Platnick, N. I. 1981. Systematics and methods? Biogeography; Cladistics and Vicariance. Columbia Univ. 3. In recent years there has been a call for the integra- Press, New York. tion or unification of biogeography. Do you think Parenti, L. R. & Humphries, C. J. 2004. Historical biogeog- this is necessary? raphy, the natural science. Taxon 53: 899–903. Rosen, D. E. 1978. Vicariant patterns and historical explana- 4. Has the use of molecular data changed the goals and tion in biogeography. Syst. Zool. 27: 159–188. therefore future development of biogeography? Sclater, P. L. 1858. On the general geographical distribution of The responses to these questions reveal that bio- the members of the class Aves.
Recommended publications
  • Biogeography, Community Structure and Biological Habitat Types of Subtidal Reefs on the South Island West Coast, New Zealand
    Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand SCIENCE FOR CONSERVATION 281 Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand Nick T. Shears SCIENCE FOR CONSERVATION 281 Published by Science & Technical Publishing Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand Cover: Shallow mixed turfing algal assemblage near Moeraki River, South Westland (2 m depth). Dominant species include Plocamium spp. (yellow-red), Echinothamnium sp. (dark brown), Lophurella hookeriana (green), and Glossophora kunthii (top right). Photo: N.T. Shears Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Individual copies are printed, and are also available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright December 2007, New Zealand Department of Conservation ISSN 1173–2946 (hardcopy) ISSN 1177–9241 (web PDF) ISBN 978–0–478–14354–6 (hardcopy) ISBN 978–0–478–14355–3 (web PDF) This report was prepared for publication by Science & Technical Publishing; editing and layout by Lynette Clelland. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 2.
    [Show full text]
  • The Political Biogeography of Migratory Marine Predators
    1 The political biogeography of migratory marine predators 2 Authors: Autumn-Lynn Harrison1, 2*, Daniel P. Costa1, Arliss J. Winship3,4, Scott R. Benson5,6, 3 Steven J. Bograd7, Michelle Antolos1, Aaron B. Carlisle8,9, Heidi Dewar10, Peter H. Dutton11, Sal 4 J. Jorgensen12, Suzanne Kohin10, Bruce R. Mate13, Patrick W. Robinson1, Kurt M. Schaefer14, 5 Scott A. Shaffer15, George L. Shillinger16,17,8, Samantha E. Simmons18, Kevin C. Weng19, 6 Kristina M. Gjerde20, Barbara A. Block8 7 1University of California, Santa Cruz, Department of Ecology & Evolutionary Biology, Long 8 Marine Laboratory, Santa Cruz, California 95060, USA. 9 2 Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, 10 Washington, D.C. 20008, USA. 11 3NOAA/NOS/NCCOS/Marine Spatial Ecology Division/Biogeography Branch, 1305 East 12 West Highway, Silver Spring, Maryland, 20910, USA. 13 4CSS Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA 22030, USA. 14 5Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine 15 Fisheries Service, National Oceanic and Atmospheric Administration, Moss Landing, 16 California 95039, USA. 17 6Moss Landing Marine Laboratories, Moss Landing, CA 95039 USA 18 7Environmental Research Division, Southwest Fisheries Science Center, National Marine 19 Fisheries Service, National Oceanic and Atmospheric Administration, 99 Pacific Street, 20 Monterey, California 93940, USA. 21 8Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview 22 Boulevard, Pacific Grove, California 93950 USA. 23 9University of Delaware, School of Marine Science and Policy, 700 Pilottown Rd, Lewes, 24 Delaware, 19958 USA. 25 10Fisheries Resources Division, Southwest Fisheries Science Center, National Marine 26 Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, 27 USA.
    [Show full text]
  • Genetic Diversity, Population Structure, and Effective Population Size in Two Yellow Bat Species in South Texas
    Genetic diversity, population structure, and effective population size in two yellow bat species in south Texas Austin S. Chipps1, Amanda M. Hale1, Sara P. Weaver2,3 and Dean A. Williams1 1 Department of Biology, Texas Christian University, Fort Worth, TX, United States of America 2 Biology Department, Texas State University, San Marcos, TX, United States of America 3 Bowman Consulting Group, San Marcos, TX, United States of America ABSTRACT There are increasing concerns regarding bat mortality at wind energy facilities, especially as installed capacity continues to grow. In North America, wind energy development has recently expanded into the Lower Rio Grande Valley in south Texas where bat species had not previously been exposed to wind turbines. Our study sought to characterize genetic diversity, population structure, and effective population size in Dasypterus ega and D. intermedius, two tree-roosting yellow bats native to this region and for which little is known about their population biology and seasonal movements. There was no evidence of population substructure in either species. Genetic diversity at mitochondrial and microsatellite loci was lower in these yellow bat taxa than in previously studied migratory tree bat species in North America, which may be due to the non-migratory nature of these species at our study site, the fact that our study site is located at a geographic range end for both taxa, and possibly weak ascertainment bias at microsatellite loci. Historical effective population size (NEF) was large for both species, while current estimates of Ne had upper 95% confidence limits that encompassed infinity. We found evidence of strong mitochondrial differentiation between the two putative subspecies of D.
    [Show full text]
  • Multilocus Estimation of Divergence Times and Ancestral Effective Population Sizes of Oryza Species and Implications for the Rapid Diversification of the Genus
    Research Multilocus estimation of divergence times and ancestral effective population sizes of Oryza species and implications for the rapid diversification of the genus Xin-Hui Zou1, Ziheng Yang2,3, Jeff J. Doyle4 and Song Ge1 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; 2Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; 3Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK; 4Department of Plant Biology, Cornell University, 412 Mann Library Building, Ithaca, NY 14853, USA Summary Author for correspondence: Despite substantial investigations into Oryza phylogeny and evolution, reliable estimates of Song Ge the divergence times and ancestral effective population sizes of major lineages in Oryza are Tel: +86 10 62836097 challenging. Email: [email protected] We sampled sequences of 106 single-copy nuclear genes from all six diploid genomes of Received: 2 January 2013 Oryza to investigate the divergence times through extensive relaxed molecular clock analyses Accepted: 8 February 2013 and estimated the ancestral effective population sizes using maximum likelihood and Bayesian methods. New Phytologist (2013) 198: 1155–1164 We estimated that Oryza originated in the middle Miocene (c.13–15 million years ago; doi: 10.1111/nph.12230 Ma) and obtained an explicit time frame for two rapid diversifications in this genus. The first diversification involving the extant F-/G-genomes and possibly the extinct H-/J-/K-genomes Key words: divergence time, Oryza, popula- occurred in the middle Miocene immediately after (within < 1 Myr) the origin of Oryza.
    [Show full text]
  • Can More K-Selected Species Be Better Invaders?
    Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France.
    [Show full text]
  • Biogeography: an Ecosystems Approach (Geography 338)
    WELCOME TO GEOGRAPHY/BOTANY 338: ENVIRONMENTAL BIOGEOGRAPHY Fall 2018 Schedule: Monday & Wednesday 2:30-3:45 pm, Humanities 1641 Credits: 3 Instructor: Professor Ken Keefover-Ring Email: [email protected] Office: Science Hall 115C Office Hours: Tuesday 3:00-4:00 pm & Wednesday 12:00-1:00 pm or by appointment Note: This course fulfills the Biological Science breadth requirement. COURSE DESCRIPTION: This course takes an ecosystems approach to understand how physical -- climate, geologic history, soils -- and biological -- physiology, evolution, extinction, dispersal, competition, predation -- factors interact to affect the past, present and future distribution of terrestrial biomes and all levels of biodiversity: ecosystems, species and genes. A particular focus will be placed on the role of disturbance and to recent human-driven climatic and land-cover changes and biological invasions on differences in historical and current distributions of global biodiversity. COURSE GOALS: • To learn patterns and mechanisms of local to global gene, species, ecosystem and biome distributions • To learn how past, current and future environmental change affect biogeography • To learn how humans affect geographic patterns of biodiversity • To learn how to apply concepts from biogeography to current environmental problems • To learn how to read and interpret the primary literature, that is, scientific articles in peer- reviewed journals. COURSE POLICY: I expect you to attend all lectures and come prepared to participate in discussion. I will take attendance. Please let me know if you need to miss three or more lectures. Please respect your fellow students, professor, and guest speakers and turn off the ringers on your cell phones and refrain from texting during class time.
    [Show full text]
  • Equilibrium Theory of Island Biogeography: a Review
    Equilibrium Theory of Island Biogeography: A Review Angela D. Yu Simon A. Lei Abstract—The topography, climatic pattern, location, and origin of relationship, dispersal mechanisms and their response to islands generate unique patterns of species distribution. The equi- isolation, and species turnover. Additionally, conservation librium theory of island biogeography creates a general framework of oceanic and continental (habitat) islands is examined in in which the study of taxon distribution and broad island trends relation to minimum viable populations and areas, may be conducted. Critical components of the equilibrium theory metapopulation dynamics, and continental reserve design. include the species-area relationship, island-mainland relation- Finally, adverse anthropogenic impacts on island ecosys- ship, dispersal mechanisms, and species turnover. Because of the tems are investigated, including overexploitation of re- theoretical similarities between islands and fragmented mainland sources, habitat destruction, and introduction of exotic spe- landscapes, reserve conservation efforts have attempted to apply cies and diseases (biological invasions). Throughout this the theory of island biogeography to improve continental reserve article, theories of many researchers are re-introduced and designs, and to provide insight into metapopulation dynamics and utilized in an analytical manner. The objective of this article the SLOSS debate. However, due to extensive negative anthropo- is to review previously published data, and to reveal if any genic activities, overexploitation of resources, habitat destruction, classical and emergent theories may be brought into the as well as introduction of exotic species and associated foreign study of island biogeography and its relevance to mainland diseases (biological invasions), island conservation has recently ecosystem patterns. become a pressing issue itself.
    [Show full text]
  • Biogeographically Distinct Controls on C3 and C4 Grass Distributions: Merging
    Biogeographically distinct controls on C₃ and C₄ grass distributions: merging community and physiological ecology Griffith, D. M., Anderson, T. M., Osborne, C. P., Strömberg, C. A. E., Forrestel, E. J., & Still, C. J. (2015). Biogeographically distinct controls on C₃ and C₄ grass distributions: merging community and physiological ecology. Global Ecology and Biogeography, 24(3), 304–313. doi:10.1111/geb.12265 10.1111/geb.12265 John Wiley & Sons Ltd. Accepted Manuscript http://cdss.library.oregonstate.edu/sa-termsofuse 1 1 Article Title: Biogeographically distinct controls on C3 and C4 grass distributions: merging 2 community and physiological ecology 3 Authors: 4 Daniel M. Griffith; Department of Biology, Wake Forest University, Winston-Salem, NC, 5 27109, USA; [email protected] 6 T. Michael Anderson; Department of Biology, Wake Forest University, Winston-Salem, NC, 7 27109, USA; [email protected] 8 Colin P. Osborne; Department of Animal and Plant Sciences, University of Sheffield, Western 9 Bank, Sheffield S10 2TN, UK; [email protected] 10 Caroline A.E. Strömberg; Department of Biology & Burke Museum of Natural History and 11 Culture, University of Washington, WA, 98195, USA; [email protected] 12 Elisabeth J. Forrestel; Department of Ecology and Evolution, Yale University, New Haven, 13 CT, 06520, USA; [email protected] 14 Christopher J. Still; Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 15 97331, USA; [email protected] 16 Short running title (45): Climate disequilibrium in C4 grass distributions 17 Keywords: Biogeography, C3, C4, crossover temperature, tree cover, invasive, fire 18 Type: Research Paper 19 Number of words in the abstract including key words (10): 300 of 300 20 Main text, including Biosketch (32): 5632 of 5000 21 Number of references: 50 of 50 22 Number of figures: 4 of 6 23 Tables: 1 2 24 Corresponding author: 25 Daniel M.
    [Show full text]
  • COULD R SELECTION ACCOUNT for the AFRICAN PERSONALITY and LIFE CYCLE?
    Person. individ.Diff. Vol. 15, No. 6, pp. 665-675, 1993 0191-8869/93 S6.OOf0.00 Printedin Great Britain.All rightsreserved Copyright0 1993Pergamon Press Ltd COULD r SELECTION ACCOUNT FOR THE AFRICAN PERSONALITY AND LIFE CYCLE? EDWARD M. MILLER Department of Economics and Finance, University of New Orleans, New Orleans, LA 70148, U.S.A. (Received I7 November 1992; received for publication 27 April 1993) Summary-Rushton has shown that Negroids exhibit many characteristics that biologists argue result from r selection. However, the area of their origin, the African Savanna, while a highly variable environment, would not select for r characteristics. Savanna humans have not adopted the dispersal and colonization strategy to which r characteristics are suited. While r characteristics may be selected for when adult mortality is highly variable, biologists argue that where juvenile mortality is variable, K character- istics are selected for. Human variable birth rates are mathematically similar to variable juvenile birth rates. Food shortage caused by African drought induce competition, just as food shortages caused by high population. Both should select for K characteristics, which by definition contribute to success at competition. Occasional long term droughts are likely to select for long lives, late menopause, high paternal investment, high anxiety, and intelligence. These appear to be the opposite to Rushton’s r characteristics, and opposite to the traits he attributes to Negroids. Rushton (1985, 1987, 1988) has argued that Negroids (i.e. Negroes) were r selected. This idea has produced considerable scientific (Flynn, 1989; Leslie, 1990; Lynn, 1989; Roberts & Gabor, 1990; Silverman, 1990) and popular controversy (Gross, 1990; Pearson, 1991, Chapter 5), which Rushton (1989a, 1990, 1991) has responded to.
    [Show full text]
  • Biological Processes in Biogeography Introduction
    --PART III-- Biological processes in biogeography Introduction The uneveness of species distributions over the globe forms a basic characteristic of living organisms. Biogeographers have frequently tried to explain these distributions by reference to preconceived biogeo­ graphic processes. This has often resulted in authoritarian narratives that really neither test the process invoked, nor propose possible alterna­ tives. A more rigorous explanatory app.roach is to search for consistent patterns amongst the various species distributions and then use these patterns to discover the processes which underlie them. Indeed, the discovery of such processes is a prime function of biogeographic analysis. Rosen (Chapter 2) conjectures as to whether there are any uniquely biogeographical processes, but whether there are or not, geographical (tectonic, eustatic, climatic, oceanographic), evolutionary (adaptation, speciation, extinction) and ecological (dispersal, biotic interactions) processes are all implicated in pattern forming. Intuitively, the assump­ tion is that large scale abiotic processes exert their effect in conjunction with evolutionary processes, through vicariance or through merging of biotas, whilst ecological processes cause changes in pattern through biotic interactions and colonizing jumps and are in tum affected by small scale abiotic factors. ADAPTATION AND ECOLOGY At a very basic level, to understand why a particular organism or group of organisms is found in a specific place, we must know something about their general biology i.e. the nature of the adaptations which allow the species to live where it does. Different genetic strains or phenotypes of a species, often called ecotypes, can themselves be differentially adapted to their local environmental conditions and hence be restricted to certain habitats.
    [Show full text]
  • Biodiversity Implications Is Biogeography: For
    FEATURE BIODIVERSITY IS BIOGEOGRAPHY: IMPLICATIONS FOR CONSERVATION By G. Carleton Ray THREE THEMES DOMINATEthis review. The first is similarities, as is apparent within the coastal zone, that biodiversity is biogeography. Or, as Nelson the biodiversity of which depends on land-sea in- and Ladiges (1990) put it: "Indeed, what beyond teractions. biogeography is "biodiversity' about?" Second, "Characteristic Biodiversity"--a Static View watershed and seashed patterns and their scale-re- A complete species inventory for any biogeo- lated dynamics are major modifiers of biogeo- graphic province on Earth is virtually impossible. graphic pattern. And, third, concepts of biodiver- In fact, species lists, absent a biogeographic frame sity and biogeography are essential guides for of reference, can be ecologically meaningless, be- conservation and management of coastal-marine cause such lists say little about the dynamics of systems, especially for MACPAs (MArine and environmental change. To address such dynamics, Coastal Protected Areas). biodiversity is best expressed at a hierarchy of Conservation and conservation bioecology have scales, which this discussion follows. entered into an era of self-awareness of their suc- cesses. Proponents of "biodiversity" have achieved Global Patterns worldwide recognition. Nevertheless: "Like so Hayden el al. (1984) attempted a summary of the many buzz words, biodiversity has many shades of state-of-the-art of global, coastal-marine biogeogra- • . the coastal zone, meaning and is often used to express vague and phy at the behest of UNESCO's Man and the Bios- which is the most bio- ill-thought-out concepts" (Angel, 1991), as phere Programme (MAB) and the International reflected by various biodiversity "strategies" Union for the Conservation of Nature (IUCN).
    [Show full text]
  • The C4 Plant Lineages of Planet Earth
    Journal of Experimental Botany, Vol. 62, No. 9, pp. 3155–3169, 2011 doi:10.1093/jxb/err048 Advance Access publication 16 March, 2011 REVIEW PAPER The C4 plant lineages of planet Earth Rowan F. Sage1,*, Pascal-Antoine Christin2 and Erika J. Edwards2 1 Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S3B2 Canada 2 Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI 02912, USA * To whom correspondence should be addressed. E-mail: [email protected] Received 30 November 2010; Revised 1 February 2011; Accepted 2 February 2011 Abstract Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C4 photosynthetic pathway. Here, 62 recognizable lineages of C4 photosynthesis are listed. Thirty-six lineages (60%) occur in the eudicots. Monocots account for 26 lineages, with a Downloaded from minimum of 18 lineages being present in the grass family and six in the sedge family. Species exhibiting the C3–C4 intermediate type of photosynthesis correspond to 21 lineages. Of these, 9 are not immediately associated with any C4 lineage, indicating that they did not share common C3–C4 ancestors with C4 species and are instead an independent line. The geographic centre of origin for 47 of the lineages could be estimated. These centres tend to jxb.oxfordjournals.org cluster in areas corresponding to what are now arid to semi-arid regions of southwestern North America, south- central South America, central Asia, northeastern and southern Africa, and inland Australia.
    [Show full text]