The International Language of Science and Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Impact of New Technologies on the Development of Architecture Julia Walker
The Impact of New Technologies on the Development of Architecture Julia Walker A view of the history of architectural technology can help us understand the stakes involved in the construction of buildings of different periods, styles, and structural systems. It can also help clarify why certain forms arose at particular moments in history, at specific sites, and under specific conditions. In all eras and geographical locations, technological innovation has influenced the development of architecture. This innovation has taken various forms—sometimes manifesting as new materials, either manmade or natural, and sometimes as new design tools or structural methods. The practical necessities of any given moment determine the technology that will arise to suit these demands, whether it relates to shelter, fortification, or religious ideas. Technology has been used to solve practical problems, but also to create symbolic orders, such as the assertion of human will over natural forces that arose in prehistoric building. Since antiquity, architects have stressed the significance of such knowledge to their field; the Roman architect and theorist Marcus Vitruvius Pollio (see box text on p. 174), for example, was trained as an engineer and frequently underscored the importance of technological understanding to the execution of architecture. In fact, we see this theme repeated in architectural theory across the globe. The Manasara-silpasastra, a seventh- century Indian building manual named for its author (see box text on p. 273), and the Chinese treatise Yingzao Fashi by Li Jie, a Song Dynasty book of architectural standards (see box text on p. 435), likewise argue that no architect can prosper without a thorough technical education. -
Great Inventors of the Ancient World Preliminary Syllabus & Course Outline
CLA 46 Dr. Patrick Hunt Spring Quarter 2014 Stanford Continuing Studies http://www.patrickhunt.net Great Inventors Of the Ancient World Preliminary Syllabus & Course Outline A Note from the Instructor: Homo faber is a Latin description of humans as makers. Human technology has been a long process of adapting to circumstances with ingenuity, and while there has been gradual progress, sometimes technology takes a downturn when literacy and numeracy are lost over time or when humans forget how to maintain or make things work due to cataclysmic change. Reconstructing ancient technology is at times a reminder that progress is not always guaranteed, as when Classical civilization crumbled in the West, but the history of technology is a fascinating one. Global revolutions in technology occur in cycles, often when necessity pushes great minds to innovate or adapt existing tools, as happened when humans first started using stone tools and gradually improved them, often incrementally, over tens of thousands of years. In this third course examining the greats of the ancient world, we take a close look at inventions and their inventors (some of whom might be more legendary than actually known), such as vizier Imhotep of early dynastic Egypt, who is said to have built the first pyramid, and King Gudea of Lagash, who is credited with developing the Mesopotamian irrigation canals. Other somewhat better-known figures are Glaucus of Chios, a metallurgist sculptor who possibly invented welding; pioneering astronomer Aristarchus of Samos; engineering genius Archimedes of Siracusa; Hipparchus of Rhodes, who made celestial globes depicting the stars; Ctesibius of Alexandria, who invented hydraulic water organs; and Hero of Alexandria, who made steam engines. -
Human Brain Evolution, Theories of Innovation, and Lessons
MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2004 PREPRINT 254 Alfred Gierer Human Brain Evolution, Theories of Innovation, and Lessons from the History of Technology Human Brain Evolution, Theories of Innovation, and Lessons from the History of Technology1 Alfred Gierer Max-Planck-Institute for Developmental Biology, T¨ubingen Abstract Biological evolution and technological innovation, while differing in many respects, also share common features. In particular, the implementation of a new technology in the market is analogous to the spreading of a new genetic trait in a population. Technological innovation may occur either through the accumulation of quantitative changes, as in the development of the ocean clipper, or it may be initiated by a new combination of features or subsystems, as in the case of steamships. Other examples of the latter type are electric networks that combine the generation, distribution, and use of electricity, and containerized transportation that combines standardized containers, logistics, and ships. Biological evolution proceeds, phenotypically, in many small steps, but at the genetic level novel features may arise not only through the accumulation of many small, common mutational changes, but also when dis- tinct, relatively rare genetic changes are followed by many further mutations. New evolutionary directions may be initiated by, in particular, some rare combinations of regulatory sections within the genome. The combinatorial type of mechanism may not be a logical prerequisite for bio- logical innovation, but it can be efficient, especially when novel features arise out of already highly developed systems. Such is the case with the evolution of general, widely applicable capabilities of the human brain. -
Education + Technology + Innovation = Learning? T
Thank you for downloading Education + Technology + Innovation = Learning? T. V. Joe Layng and Janet S. Twyman from the Center on Innovations in Learning website www.centeril.org This report is in the public domain. While permission to reprint this publication is not necessary, it should be cited as: Layng, T. V. J., & Twyman, J. S. (2013). Education + technology + innovation = learning? In M. Murphy, S. Redding, & J. Twyman (Eds.), Handbook on innovations in learning (pp. 13 –1 ). Philadelphia, PA: Center on Innovations in Learning, Temple University; Charlotte, NC: Information Age Publishing.3 48 Retrieved from http://www.centeril.org/ 2 <body> e = mc2 e = mc </body> </html> Part 3 Technology in Learning Innovation Education + Technology + Innovation = Learning? T.V. Joe Layng and Janet S. Twyman Close your eyes, and think of the word “technology.” What thoughts and images come to mind? Your smart phone? Computers? Hardware or digital head? Now, pause to pay attention to the feelings that you associate with “tech- nology”?things, or Do information you feel comfortable, in bits and bytes or sense floating stirrings around of concern? in the “cloud” Is there above eager your- Technology is the use and knowledge of tools, techniques, systems, or meth- ness, or do you have a sense that things could very easily be out of control? ods in order to solve a problem or serve some purpose. What we view as new technology evolves and advances persistently. A technological innovation— stone tools—is said to be a driver behind early human migration (Jacobs et al., 2008). Agriculture and pottery were innovative “technologies” to our Neolithic - ancestors (Cole, 1970), as was the light bulb to Edison and his contemporaries (Hargadon & Douglas, 2001). -
THE RISE of ENGLISH AS the GLOBAL LINGUA FRANCA Is the World Heading Towards Greater Monolingualism Or New Forms of Plurilingualism?
Lingue e Linguaggi Lingue Linguaggi 15 (2015), 129-154 ISSN 2239-0367, e-ISSN 2239-0359 DOI 10.1285/i22390359v15p129 http://siba-ese.unisalento.it, © 2015 Università del Salento THE RISE OF ENGLISH AS THE GLOBAL LINGUA FRANCA Is the world heading towards greater monolingualism or new forms of plurilingualism? THOMAS CHRISTIANSEN UNIVERSITY OF SALENTO Abstract – English has become the most influential language for international discourse (Weber 1997; Graddol 2006) and it is tempting to foresee a largely monolingual future at the international level, where other languages become irrelevant. Such a simplistic view sees the adoption of English as something univer- sal and uniform with little room for variation, local identity, or other lingua francas. Data shows that other lingua francas are not inevitably in decline. Diverse languages – e.g. Chinese, Spanish, Arabic, Hindi, French – continue to be important regionally or in certain discourse contexts (Weber 1997; Ostler 2010; Ro- nen et al. 2014) and on the internet. In this paper, we look at recent data from a variety of sources (Ronen et al. 2014; Olivié et al. 2015), in an attempt to examine the situation regarding languages and their influences in the world today. In particular, we will attempt to take into account the fact that much language distribution is today no longer tied in with territorial dimensions. New media such as the internet, as well as mass migra- tion between countries, have made it less easy to identify specific languages with precise geographical areas. Furthermore, although the world is increasingly globalised, significant regional divisions still exist in the use of media (especially in the case of China) making it difficult at present to make direct comparisons about language use. -
History of Science and History of Technology (Class Q, R, S, T, and Applicable Z)
LIBRARY OF CONGRESS COLLECTIONS POLICY STATEMENTS History of Science and History of Technology (Class Q, R, S, T, and applicable Z) Contents I. Scope II. Research strengths III. General collecting policy IV. Best editions and preferred formats V. Acquisitions sources: current and future VI. Collecting levels I. Scope This Collections Policy Statement covers all of the subclasses of Science and Technology and treats the history of these disciplines together. In a certain sense, most of the materials in Q, R, S, and T are part of the history of science and technology. The Library has extensive resources in the history of medicine and agriculture, but many years ago a decision was made that the Library should not intensively collect materials in clinical medicine and technical agriculture, as they are subject specialties of the National Library of Medicine and the National Agricultural Library, respectively. In addition, some of the numerous abstracting and indexing services, catalogs of other scientific and technical collections and libraries, specialized bibliographies, and finding aids for the history of science and technology are maintained in class Z. See the list of finding aids online: http://findingaids.loc.gov/. II. Research strengths 1. General The Library’s collections are robust in both the history of science and the history of technology. Both collections comprise two major elements: the seminal works of science and technology themselves, and historiographies on notable scientific and technological works. The former comprise the original classic works of science and technology as they were composed by the men and women who ushered in the era of modern science and invention. -
Edward Sapir's View About International Auxiliary Language
EMANUEL KULCZYCKI EDWARD SAPIR’S VIEW ABOUT INTERNATIONAL AUXILIARY LANGUAGE Introduction The search for common attributes of all languages is connected with the search for characteristics which differentiate languages. If some attributes cannot be found in every language, what is cause of this situation? Is it linked up with the origin of language or with users of the language? People inquire about such matters because the multiplicity of natural languages generates incomprehension and handicaps human communication. The minimum number of languages in the world has been set at 4,000 and the maximum at 8,000. In spite of this people can communicate over communication’s barriers which are generated by the multiplicity of mother-languages. But that diversity worries and disturbs. A Danish linguist Otto Jespersen wrote: „An American may travel from Boston to San Francisco without hearing more than one language. But if he were to traverse the same distance on this side of the Atlantic, he would have a totally different story to tell (…) he would then hear perhaps Norwegian, Swedish, Danish, German, Czecho-Slovakian, Hungarian, Rumanian, Bulgarian, Turkish, Greek, and then in Egypt Arabic and a little English (…) He would not have heard of the languages spoken in Europe. The curse of Babel is still with us”1. It means that we have to use more than one language to 1 O. Jespersen: An International Language, Allen & Unwin, London 1928; <http://www.geocities.com/ /Athens/Forum/5037/AILneed.html>. 66 Emanuel Kulczycki communicate with another man. So some universal language – an international auxiliary language could make whole social communication easy. -
The History of Computing in the History of Technology
The History of Computing in the History of Technology Michael S. Mahoney Program in History of Science Princeton University, Princeton, NJ (Annals of the History of Computing 10(1988), 113-125) After surveying the current state of the literature in the history of computing, this paper discusses some of the major issues addressed by recent work in the history of technology. It suggests aspects of the development of computing which are pertinent to those issues and hence for which that recent work could provide models of historical analysis. As a new scientific technology with unique features, computing in turn can provide new perspectives on the history of technology. Introduction record-keeping by a new industry of data processing. As a primary vehicle of Since World War II 'information' has emerged communication over both space and t ime, it as a fundamental scientific and technological has come to form the core of modern concept applied to phenomena ranging from information technolo gy. What the black holes to DNA, from the organization of English-speaking world refers to as "computer cells to the processes of human thought, and science" is known to the rest of western from the management of corporations to the Europe as informatique (or Informatik or allocation of global resources. In addition to informatica). Much of the concern over reshaping established disciplines, it has information as a commodity and as a natural stimulated the formation of a panoply of new resource derives from the computer and from subjects and areas of inquiry concerned with computer-based communications technolo gy. -
Neutrality of International Languages*
Haitao Liu 37 Journal of Universal Language 7 September 2006, 37-64 Neutrality of International Languages* Haitao Liu Communication University of China Abstract This paper focuses on the neutrality of international languages. First, a derivation of the concept of “neutral language” from “inter- national communicative act” is provided; it is argued that an acceptable neutral language for international communication can only be an artificial language. Certain characterizations of consciously created languages are discussed. The paper distinguishes two types of neutrality: communicative neutrality and linguistic neutrality. All planned languages are communicatively neutral, but their linguistic neutrality varies, reflecting the diversity of language design principles. Given that absolute linguistic neutrality unattainable, it becomes reasonable to construct a language based on certain control languages plus linguistic universals. We introduce the term “deneutralization” to designate a process whereby a neutral language changes into an ordinary language. The paper also shows that Esperanto has not become deneutralized. Keywords: international language, neutrality, deneutralization, artificial language, planned language, universal language, Esperanto * I am grateful to Detlev Blanke for insightful discussion. I’d also like to thank Probal Dasgupta for providing detailed comments and correcting my English. 38 Neutrality of International Languages 1. Introduction Today English is already a global language (Crystal 1997), but many people still consider that it is not an ideal solution for international communication. Wright (2000: 246-247) mentions one reason for this in her book on the role of language in nation-state building and European integration: “They [artificial languages] are ideally suited to the role [of lingua franca] since they are not the languages of European nations of states. -
A Brief View of the Evolution of Technology and Engineering Education
OPEN ACCESS EURASIA Journal of Mathematics Science and Technology Education ISSN: 1305-8223 (online) 1305-8215 (print) 2017 13(10):6749-6760 DOI: 10.12973/ejmste/61857 A Brief View of the Evolution of Technology and Engineering Education Zohreh Bagherzadeh PhD Student, Department of Educational Science, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, IRAN Narges Keshtiaray Associate Professor, Department of Educational Science, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, IRAN Alireza Assareh Associate Professor, Curriculum Studies of Shahid Rajaee Teacher Training University, Tehran, IRAN Received 22 April 2017 ▪ Revised 29 August 2017 ▪ Accepted 20 September 2017 ABSTRACT The purpose of this study is to review and investigate the evolutionary course of technological education together with engineering before and after the industrial revolution. A brief history of technology and engineering is provided in this study with regards to Daniel Bell’s documents who believed that mankind has so far experienced three technological revolutions. The first one is the invention of heat pumps, the second a result of advancements in chemistry and electricity, and the third revolution, which occurred after world war 2, is when new information technology and communication and thought technology entered the era of post-industrialism. This period was divided into 5 segments including before the industrial revolution, the emergence of the industrial revolution until 1913, from 1913 to the launching of the Sputnik satellite, from 1950-1980, and from 1980 to now. Considering the developments taken place, it can be concluded that educational approaches for engineering have changed following the changes in technological education. Keywords: history-technological education, engineering education INTRODUCTION According to the documents of Baskette and Fantz (2013), Hampshire Technology Education (2012), ITEA/ITEEA (2007), T. -
Construction History: Between Technological and Cultural History
Construction history: between technological and cultural history. The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Picon, Antoine. 2005/2006. Construction history: between technological and cultural history. Construction History 21: 5-19. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10977385 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA CONSTRUCTION HISTORY: BETWEEN TECHNOLOGICAL AND CULTURAL HISTORY INTRODUCTION Construction history is a thriving domain. With its international attendance and the large range of themes and topics dealt with, the Second International Congress of Construction History organized in Cambridge in spring 2006 was a good proof of it1. Some twenty years ago, a similar enterprise would have been certainly more modest in scope and ambition. This spectacular success provides a good opportunity to question construction history, to envisage in particular the type of relation it has or should have with other domains of historical research. In this paper, I would like to examine in particular its position vis-à-vis history of technology on the one hand, cultural history on the other. While its relation to history of technology may seem simple at first, a closer look reveals a series of complex problems. For construction history represents both an integral part of history of technology and a very special field with strong idiosyncrasies. -
A Review of the Middle Pleistocene Record in Eurasia
Was the Emergence of Home Bases and Domestic Fire a Punctuated Event? A Review of the Middle Pleistocene Record in Eurasia NICOLAS ROLLAND THIS SURVEY OF THE EVIDENCE FOR THE DEVELOPMENT OF DOMESTIC FIRE and home bases integrates naturalistic factors and culture historical stages and processes into an anthropological theoretical framework. The main focus will be to review fire technology in terms of (1) its characteristics in prehistoric times and its earliest established evidence; (2) the role it played, among other factors, in the appearance of ancient hominid home bases sensu stricto, as part of a key formative stage during the transition from Lower to Middle Paleolithic; and (3) current findings and debates relating to the role of anthropogenic fire and the evidence of a home base occupation at Zhoukoudian (ZKD) Locality 1 in China. It is con cluded that, despite complex site formation processes and postdepositional distur bances, the sum of direct evidence and off-site context at Zhoukoudian consti tutes a record sufficiently compelling for continuing to regard it as a key early hominid home base occurrence in East Asia. This revised verdict has important implications for evaluating and comparing Middle Pleistocene biocultural evolu tion and developments. This analysis seeks to avoid both excessive biological or environmental reduc tionism, and treating "cultural" behavior as entirely emergent without reference to its natural historical antecedents. Hominids retained a primate omnivorous diet, but added a meat-eating and meat-procurement component that nlOved them up the trophic pyramid to compete with other carnivores. Ground-living hominids also preserved the primate system of living in large local groups for safety and a diurnal lifestyle.