Biogeography, Changing Climates, and Niche Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Biogeography, Changing Climates, and Niche Evolution FROM THE ACADEMY: COLLOQUIUM PERSPECTIVE Biogeography, changing climates, and niche evolution David B. Wakea,b,1, Elizabeth A. Hadlyc, and David D. Ackerlya,d aDepartment of Integrative Biology, bMuseum of Vertebrate Zoology, and dJepson Herbarium, University of California, Berkeley, CA 94720; and cDepartment of Biology, Stanford University, Stanford, CA 94305 Edited by James Hemphill Brown, University of New Mexico, Albuquerque, NM, and approved September 29, 2009 (received for review September 25, 2009) odern concepts central to future will have access to the original figure in the history of science who current studies of biogeog- record of faunal conditions in Cali- wrote extensively about the relationships raphy, changing climates fornia and the west wherever we now of climate and vegetation. As a result of and evolution of ecological work. his studies of Volca´n Chimborazo in Mniches were born approximately a hun- Ecuador, von Humboldt appears to have These ideas were prophetic, and have dred years ago. In 1908, the Regents of been the first well known scientist to a special poignancy at this time, when the University of California established discuss the zonation of vegetation along the impact of global climate change is the Museum of Vertebrate Zoology at an altitudinal transect and to develop a evident and when we realize how much Berkeley, in accordance with the wishes concept of life zones (4). von Hum- we rely on records from the past, such of Annie M. Alexander (1867–1950). boldt’s work deeply influenced C. Hart as those meticulously kept by Grinnell, Alexander conceived the institution and Merriam who recalled, shortly before his his students, coworkers and successors. selected its first Director, Joseph Grin- death, his father handing him a volume A century has now elapsed since the nell (1877–1939), a well known natural- of Humboldt’s ‘‘Views of Nature’’, Museum was founded, and we were ist who had received his Ph.D. at Stan- where he found early inspiration for his stimulated by Joseph Grinnell’s words to ford University and was then teaching at work on species distributions (5). Merri- take stock of our current understandings the Throop Institute in Pasadena (later am’s classic study of the San Francisco of the relationships between geography, the California Institute of Technology). Mountains in Northern Arizona and his Grinnell, who founded the Museum in climate, and the distribution and ecolog- ical niche dimensions of organisms in an biological survey of Mt. Shasta led to late 1908, meticulously adhered to the the development of his highly influential principles laid down by Alexander (1). ecological and evolutionary context, us- ing modern methods and approaches. life zone concept (6). Merriam recog- Alexander would provide the funding nized 12 life zones in the United States and inspiration and Grinnell would do In this issue contributions are pre- sented from an Arthur M. Sackler Col- and mapped them, noting that on altitu- the intellectual and practical work to dinal transects (e.g., from the Sonoran establish the institution and set it on a loquium of the National Academy of Sciences, held in Irvine, CA, December Desert to Humphrey’s Peak) one would trajectory. The Museum quickly became pass through as many as six life zones. known for its studies of terrestrial verte- 11–13, 2008, in celebration of the Cen- tennial of the Museum of Vertebrate Groups of species of plants and verte- brates, conducted in the framework of brates were associated with each zone, what we would recognize today as ecol- Zoology at the University of California at Berkeley and with the spirit of Grin- and thus the zone itself became predic- ogy and evolution. The founders were tive. Grinnell was strongly influenced by self-conscious of their roles from the nell’s contributions in mind. The collo- quium was focused on issues central to this approach, and it became a hallmark beginning. They had no illusions that of his subsequent research, especially the work they set out to do would be Grinnell and his colleagues one hundred years ago: biogeography, niche evolution evident in his famous studies of Yo- easy or soon accomplished, if ever. semite National Park (7), and through- Grinnell (2) set the course: and changing climates (or, more gener- ally, environments, for Grinnell focused out his life he made regular emenda- It will be observed, then, that our much attention on human-induced im- tions to his life zone map of California. efforts are not merely to accumulate pacts on the California environment). Although life zones became increasingly as great a mass of animal remains as Grinnell was a pioneer in studying geo- controversial through time, attempts to possible. On the contrary, we are graphic variation within and between adapt the life zone approach to modern expending even more time than species, in focusing on the relationships understandings were made by several would be required for the collection between geography, ecology and the authors, notably Holdridge (8). Hold- of the specimens alone, in rendering distribution of organisms, and especially ridge’s life zones, based on integration what we do obtain as permanently in the formulation of the ecological of biotemperatures, precipitation, and valuable as we know how, to the niche concept (3). These are all current potential evapotransporation, were used ecologist as well as the systematist. It issues in modern science, and recent by many researchers, especially in the is quite probable that the facts of years have witnessed the emergence of distribution, life history, and eco- new scientific challenges, conceptual This paper serves as an introduction to the Arthur M. Sackler nomic status may finally prove to be frameworks, and analytic techniques, Colloquium of the National Academy of Sciences, ‘‘Bioge- of more far-reaching value, than what- all of which were on display at the ography, Changing Climates, and Niche Evolution’’ held ever information is obtainable exclu- colloquium. December 11–13, 2008, at the Arnold and Mabel Beckman sively from the specimens themselves. The colloquium took place at a propi- Center of the National Academies of Sciences and Engineer- ing in Irvine, CA. The complete program and audio files of At this point I wish to emphasize tious time, celebrating both the centen- most presentations are available on the NAS web site at what I believe will ultimately prove nial of the Museum of Vertebrate Zool- www.nasonline.org/Sackler࿝Biogeography. to be the greatest value of our mu- ogy and the sesquicentennial of the Author contributions: D.B.W., E.A.H., and D.D.A. wrote the seum. This value will not, however, publication of Darwin’s Origin of Spe- paper. be realized until the lapse of many cies on November 24, 1859 (Table 1). The authors declare no conflict of interest. years, possibly a century, assuming Moreover, 2009 is also the 150th anni- This article is a PNAS Direct Submission. that our material is safely preserved. versary of the death of Alexander von 1To whom correspondence should be addressed. E-mail: And this is that the student of the Humboldt (1769–1859), a monumental [email protected]. www.pnas.org͞cgi͞doi͞10.1073͞pnas.0911097106 PNAS ͉ November 17, 2009 ͉ vol. 106 ͉ suppl. 2 ͉ 19631–19636 Downloaded by guest on September 29, 2021 Table 1. Early milestones and anniversaries related to the history of the niche concept marized the similarities and differences in biogeography, ecology, and evolution between the conceptualizations. Elton Year Milestone wanted to develop a coherent account of dynamics of interactions in communi- 1805 First publication of von Humboldt’s Volcan Chimborazo vegetation figure ties, such as food chains, cycles of abun- 1859 May 6: Death of Alexander von Humboldt (1769–1859) dance, and the like; he was less con- Nov. 24: Publication of Darwin’s Origin of Species cerned with individual species than was 1908 Founding of UC Museum of Vertebrate Zoology (Grinnell and Alexander) Grinnell. Grinnell’s niche was seen as 1910 First published use of ЉnicheЉ in ecological context (11) more habitat-oriented than Elton’s, 1917 Publication of Grinnell’s ЉThe niche-relationships of the California thrasherЉ which was seen as more function-ori- 1927 Publication of Elton’s ЉAnimal EcologyЉ ented, but both saw the niche as a place 1936 Publication of Gause’s ЉThe Struggle for ExistenceЉ or role that a species occupies in the 1944 Publication of Simpson’s ЉTempo and Mode in EvolutionЉ environment rather than as a property 1957 Publication of G.E. Hutchinson’s ЉConcluding RemarksЉ of the species itself, a view more associ- ated with Hutchinson (ref. 20; see also refs. 21 and 22). The main difference New World tropics and life zone maps Some insight into this conjecture is between Grinnell and Elton identified were produced for several countries derived from the field notes of Grin- by Griesemer is the issue of whether (e.g., refs. 9 and 10). nell’s graduate student Walter P. Taylor, more than one species can occupy a In parallel with his work on life zones, who was conducting field research in the niche, the difference stemming ulti- Grinnell pioneered the analysis of indi- Yosemite region in early December, mately from Grinnell’s systematic per- vidual species distributions in relation to 1914 (notes on file, Museum of Verte- spective and Elton’s more functional their biotic and abiotic requirements in brate Zoology, University of California, one. In a concise and forceful overview, Udvardy (23) argued that there was no his 1917 article ‘‘The niche-relationships Berkeley, CA). Following routine obser- essential difference between Grinnell of the California thrasher’’ (3). Al- vations for December 11, 1914, Taylor and Elton in conceptualizing the niche, though the term ‘‘niche’’ had previously wrote a separate section headed ‘‘The but that Grinnell’s formulation was ear- appeared in print in its ecological con- Ecological Niche.’’ These are musings, lier and broader.
Recommended publications
  • Human Niche Construction in Interdisciplinary Focus
    Downloaded from rstb.royalsocietypublishing.org on February 14, 2011 Human niche construction in interdisciplinary focus Jeremy Kendal, Jamshid J. Tehrani and John Odling-Smee Phil. Trans. R. Soc. B 2011 366, 785-792 doi: 10.1098/rstb.2010.0306 References This article cites 46 articles, 16 of which can be accessed free http://rstb.royalsocietypublishing.org/content/366/1566/785.full.html#ref-list-1 Rapid response Respond to this article http://rstb.royalsocietypublishing.org/letters/submit/royptb;366/1566/785 Subject collections Articles on similar topics can be found in the following collections behaviour (1807 articles) evolution (2433 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Phil. Trans. R. Soc. B go to: http://rstb.royalsocietypublishing.org/subscriptions This journal is © 2011 The Royal Society Downloaded from rstb.royalsocietypublishing.org on February 14, 2011 Phil. Trans. R. Soc. B (2011) 366, 785–792 doi:10.1098/rstb.2010.0306 Introduction Human niche construction in interdisciplinary focus Jeremy Kendal1,*, Jamshid J. Tehrani1 and John Odling-Smee2 1Centre for the Coevolution of Biology and Culture, Department of Anthropology, University of Durham, South Road, Durham DH1 3LE, UK 2School of Anthropology, University of Oxford, 51/53 Banbury Road, Oxford OX2 6PE, UK Niche construction is an endogenous causal process in evolution, reciprocal to the causal process of natural selection. It works by adding ecological inheritance, comprising the inheritance of natural selection pressures previously modified by niche construction, to genetic inheritance in evolution.
    [Show full text]
  • Biogeography, Community Structure and Biological Habitat Types of Subtidal Reefs on the South Island West Coast, New Zealand
    Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand SCIENCE FOR CONSERVATION 281 Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand Nick T. Shears SCIENCE FOR CONSERVATION 281 Published by Science & Technical Publishing Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand Cover: Shallow mixed turfing algal assemblage near Moeraki River, South Westland (2 m depth). Dominant species include Plocamium spp. (yellow-red), Echinothamnium sp. (dark brown), Lophurella hookeriana (green), and Glossophora kunthii (top right). Photo: N.T. Shears Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Individual copies are printed, and are also available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright December 2007, New Zealand Department of Conservation ISSN 1173–2946 (hardcopy) ISSN 1177–9241 (web PDF) ISBN 978–0–478–14354–6 (hardcopy) ISBN 978–0–478–14355–3 (web PDF) This report was prepared for publication by Science & Technical Publishing; editing and layout by Lynette Clelland. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 2.
    [Show full text]
  • The Political Biogeography of Migratory Marine Predators
    1 The political biogeography of migratory marine predators 2 Authors: Autumn-Lynn Harrison1, 2*, Daniel P. Costa1, Arliss J. Winship3,4, Scott R. Benson5,6, 3 Steven J. Bograd7, Michelle Antolos1, Aaron B. Carlisle8,9, Heidi Dewar10, Peter H. Dutton11, Sal 4 J. Jorgensen12, Suzanne Kohin10, Bruce R. Mate13, Patrick W. Robinson1, Kurt M. Schaefer14, 5 Scott A. Shaffer15, George L. Shillinger16,17,8, Samantha E. Simmons18, Kevin C. Weng19, 6 Kristina M. Gjerde20, Barbara A. Block8 7 1University of California, Santa Cruz, Department of Ecology & Evolutionary Biology, Long 8 Marine Laboratory, Santa Cruz, California 95060, USA. 9 2 Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, 10 Washington, D.C. 20008, USA. 11 3NOAA/NOS/NCCOS/Marine Spatial Ecology Division/Biogeography Branch, 1305 East 12 West Highway, Silver Spring, Maryland, 20910, USA. 13 4CSS Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA 22030, USA. 14 5Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine 15 Fisheries Service, National Oceanic and Atmospheric Administration, Moss Landing, 16 California 95039, USA. 17 6Moss Landing Marine Laboratories, Moss Landing, CA 95039 USA 18 7Environmental Research Division, Southwest Fisheries Science Center, National Marine 19 Fisheries Service, National Oceanic and Atmospheric Administration, 99 Pacific Street, 20 Monterey, California 93940, USA. 21 8Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview 22 Boulevard, Pacific Grove, California 93950 USA. 23 9University of Delaware, School of Marine Science and Policy, 700 Pilottown Rd, Lewes, 24 Delaware, 19958 USA. 25 10Fisheries Resources Division, Southwest Fisheries Science Center, National Marine 26 Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, 27 USA.
    [Show full text]
  • Genetic Diversity, Population Structure, and Effective Population Size in Two Yellow Bat Species in South Texas
    Genetic diversity, population structure, and effective population size in two yellow bat species in south Texas Austin S. Chipps1, Amanda M. Hale1, Sara P. Weaver2,3 and Dean A. Williams1 1 Department of Biology, Texas Christian University, Fort Worth, TX, United States of America 2 Biology Department, Texas State University, San Marcos, TX, United States of America 3 Bowman Consulting Group, San Marcos, TX, United States of America ABSTRACT There are increasing concerns regarding bat mortality at wind energy facilities, especially as installed capacity continues to grow. In North America, wind energy development has recently expanded into the Lower Rio Grande Valley in south Texas where bat species had not previously been exposed to wind turbines. Our study sought to characterize genetic diversity, population structure, and effective population size in Dasypterus ega and D. intermedius, two tree-roosting yellow bats native to this region and for which little is known about their population biology and seasonal movements. There was no evidence of population substructure in either species. Genetic diversity at mitochondrial and microsatellite loci was lower in these yellow bat taxa than in previously studied migratory tree bat species in North America, which may be due to the non-migratory nature of these species at our study site, the fact that our study site is located at a geographic range end for both taxa, and possibly weak ascertainment bias at microsatellite loci. Historical effective population size (NEF) was large for both species, while current estimates of Ne had upper 95% confidence limits that encompassed infinity. We found evidence of strong mitochondrial differentiation between the two putative subspecies of D.
    [Show full text]
  • Demographic History and the Low Genetic Diversity in Dipteryx Alata (Fabaceae) from Brazilian Neotropical Savannas
    Heredity (2013) 111, 97–105 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Demographic history and the low genetic diversity in Dipteryx alata (Fabaceae) from Brazilian Neotropical savannas RG Collevatti1, MPC Telles1, JC Nabout2, LJ Chaves3 and TN Soares1 Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species’ distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species’ paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence.
    [Show full text]
  • Multilocus Estimation of Divergence Times and Ancestral Effective Population Sizes of Oryza Species and Implications for the Rapid Diversification of the Genus
    Research Multilocus estimation of divergence times and ancestral effective population sizes of Oryza species and implications for the rapid diversification of the genus Xin-Hui Zou1, Ziheng Yang2,3, Jeff J. Doyle4 and Song Ge1 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; 2Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; 3Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK; 4Department of Plant Biology, Cornell University, 412 Mann Library Building, Ithaca, NY 14853, USA Summary Author for correspondence: Despite substantial investigations into Oryza phylogeny and evolution, reliable estimates of Song Ge the divergence times and ancestral effective population sizes of major lineages in Oryza are Tel: +86 10 62836097 challenging. Email: [email protected] We sampled sequences of 106 single-copy nuclear genes from all six diploid genomes of Received: 2 January 2013 Oryza to investigate the divergence times through extensive relaxed molecular clock analyses Accepted: 8 February 2013 and estimated the ancestral effective population sizes using maximum likelihood and Bayesian methods. New Phytologist (2013) 198: 1155–1164 We estimated that Oryza originated in the middle Miocene (c.13–15 million years ago; doi: 10.1111/nph.12230 Ma) and obtained an explicit time frame for two rapid diversifications in this genus. The first diversification involving the extant F-/G-genomes and possibly the extinct H-/J-/K-genomes Key words: divergence time, Oryza, popula- occurred in the middle Miocene immediately after (within < 1 Myr) the origin of Oryza.
    [Show full text]
  • Can More K-Selected Species Be Better Invaders?
    Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France.
    [Show full text]
  • Biogeography: an Ecosystems Approach (Geography 338)
    WELCOME TO GEOGRAPHY/BOTANY 338: ENVIRONMENTAL BIOGEOGRAPHY Fall 2018 Schedule: Monday & Wednesday 2:30-3:45 pm, Humanities 1641 Credits: 3 Instructor: Professor Ken Keefover-Ring Email: [email protected] Office: Science Hall 115C Office Hours: Tuesday 3:00-4:00 pm & Wednesday 12:00-1:00 pm or by appointment Note: This course fulfills the Biological Science breadth requirement. COURSE DESCRIPTION: This course takes an ecosystems approach to understand how physical -- climate, geologic history, soils -- and biological -- physiology, evolution, extinction, dispersal, competition, predation -- factors interact to affect the past, present and future distribution of terrestrial biomes and all levels of biodiversity: ecosystems, species and genes. A particular focus will be placed on the role of disturbance and to recent human-driven climatic and land-cover changes and biological invasions on differences in historical and current distributions of global biodiversity. COURSE GOALS: • To learn patterns and mechanisms of local to global gene, species, ecosystem and biome distributions • To learn how past, current and future environmental change affect biogeography • To learn how humans affect geographic patterns of biodiversity • To learn how to apply concepts from biogeography to current environmental problems • To learn how to read and interpret the primary literature, that is, scientific articles in peer- reviewed journals. COURSE POLICY: I expect you to attend all lectures and come prepared to participate in discussion. I will take attendance. Please let me know if you need to miss three or more lectures. Please respect your fellow students, professor, and guest speakers and turn off the ringers on your cell phones and refrain from texting during class time.
    [Show full text]
  • Equilibrium Theory of Island Biogeography: a Review
    Equilibrium Theory of Island Biogeography: A Review Angela D. Yu Simon A. Lei Abstract—The topography, climatic pattern, location, and origin of relationship, dispersal mechanisms and their response to islands generate unique patterns of species distribution. The equi- isolation, and species turnover. Additionally, conservation librium theory of island biogeography creates a general framework of oceanic and continental (habitat) islands is examined in in which the study of taxon distribution and broad island trends relation to minimum viable populations and areas, may be conducted. Critical components of the equilibrium theory metapopulation dynamics, and continental reserve design. include the species-area relationship, island-mainland relation- Finally, adverse anthropogenic impacts on island ecosys- ship, dispersal mechanisms, and species turnover. Because of the tems are investigated, including overexploitation of re- theoretical similarities between islands and fragmented mainland sources, habitat destruction, and introduction of exotic spe- landscapes, reserve conservation efforts have attempted to apply cies and diseases (biological invasions). Throughout this the theory of island biogeography to improve continental reserve article, theories of many researchers are re-introduced and designs, and to provide insight into metapopulation dynamics and utilized in an analytical manner. The objective of this article the SLOSS debate. However, due to extensive negative anthropo- is to review previously published data, and to reveal if any genic activities, overexploitation of resources, habitat destruction, classical and emergent theories may be brought into the as well as introduction of exotic species and associated foreign study of island biogeography and its relevance to mainland diseases (biological invasions), island conservation has recently ecosystem patterns. become a pressing issue itself.
    [Show full text]
  • To What Degree Are Philosophy and the Ecological Niche Concept Necessary in the Ecological Theory and Conservation?
    EUROPEAN JOURNAL OF ECOLOGY EJE 2017, 3(1): 42-54, doi: 10.1515/eje-2017-0005 To what degree are philosophy and the ecological niche concept necessary in the ecological theory and conservation? Universidade Federal Rogério Parentoni Martins* do Ceará, Programa de Pós-Graduação em Ecologia e Recursos Naturais, Departamento ABSTRACT de Biologia, Centro de Ecology as a field produces philosophical anxiety, largely because it differs in scientific structure from classical Ciências, Brazil physics. The hypothetical deductive models of classical physics are simple and predictive; general ecological *Corresponding author, models are predictably limited, as they refer to complex, multi-causal processes. Inattention to the conceptual E-mail: rpmartins917@ structure of ecology usually imposes difficulties for the application of ecological models. Imprecise descrip- gmail.com tions of ecological niche have obstructed the development of collective definitions, causing confusion in the literature and complicating communication between theoretical ecologists, conservationists and decision and policy-makers. Intense, unprecedented erosion of biodiversity is typical of the Anthropocene, and knowledge of ecology may provide solutions to lessen the intensification of species losses. Concerned philosophers and ecolo- gists have characterised ecological niche theory as less useful in practice; however, some theorists maintain that is has relevant applications for conservation. Species niche modelling, for instance, has gained traction in the literature; however, there are few examples of its successful application. Philosophical analysis of the structure, precision and constraints upon the definition of a ‘niche’ may minimise the anxiety surrounding ecology, poten- tially facilitating communication between policy-makers and scientists within the various ecological subcultures. The results may enhance the success of conservation applications at both small and large scales.
    [Show full text]
  • Biogeographically Distinct Controls on C3 and C4 Grass Distributions: Merging
    Biogeographically distinct controls on C₃ and C₄ grass distributions: merging community and physiological ecology Griffith, D. M., Anderson, T. M., Osborne, C. P., Strömberg, C. A. E., Forrestel, E. J., & Still, C. J. (2015). Biogeographically distinct controls on C₃ and C₄ grass distributions: merging community and physiological ecology. Global Ecology and Biogeography, 24(3), 304–313. doi:10.1111/geb.12265 10.1111/geb.12265 John Wiley & Sons Ltd. Accepted Manuscript http://cdss.library.oregonstate.edu/sa-termsofuse 1 1 Article Title: Biogeographically distinct controls on C3 and C4 grass distributions: merging 2 community and physiological ecology 3 Authors: 4 Daniel M. Griffith; Department of Biology, Wake Forest University, Winston-Salem, NC, 5 27109, USA; [email protected] 6 T. Michael Anderson; Department of Biology, Wake Forest University, Winston-Salem, NC, 7 27109, USA; [email protected] 8 Colin P. Osborne; Department of Animal and Plant Sciences, University of Sheffield, Western 9 Bank, Sheffield S10 2TN, UK; [email protected] 10 Caroline A.E. Strömberg; Department of Biology & Burke Museum of Natural History and 11 Culture, University of Washington, WA, 98195, USA; [email protected] 12 Elisabeth J. Forrestel; Department of Ecology and Evolution, Yale University, New Haven, 13 CT, 06520, USA; [email protected] 14 Christopher J. Still; Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 15 97331, USA; [email protected] 16 Short running title (45): Climate disequilibrium in C4 grass distributions 17 Keywords: Biogeography, C3, C4, crossover temperature, tree cover, invasive, fire 18 Type: Research Paper 19 Number of words in the abstract including key words (10): 300 of 300 20 Main text, including Biosketch (32): 5632 of 5000 21 Number of references: 50 of 50 22 Number of figures: 4 of 6 23 Tables: 1 2 24 Corresponding author: 25 Daniel M.
    [Show full text]
  • COULD R SELECTION ACCOUNT for the AFRICAN PERSONALITY and LIFE CYCLE?
    Person. individ.Diff. Vol. 15, No. 6, pp. 665-675, 1993 0191-8869/93 S6.OOf0.00 Printedin Great Britain.All rightsreserved Copyright0 1993Pergamon Press Ltd COULD r SELECTION ACCOUNT FOR THE AFRICAN PERSONALITY AND LIFE CYCLE? EDWARD M. MILLER Department of Economics and Finance, University of New Orleans, New Orleans, LA 70148, U.S.A. (Received I7 November 1992; received for publication 27 April 1993) Summary-Rushton has shown that Negroids exhibit many characteristics that biologists argue result from r selection. However, the area of their origin, the African Savanna, while a highly variable environment, would not select for r characteristics. Savanna humans have not adopted the dispersal and colonization strategy to which r characteristics are suited. While r characteristics may be selected for when adult mortality is highly variable, biologists argue that where juvenile mortality is variable, K character- istics are selected for. Human variable birth rates are mathematically similar to variable juvenile birth rates. Food shortage caused by African drought induce competition, just as food shortages caused by high population. Both should select for K characteristics, which by definition contribute to success at competition. Occasional long term droughts are likely to select for long lives, late menopause, high paternal investment, high anxiety, and intelligence. These appear to be the opposite to Rushton’s r characteristics, and opposite to the traits he attributes to Negroids. Rushton (1985, 1987, 1988) has argued that Negroids (i.e. Negroes) were r selected. This idea has produced considerable scientific (Flynn, 1989; Leslie, 1990; Lynn, 1989; Roberts & Gabor, 1990; Silverman, 1990) and popular controversy (Gross, 1990; Pearson, 1991, Chapter 5), which Rushton (1989a, 1990, 1991) has responded to.
    [Show full text]