Pulmonary Leukostasis As a Complication of Leukemia

Total Page:16

File Type:pdf, Size:1020Kb

Pulmonary Leukostasis As a Complication of Leukemia ICU ROUNDS Pulmonary leukostasis as a complication of leukemia Pantaree Aswanetmanee MD, Hawa Edriss MD, Chok Limsuwat MD ABSTRACT Multiple acute pulmonary complications occur in patients with hematologic malignan- cies. They might be associated with the disease itself, with complications from treatment, or with the consequences of an impaired immune status. Pulmonary leukostasis is one of the most common life-threatening complications in patients with hyperleukocytosis. The risk of this condition is higher in myeloid leukemia with white blood cell counts greater than 100,000 /µL. Leukostasis is a diagnostic challenge for clinicians due to non-specific symptoms and radiographic presentation. Definitive treatment of pulmonary leukostasis is still controversial; however, early detection and treatment by cytoreduction may im- prove outcomes. Key words: leukemia, hyperleukocytosis, leukostasis, respiratory complications INTRODUCTION Hyperleukocytosis is often defined as a white more frequently in AML, especially in the microgranu- blood cell (WBC) count > 100,000/μL and is associated lar variant of acute promyelocytic (FAB-M3) leukemia, with increased morbidity and mortality. It can induce myelomonocytic (FAB-M4) leukemia, and monocytic leukostasis, tumor lysis syndrome, and disseminated (FAB-M5) leukemia, and in chronic myelogenous intravascular coagulopathy (DIC). Hyperleukocyto- leukemia (CML) in blast crisis.4 In ALL hyperleuko- sis is present in 10-20% of patients with newly diag- cytosis occurs more frequently in patients with cyto- nosed acute myelocytic leukemia (AML) and 10-30% genetic subtype t (4, 11) and t (9:22).2 A WBC count of patients with acute lymphoblastic leukemia (ALL).1, >10,000/μL is considered in the hyperleukocytosis 2 However, the importance of the absolute number range in acute promyelocytic leukemia.3 Leukostasis depends on the underlying hematological disorder. is a serious manifestation of hyperleukocytosis be- Most patients with chronic lymphocytic leukemia or cause vascular occlusion by leukemic blasts causes ALL remain asymptomatic even with WBC counts > tissue hypoxia.3The respiratory and central nervous 500,000/μL, while in AML a WBC count ≥ 50,000/µL systems are the most frequently affected systems by can cause severe symptoms.3 Leukostasis occurs leukostasis. This review focuses on pulmonary leukostasis Corresponding author: Chok Limsuwat , MD in hyperleukocytosis and describes the pathophysiol- Contact Information: [email protected] ogy, clinical presentation, differential diagnosis, and DOI: 10.12746/swrccc2015.0310.028 management of this condition. The Southwest Respiratory and Critical Care Chronicles 2015;3(10) 17 Pantaree Aswanetmanee, et al. Pulmonary leukostasis as a complication of leukemia PATHOPHYSIOLOGY CLINICAL PRESENTATION AND DIAGNOSIS The pathophysiology of hyperleukocytosis and The clinical presentation of leukostasis is usu- leukostasis is not well established. The pathogenesis ally nonspecific. The respiratory and nervous systems likely involves both changes in blood viscosity and are often involved, and this can result in death.2, 4, 13 the deformability of leukemic cells (the ability of the The differential diagnosis of pulmonary opacities in cells to change shape when passing through blood patients with hematological malignancies is broad and vessels). Marked elevations in WBCs lead to an in- includes pneumonia, pulmonary hemorrhage, edema, creased fractional volume of leukocytes (leukocrit), and leukostasis (Table). Infection is the most common and this leads to an increased blood viscosity. In ad- pulmonary complication in acute leukemia, and most dition, blast cells are less deformable than normal patients with respiratory infections have either bac- mature WBCs, and these rigid blast cells cause oc- terial pneumonia or fungal pneumonia. Pulmonary clusion of the microvasculature and decrease blood leukostasis and leukemic infiltration are uncommon flow resulting in tissue hypoxia.5 but should be considered in the differential diagnosis in these patients. Rare drug complications also occur The viscosity of leukocyte suspensions in vitro and include tyrosine kinase inhibitor induced pulmo- increases dramatically when the leukocrit exceeds 12- nary complications, retinoic acid syndrome, and he- 15 ml/dL.5 But the leukemic blast concentrations nec- mophagocytic lymphohistiocytosis.14 essary to reach a leukocrit of 12-15 mL/dL (300,000- 450,000/μL for AML and 6,000,000-8,000,000/ μL for Pulmonary complications, including leukosta- ALL) are rarely seen.5 Leukostasis has also been sis, occur in up to 80% of all leukemia patients and are described with blast counts of less than 50,000/µL.6 a major cause of death in these patients.16 Pulmonary This indicates that hyperleukocytosis itself is not leukostasis has been identified as the single worst enough to cause leukostasis, and other factors, like prognostic factor in patients presenting with hyper- the presence of circulating blasts or the attachment leukocytosis with either AML or CML in myeloid blast of the blast cells to the endothelium, may contribute.7 crisis.13 Patients with pulmonary leukostasis present The expression and function of adhesion receptors in with fever, dyspnea, tachypnea, and hypoxia; symp- leukemic cells and the up and down regulation of ad- toms range from mild shortness of breath to acute hesive molecules are important causes of leukosta- respiratory failure and death. Chest radiographic find- sis.8 Myeloblasts are larger than lymphoblasts and ings usually include varying degrees of alveolar and lymphocytes. Hence, leukostasis is more common interstitial infiltration. However, the chest x-ray can be in AML than in ALL. Thornton, et al.9 demonstrated normal, even in patients with severe respiratory dis- that genetic mutations, such as the FLT3 mutation in tress.17 Computed tomography of the chest may dem- AML, could be associated with hyperleukocytosis and onstrate thickening of the bronchovascular bundles, leukostasis. Differences in expression of these adhe- prominence of the peripheral pulmonary arteries, and sive molecules on myeloblast and lymphoblast cell ground glass opacities. The arterial blood gas should surfaces may explain leukostasis without hyperleu- be interpreted skeptically as the PaO2 can be falsely kocytosis and the higher incidence of leukostasis in decreased (pseudohypoxemia) in patients with hy- AML than in ALL.10-12 Sturki and coworkers suggested perleukocytosis due to rapid oxygen consumption by that cytokines, including ILβ and TNF-α, produced by the high number of WBCs. Complete assessment of blast cells cause activation of endothelial cells and patients, searching for other signs and symptoms of this blast-endothelial cells interaction is enhanced by leukostasis, and close frequent monitoring are criti- adhesion molecules, like selectins and vascular ad- cal and can help to differentiate between pseudo and hesion molecules.11 true hypoxemia. In addition, monitoring pulse oxime- try can more accurately assess oxygenation status.18 Clinicians should identify patients with pulmonary leu- 18 The Southwest Respiratory and Critical Care Chronicles 2015;3(10) Pantaree Aswanetmanee, et al. Pulmonary leukostasis as a complication of leukemia Table Pulmonary complications in patients with hematologic malignancies Pulmonary complication Clinical setting Finding Infectious Bacterial pneumonia Fever, cough, sputum, and/or neutro- Segmental or lobar consoli- penia dation Fungal pneumonia Post chemotherapy with neutropenia, Halo sign, segmental or fever, hemoptysis subsegmental pleura-based consolidation, cavitation- centrilobular nodules, fungal ball, peribronchial or peri- bronchiolar consolidations Pneumocystis jiroveci Impaired cellular immunity, usually Bilateral perihilar ground pneumonia post hematopoietic stem cell trans- glass opacities plant (PJP) CMV-induced pneumonia Same as PJP Ground glass opacities, micronodules, or airspace consolidation Non-infectious Leukostasis Hyperleukocytosis with AML or ALL Varying degrees of intersti- tial and/or alveolar opacities. Ground glass opacities Pulmonary hemorrhage Thrombocytopenia, sudden onset of Rapid progression of diffuse pulmonary symptoms, rare hemop- ground glass opacities and/ tysis or consolidation Pulmonary edema History of positive fluid intake, mul- Cardiomegaly, redistribu- tiple transfusion, cardiotoxic medica- tion of blood flow toward tion, and renal failure. Edema and the upper lobes, increase in high jugular venous pressure. vasculature, ground glass opacities and/or consolida- tion, increased interstitial markings Retinoic acid syndrome History of treatment with ATRA for Diffuse ground glass opaci- acute pro- myelocytic leukemia (AML ties and/or consolidation subtype M3) Effects of tyrosine kinase History of imatinib therapy with a Varying degree of interstitial inhibitor therapy median duration of 49 days (range, pneumonia, ground glass 10–282 days), interstitial pneumonia opacities, nodular, or reticu- lar infiltration AML-acute myeloid leukemia, ALL-acute lymphocytic leukemia, ATRA- all-trans–retinoic acid, PJP- Pneumocystis jiroveci pneumonia The Southwest Respiratory and Critical Care Chronicles 2015;3(10) 19 Pantaree Aswanetmanee, et al. Pulmonary leukostasis as a complication of leukemia kostasis as quickly as possible since early diagnosis anticoagulant is citrate, this requires the administra- and treatment should improve outcomes. tion of calcium, which may cause calcium-phosphate precipitation and worsen
Recommended publications
  • Pathologic Rupture of the Spleen in a Patient with Acute Myelogenous Leukemia and Leukostasis
    rev bras hematol hemoter. 2014;36(4):290–292 Revista Brasileira de Hematologia e Hemoterapia Brazilian Journal of Hematology and Hemotherapy www.rbhh.org Case report Pathologic rupture of the spleen in a patient with acute myelogenous leukemia and leukostasis Gil Cunha De Santis ∗, Luciana Correa Oliveira, Aline Fernanda Ramos, Nataly Dantas Fortes da Silva, Roberto Passetto Falcão Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil article info abstract Article history: Rupture of the spleen can be classified as spontaneous, traumatic, or pathologic. Patho- Received 14 October 2013 logic rupture has been reported in infectious diseases such as infectious mononucleosis, Accepted 14 January 2014 and hematologic malignancies such as acute and chronic leukemias. Splenomegaly is con- Available online 28 May 2014 sidered the most relevant factor that predisposes to splenic rupture. A 66-year-old man with acute myeloid leukemia evolved from an unclassified myeloproliferative neoplasm, Keywords: complaining of fatigue and mild upper left abdominal pain. He was pale and presented Splenomegaly fever and tachypnea. Laboratory analyses showed hemoglobin 8.3 g/dL, white blood cell 9 9 Leukemia count 278 × 10 /L, platelet count 367 × 10 /L, activated partial thromboplastin time (aPTT) Myeloid ratio 2.10, and international normalized ratio (INR) 1.60. A blood smear showed 62% of Acute myeloblasts. The immunophenotype of the blasts was positive for CD117, HLA-DR, CD13, Leukostasis CD56, CD64, CD11c and CD14. Lactate dehydrogenase was 2384 U/L and creatinine 2.4 mg/dL (normal range: 0.7–1.6 mg/dL). Two sessions of leukapheresis were performed. At the end of the second session, the patient presented hemodynamic instability that culminated in cir- culatory shock and death.
    [Show full text]
  • Hyperleukocytosis (Re)Visited- Is It Case Series Always Leukaemia: a Report of Two Pathology Section Cases and Review of Literature Short Communication
    Review Article Clinician’s corner Original Article Images in Medicine Experimental Research Miscellaneous Letter to Editor DOI: 10.7860/JCDR/2020/40556.13409 Case Report Postgraduate Education Hyperleukocytosis (Re)Visited- Is it Case Series always Leukaemia: A Report of Two Pathology Section Cases and Review of Literature Short Communication ASHUTOSH RATH1, RICHA GUPTA2 ABSTRACT Hyperleukocytosis is defined as total leukocyte count of more than 100×109/L. Commonly seen in leukaemic conditions, non- leukaemic causes are usually not encountered and thought of. We report two such non-malignant cases of hyperleukocytosis. A six-year old girl presented with fever, cough and respiratory distress with a leukocyte count of 125.97×109/L. Another case is of a two-month old female infant, who presented with fever and respiratory distress and a leukocyte count of 112.27×109/L. The present case thrives to highlight various possible causes of hyperleukocytosis with an emphasis on non-malignant causes. Also, important complications and management of hyperleukocytosis are discussed. Keywords: Benign, Leukocytosis, Leukostasis CASE REPORT 1 for methicillin-resistant Staphylococcus aureus and was started A six-year-old girl was admitted with complaints of fever, non- on intravenous Vancomycin along with supportive care. Serial productive cough for one week and severe respiratory distress for monitoring of TLC revealed a gradual reduction and it returned to the the past one day. There was no other significant history. On physical baseline of 15×109/L after eight days. The patient was discharged examination, the patient had mild pallor. Respiratory examination after 10 days of hospital stay.
    [Show full text]
  • Novel Emergency Medicine Curriculum Utilizing Self- Directed Learning and the Flipped Classroom Method: Hematologic/Oncologic Emergencies Small Group
    CURRICULUM Novel Emergency Medicine Curriculum Utilizing Self- Directed Learning and the Flipped Classroom Method: Hematologic/Oncologic Emergencies Small Group Module Michael G Barrie, MD*, Chad L Mayer, MD*, Colin Kaide, MD*, Emily Kauffman, DO*, Jennifer Mitzman, MD*, Matthew Malone, MD*, Daniel Bachmann, MD*, Ashish Panchal, MD*, Howard Werman, MD*, Benjamin Ostro, MD* and Andrew King, MD* *The Ohio State University Wexner Medical Center, Department of Emergency Medicine, Columbus, OH Correspondence should be addressed to Andrew King, MD, FACEP at [email protected], Twitter: @akingermd Submitted: August 6, 2018; Accepted: November 21, 2018; Electronically Published: January 15, 2019; https://doi.org/10.21980/J8VW56 Copyright: © 2019 Barrie, et al. This is an open access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) License. See: http://creativecommons.org/licenses/by/4.0/ ABSTRACT: Audience: This curriculum, created and implemented at The Ohio State University Wexner Medical Center, was designed to educate our emergency medicine (EM) residents, intern to senior resident level, as well as medical students and attending physicians. Introduction: Disorders of the hematologic system represent a wide spectrum of disease, including bleeding disorders, coagulopathies, blood cell disorders, and oncology related disorders. Hematologic related problems often complicate other disease processes, including malignancy. The number of patients diagnosed with malignancy is increasing due to many factors, including, but not limited to, an aging population and the increased ability for early detection.1 Patients with oncologic conditions can present in a variety of ways with a variety of complications,2 and understanding the steps in diagnosis and management are important components of any emergency physician’s training.
    [Show full text]
  • At an Increased Risk: Tumor Lysis Syndrome
    ONC O L O GY NURSING 101 DEBRA L. WINKELJ O HN , RN, MSN, AOCN®, CNS—ASS O CIATE ED IT O R At an Increased Risk: Tumor Lysis Syndrome Beth McGraw, RN, BSN, OCN® Patients at highest risk for tumor lysis hyperphosphatemia, hypocalcemia, and Gastrointestinal syndrome (TLS) often are diagnosed with hyperkalemia. Hyperuricemia occurs Hyperkalemia causes nausea, vomit- bulky, rapidly proliferating hematologic when the liver converts nucleic acids ing, and diarrhea (Cope, 2004). Anorexia, tumors, such as acute leukemia and non- into uric acid; hypocalcemia develops as abdominal cramping, and pain also may Hodgkin lymphoma (Kaplow & Hardin, serum calcium binds to elevated amounts occur because of the elevated potassium 2007). Patients with solid tumors, such of phosphorus within the bloodstream (McCance & Heuther, 2006). Decreased as mediastinal masses which are highly (Kaplow & Hardin). levels of serum calcium may cause in- sensitive to chemotherapy, also may de- testinal cramping and increased bowel velop TLS, although it is more common activity (McCance & Heuther). in patients undergoing treatment for leu- Clinical Findings kemia and lymphoma. TLS occurs from Laboratory findings will demonstrate the effect of chemotherapy or radiation electrolyte imbalances such as hyper- Cardiac on rapidly dividing cells. Patients with uricemia (more than 6.0 mg/dl), hyper- Serum potassium levels more than elevated lactic dehydrogenase (LDH), phosphatemia (more than 4.5 mg/dl), 5.3 mEq/l may cause irregular heart dehydration, and renal insufficiency are hypocalcemia (less than 8.5 mg/dl), and arrythmias and hypotension (Murphy- at greatest risk for developing TLS (Brant, hyperkalemia (more than 5.5 mEq/l) Ende & Chernecky, 2002).
    [Show full text]
  • Clinical Characteristics of Tumor Lysis Syndrome in Childhood Acute Lymphoblastic Leukemia
    www.nature.com/scientificreports OPEN Clinical characteristics of tumor lysis syndrome in childhood acute lymphoblastic leukemia Yao Xue1,2,22, Jing Chen3,22, Siyuan Gao1,2, Xiaowen Zhai5, Ningling Wang6, Ju Gao7, Yu Lv8, Mengmeng Yin9, Yong Zhuang10, Hui Zhang11, Xiaofan Zhu12, Xuedong Wu13, Chi Kong Li14, Shaoyan Hu15, Changda Liang16, Runming Jin17, Hui Jiang18, Minghua Yang19, Lirong Sun20, Kaili Pan21, Jiaoyang Cai3, Jingyan Tang3, Xianmin Guan4* & Yongjun Fang1,2* Tumor lysis syndrome (TLS) is a common and fatal complication of childhood hematologic malignancies, especially acute lymphoblastic leukemia (ALL). The clinical features, therapeutic regimens, and outcomes of TLS have not been comprehensively analyzed in Chinese children with ALL. A total of 5537 children with ALL were recruited from the Chinese Children’s Cancer Group, including 79 diagnosed with TLS. The clinical characteristics, treatment regimens, and survival of TLS patients were analyzed. Age distribution of children with TLS was remarkably diferent from those without TLS. White blood cells (WBC) count ≥ 50 × ­109/L was associated with a higher risk of TLS [odds ratio (OR) = 2.6, 95% CI = 1.6–4.5]. The incidence of T-ALL in TLS children was signifcantly higher than that in non-TLS controls (OR = 4.7, 95% CI = 2.6–8.8). Hyperphosphatemia and hypocalcemia were more common in TLS children with hyperleukocytosis (OR = 2.6, 95% CI = 1.0–6.9 and OR = 5.4, 95% CI = 2.0–14.2, respectively). Signifcant diferences in levels of potassium (P = 0.004), calcium (P < 0.001), phosphorus (P < 0.001) and uric acid (P < 0.001) were observed between groups of TLS patients with and without increased creatinine.
    [Show full text]
  • Management of Pediatric Tumor Lysis Syndrome
    Arab Journal of Nephrology and Transplantation. 2011 Sep;4(3):147-54 Review Article AJNT Management of Pediatric Tumor Lysis Syndrome Illias tazi*¹, Hatim Nafil¹, Jamila Elhoudzi², Lahoucine Mahmal¹, Mhamed Harif² 1. Hematology department, Chu Mohamed VI, Cadi Ayyad University, Marrakech, Morocco 2. Hematology and Pediatric Oncology department, Chu Mohamed VI, Cadi Ayyad University, Marrakech, Morocco Abstract Keyswords: Acute Renal Failure; Burkitt’s Lymphoma; Hematologic Malignancies; Hydration; Tumor Lysis Introduction: Tumor lysis syndrome (TLS) is a serious Syndrome complication of malignancies and can result in renal failure or death. The authors declared no conflict of interest Review: In tumors with a high proliferative rate with a relatively large mass and a high sensitivity to cytotoxic Introduction agents, the initiation of therapy often results in the rapid release of intracellular anions, cations and the Infection remains the leading cause of organ failure in metabolic products of proteins and nucleic acids into critically ill cancer patients, but several reports point the bloodstream. The increased concentrations of uric out the increasing proportion of patients admitted into acid, phosphates, potassium and urea can overwhelm intensive care units with organ failure related to the the body’s homeostatic mechanisms to process and malignancy itself [1]. Some of these complications excrete these materials and result in the clinical spectrum may be directly related to the extent of the malignancy. associated with TLS. Typical clinical sequelae include This may include acute renal failure, acute respiratory gastrointestinal disturbances, neuromuscular effects, failure and coma. Most of these specific organ failures cardiovascular complications, acute renal failure and will require initiation of cancer therapy along with the death.
    [Show full text]
  • Tumor Lysis Syndrome
    Tumor Lysis Syndrome Thomas B. Russell, MD,* David E. Kram, MD, MCR* *Section of Pediatric Hematology/Oncology, Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC Practice Gaps Along with knowledge of how to evaluate a pediatric patient with a suspected malignancy, general pediatricians must maintain a high level of suspicion of tumor lysis syndrome for initial management and timely patient referral. This syndrome is largely preventable, and certainly manageable, with prompt diagnosis and appropriate intervention. Objectives After completing this article, readers should be able to: 1. Define and diagnose tumor lysis syndrome (TLS). 2. Recognize the risk factors for TLS. 3. Stratify pediatric patients with cancer according to risk of developing TLS. 4. Identify interventions to prevent TLS. 5. Discuss management strategies for patients with TLS. INTRODUCTION Tumor lysis syndrome (TLS) is a life-threatening oncologic emergency that occurs when cancer cells break down, either spontaneously or after initiation of cytotoxic chemo- therapy, and release their intracellular contents into the bloodstream. This massive release of uric acid, potassium, and phosphorous, which under normal physiologic conditions are excreted in the urine, can lead to hyperuricemia, hyperkalemia, hyper- phosphatemia, and hypocalcemia. These metabolic derangements increase the risk of severe complications, including acute kidney injury (AKI), cardiac arrhythmias, sei- zures, and even death. TLS is the most common oncologic emergency, and it occurs AUTHOR DISCLOSURE Drs Russell and Kram fi most frequently in children with acute leukemia and non-Hodgkin lymphoma. TLS is have disclosed no nancial relationships relevant to this article. This commentary does often preventable; clinicians must maintain a high index of suspicion and rely on not contain a discussion of an unapproved/ effective prevention and treatment strategies.
    [Show full text]
  • Chapter 4: Tumor Lysis Syndrome
    Chapter 4: Tumor Lysis Syndrome † Amaka Edeani, MD,* and Anushree Shirali, MD *Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; and †Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut INTRODUCTION class specifies patients with normal laboratory and clinical parameters as having no LTLS or CTLS. Tumor lysis syndrome (TLS) is a constellation of Cairo and Bishop also proposed a grading system metabolic abnormalities resulting from either spon- combiningthedefinitionsofnoTLS,LTLS,andCTLS, taneous or chemotherapy-induced tumor cell death. with the maximal clinical manifestations in each Tumor cytotoxicity releases intracellular contents, affectedorgandefiningthegrade ofTLS(1).Although including nucleic acids, proteins, and electrolytes this grading system attempts to provide uniform def- into the systemic circulation and may lead to devel- initions to TLS severity, it is not widely used in clinical opment of hyperuricemia, hyperphosphatemia, hy- practice. pocalcemia,andhyperkalemia.Clinically,thisresults The Cairo-Bishop classification is not immune to in multiorgan effects such as AKI, cardiac arrhyth- critique despite its common use. Specifically, patients mias, and seizures (1,2). TLS is the most common with TLS may not always have two or more abnor- oncologic emergency (3), and without prompt rec- malities present at once, but one metabolic derange- ognition and early therapeutic intervention, mor- ment may precede another (2). Furthermore, a 25% bidity and mortality is high. change from baseline may not always be significant if it does not result in a value outside the normal range (2). From a renal standpoint, Wilson and Berns (5) DEFINITION have noted that defining AKI on the basis of a creat- inine value .1.5 times the upper limit of normal Hande and Garrow (4) first initiated a definition of does not clearly distinguish CKD from AKI.
    [Show full text]
  • A Systematic Review of Rhabdomyolysis for Clinical Practice Luis O
    Chavez et al. Critical Care (2016) 20:135 DOI 10.1186/s13054-016-1314-5 REVIEW Open Access Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice Luis O. Chavez1, Monica Leon2, Sharon Einav3,4 and Joseph Varon5* Abstract Background: Rhabdomyolysis is a clinical syndrome that comprises destruction of skeletal muscle with outflow of intracellular muscle content into the bloodstream. There is a great heterogeneity in the literature regarding definition, epidemiology, and treatment. The aim of this systematic literature review was to summarize the current state of knowledge regarding the epidemiologic data, definition, and management of rhabdomyolysis. Methods: A systematic search was conducted using the keywords “rhabdomyolysis” and “crush syndrome” covering all articles from January 2006 to December 2015 in three databases (MEDLINE, SCOPUS, and ScienceDirect). The search was divided into two steps: first, all articles that included data regarding definition, pathophysiology, and diagnosis were identified, excluding only case reports; then articles of original research with humans that reported epidemiological data (e.g., risk factors, common etiologies, and mortality) or treatment of rhabdomyolysis were identified. Information was summarized and organized based on these topics. Results: The search generated 5632 articles. After screening titles and abstracts, 164 articles were retrieved and read: 56 articles met the final inclusion criteria; 23 were reviews (narrative or systematic); 16 were original articles containing epidemiological data; and six contained treatment specifications for patients with rhabdomyolysis. Conclusion: Most studies defined rhabdomyolysis based on creatine kinase values five times above the upper limit of normal. Etiologies differ among the adult and pediatric populations and no randomized controlled trials have been done to compare intravenous fluid therapy alone versus intravenous fluid therapy with bicarbonate and/or mannitol.
    [Show full text]
  • Hemodialysis Leukopenia. Pulmonary Vascular Leukostasis Resulting from Complement Activation by Dialyzer Cellophane Membranes
    Hemodialysis leukopenia. Pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes. P R Craddock, … , K L Brighan, H S Jacob J Clin Invest. 1977;59(5):879-888. https://doi.org/10.1172/JCI108710. Research Article Acute leukopenia occurs in all patients during the first hour of hemodialysis with cellophanemembrane equipment. This transient cytopenia specifically involves granulocytes and monocytes, cells which share plasma membrane reactivity towards activated complement components. The present studies document that complement is activated during exposure of plasma to dialyzer cellophane, and that upon reinfusion of this plasma into the venous circulation, granulocyte and monocyte entrapment in the pulmonary vasculature is induced. During early dialysis, conversion of both C3 and factor B can be demonstrated in plasma as it leaves the dialyzer. Moreover, simple incubation of human plasma with dialyzer cellophane causes conversion of C3 and factor B, accompanied by depletion of total hemolytic complement and C3 but sparing of hemolytic C1. Reinfusion of autologous, cellophane-incubated plasma into rabbits produces selective granulocytopenia and monocytopenia identical to that seen in dialyzed patients. Lungs from such animals reveal striking pulmonary vessel engorgement with granulocytes. The activated complement component(s) responsible for leukostasis has an approximate molecular weight of 7,000-20,000 daltons. Since it is generated in C2-deficient plasma and is associated with factor B conversion, it is suggested that activation of complement by dialysis is predominantly through the altermative pathway. Find the latest version: https://jci.me/108710/pdf Hemodialysis Leukopenia PULMONARY VASCULAR LEUKOSTASIS RESULTING FROM COMPLEMENT ACTIVATION BY DIALYZER CELLOPHANE MEMBRANES PHILIP R.
    [Show full text]
  • Statistical Analysis Plan
    Cover Page for Statistical Analysis Plan Sponsor name: Novo Nordisk A/S NCT number NCT03061214 Sponsor trial ID: NN9535-4114 Official title of study: SUSTAINTM CHINA - Efficacy and safety of semaglutide once-weekly versus sitagliptin once-daily as add-on to metformin in subjects with type 2 diabetes Document date: 22 August 2019 Semaglutide s.c (Ozempic®) Date: 22 August 2019 Novo Nordisk Trial ID: NN9535-4114 Version: 1.0 CONFIDENTIAL Clinical Trial Report Status: Final Appendix 16.1.9 16.1.9 Documentation of statistical methods List of contents Statistical analysis plan...................................................................................................................... /LQN Statistical documentation................................................................................................................... /LQN Redacted VWDWLVWLFDODQDO\VLVSODQ Includes redaction of personal identifiable information only. Statistical Analysis Plan Date: 28 May 2019 Novo Nordisk Trial ID: NN9535-4114 Version: 1.0 CONFIDENTIAL UTN:U1111-1149-0432 Status: Final EudraCT No.:NA Page: 1 of 30 Statistical Analysis Plan Trial ID: NN9535-4114 Efficacy and safety of semaglutide once-weekly versus sitagliptin once-daily as add-on to metformin in subjects with type 2 diabetes Author Biostatistics Semaglutide s.c. This confidential document is the property of Novo Nordisk. No unpublished information contained herein may be disclosed without prior written approval from Novo Nordisk. Access to this document must be restricted to relevant parties.This
    [Show full text]
  • Understanding Tumor Lysis Syndrome Lara Zafrani1,2*, Emmanuel Canet3 and Michael Darmon1
    Intensive Care Med (2019) 45:1608–1611 https://doi.org/10.1007/s00134-019-05768-x UNDERSTANDING THE DISEASE Understanding tumor lysis syndrome Lara Zafrani1,2*, Emmanuel Canet3 and Michael Darmon1 © 2019 Springer-Verlag GmbH Germany, part of Springer Nature Tumor lysis syndrome (TLS) is a life-threatening condi- Current defnitions of TLS follow the classifca- tion in patients with extensive and chemosensitive malig- tion developed by Cairo and Bishop [6]. Accordingly, nancies. It usually occurs as a consequence of antican- laboratory TLS refers to the occurrence of metabolic cer treatments, although it can also arise spontaneously disturbances (hyperkalemia, hyperphosphatemia, hyper- (in up to a third of TLS cases) [1, 2]. TLS results from uricemia, and hypocalcemia) within the three days prior the rapid destruction of malignant cells, whose intracel- to or the seven days following the administration of lular content (ions, proteins, and metabolites) is conse- cancer chemotherapy, while clinical TLS refers to the quently released into the extracellular space. Potassium, presence of clinical manifestations (cardiac, renal, or calcium, phosphates, and deoxyribonucleic acid (DNA), neurological) in a patient with laboratory TLS. However, which are present in high concentrations in malignant despite these defnitions, TLS is not a straightforward cells, are released into the extracellular space, leading diagnosis, for several reasons. First of all, uremic syn- to hyperkalemia, hyperphosphatemia, and subsequent drome resulting from other causes may mimic TLS. In hypocalcemia. DNA catabolism leads to the release of this setting, electrolytic abnormalities kinetic (i.e increase adenosine and guanosine, which are converted into xan- of phosphatemia, kaliemia and lacticodehydrogenase lev- thine and then uric acid.
    [Show full text]