The Effect of Electric Field on Callus Induction with Rape Hypocotyls

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Electric Field on Callus Induction with Rape Hypocotyls The Effect of Electric Field on Callus Induction with Rape Hypocotyls Maria Fileka,*, Magdalena Hołdaa, Ivana Macha´cˇkova´ b, and Jan Krekuleb a Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Krako´ w, Niezapominajek 21, Poland. Fax: +48124253320. E-mail: [email protected] b Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova´ 135, 160502 Praha 6, Czech Republic *Author for correspondence and reprint requests Z. Naturforsch. 60c, 876Ð882 (2005); received April 11/May 19, 2005 The influence of electric field treatment on dedifferentiation and calli formation on rape hypocotyls was investigated. Segments, 10 mm long, of the upper part of rape (Brassica napus L., cv. Go´ rcza∆ski) hypocotyls were stimulated by different combinations of voltage/time (1.5 V/120 h, 3 V/3 h, 10 V/15 min and 30 V/30 s) under in vitro conditions. With all electric field treatments, segments oriented with their apical part towards the cathode produced more calli as compared to control (non-treated with electric field). Under opposite orientation slight inhibition of callus growth was observed. As the strongest effect on callus growth was observed after treatment with 30 V/30 s, this electric field treatment was selected for follow- ing analyses: the incorporation of [14C]-2,4-D (2,4-dichlorophenoxyacetic acid) and [14C]- BAP (benzylaminopurine) from the culture medium, changes in ACC (1-aminocyclopropane- 1-carboxylic acid) level and the redox activity in apical and bottom parts of hypocotyls during 18 d of culture. In contrast to changes in fresh weight, electric field treatment (30 V/30 s) stimulated a higher accumulation of 2,4-D and BAP in basal parts of hypocotyls than in apical ones. Moreover, orienting the apical part towards the cathode resulted in lower uptake of hor- mones as compared with the opposite orientation. The ACC concentration increased, espe- cially in the basal parts of hypocotyls, independently on electric field application. However, the highest level was observed after electric field treatment with orientation of the apical part towards the anode. The distribution of oxidative substances (measured as the amount of ferric ions) between the apical and bottom part of hypocotyls was not changed when the apical parts were oriented towards the cathode. Under these conditions a decrease in apical and an increase in basal parts was observed during culture. Opposite orientation influenced the redistribution of oxidative substances from the first day of electric field treatment. Based on these results we suggest that electric field action can be connected with its influence on specific concentration of oxidative substances and hormone distribution in cells. Key words: Electric Field, Rape, Growth Regulators Introduction critical value, mechanical instability and electro- poration (pore formation) of membranes occur The physical properties of lipids and proteins, (Wothers et al., 2001). the main compounds of biomembranes, predeter- It was observed in animal cells that exogenous mine the membranes to originate an electric field electric fields induce a variety of cellular re- (Chermomordic et al., 1987; Tsong and Astumian, sponses. It can influence cell surface charge redis- 1988). Endogenous currents occur in the form of tribution (Cho et al., 1994), cytoskeletal reorgani- transcellular potentials (Mycielska and Djamgoz, zation (Cho et al., 1996) and changes in the 2004). These electric fields are believed to play a intracellular calcium ion concentration (Wallec- significant role in biological processes (Le Saux zek, 1992). Because Ca2+ ions regulate numerous et al., 2001). Long-standing interest in the effect of biological processes including signal transduction electric fields was concentrated on animal systems cascades, cell orientation and migration and cell (Robinson, 1985). However, analysis of its influ- differentiation and proliferation, changes in Ca2+ ence on biological molecules raises several prob- concentration have been hypothesized to mediate lems. The main experimental problem is to apply cellular effects induced by an exogenous electric a transmembrane electric potential of comparable field (Cho et al., 1999). magnitude as the one existing in physiological In our earlier studies we observed the interac- conditions. When the applied potential exceeds a tion of an external electric field with generative 0939Ð5075/2005/1100Ð0876 $ 06.00 ” 2005 Verlag der Zeitschrift für Naturforschung, Tübingen · http://www.znaturforsch.com · D M. Filek et al. ·The Effect of Electric Field on Callus Induction 877 development in plants (Macha´cˇkova´ et al., 1990; Materials and Methods Macha´cˇkova´ and Krekule, 1991; Filek et al., 2002, Twenty seeds of the winter rape (Brassica napus 2003). The final effect in the number of flowering L.) cultivar “Go´ rczan´ ski” were sown in Magenta plants was dependent on voltage and time of expo- (Sigma) vessels on Murashige-Skoog (Murashige sition of tissues as well as on the electric field po- and Skoog, 1962) medium and grown under light larity. Inhibition of bud formation and flower in- condition 16 h day/8 h night (150 µmol mÐ2 sÐ1)at duction was caused by direct current treatment 25/18 ∞C. After 7 d of culture segments of 10 mm with the cathode connected to the leaf tips in Che- were cut off from the upper part of hypocotyls (ex- nopodium rubrum (Adamec et al., 1989) or to the plants). These explants were placed into Magenta apical stem part in winter wheat and rape (Filek (Sigma) vessels equipped with two parallel silver et al., 2002, 2003) (the anode was in the nutrient electrodes (0.5 mm diameter, 50 mm long, distance solution around the roots). It was also described between them: 50 mm) dipped in the medium. To that an applied electric field induced a gradient 2+ induce dedifferentiation and callus induction, the of Ca ions from apex to base in Chenopodium medium was supplemented with 1 mg/l BAP and rubrum plants (Macha´cˇkova´ et al., 1995). Experi- 0.5 mg/l 2,4-D. Explants were placed in parallel to ments performed in various systems implicated lines of force of the electric field with the apical calcium in the hormonal signal transduction chain part toward the cathode or anode. The electric po- (Hobbie et al., 1994; Staxe´n et al., 1999; Anil and tential stimulation was applied after a 24 h culture Rao, 2000; Yang and Poovaiah, 2000; Pandey et al., as one direct electric current impulse. At the be- 2004). Moreover, electric field-induced changes in ginning explants were subjected for varying membrane potential can mediate the activation of lengths of time to electric current of different volt- plasma membrane hormone receptors (Barbier- ages. Four different voltage/duration combinations Brygoo et al., 1991; Astumian et al., 1995). It was were applied: 1.5 V/120 h, 3 V/3 h, 10 V/15 min also documented that an increase in auxin concen- and 30 V/30 s (see Fig. 1). Plants not stimulated by tration stimulates the activity of plasma membrane + the electric field were used as control. Fresh H -ATPase, which results in cell acidification weight of callus initiated on apical or bottom parts (Hager et al., 1991). The details of plant hormone of hypocotyls was determined after 4 weeks of cul- action remain largely unknown, however, their ture. On the basis of this experiment the electric participation in diverse aspects of plant growth field of 30 V lasting 30 s was chosen for further and differentiation is well documented. Especially studies. in in vitro experiments, the specific hormone com- In the following studies fresh weights of apical position of the medium is needed to induce both and basal part of in vitro cultured segments of hy- callus production on plant explants and embryo- pocotyls (hypocotyls were cut to two equal seg- genesis. ments) were measured after 1, 4, 7, 11 and 18 d The aim of presented experiments was to study after electric field treatment (30 V/30 s). In some the influence of an electric field on tissue dediffer- experiments the Murashige-Skoog medium was entiation and hormone redistribution during callus additionally supplemented with [14C]-2,4-D or formation on the segments of rape hypocotyl. At [14C]-BAP (radioactivity of both hormones was first the effect of voltage and time of the applied 380 MBq mmolÐ1). The samples from about 20 electric field on calli induction/inhibition was segments were collected in 5 replicates to measure tested. In the conditions of specific electric field 14 fresh weight and hormone incorporation. action the incorporation of [ C]-2,4-D (2,4-dichlo- 14 14 14 The accumulation of [ C]-2,4-D and [ C]-BAP rophenoxyacetic acid) and [ C]-BAP (benzylami- in apical and basal parts of hypocotyls was meas- nopurine) was detected. Both hormones are usu- ured after washing the tissue (3 times) in 0.6 m ally added to medium during rape in vitro cultures. mannitol and carefully drying to remove the ad- Because an electric field as well as auxins can in- sorbed substances. Then the tissue was homoge- duce changes in membrane potential and ion nized in the Bray solution and the radioactivity channel activities, the redox activity was also de- was detected by a scintillation counter (Beckman tected. To assess the possible stress effect of the LS 5801). treatments with an electric field, the level of ACC For detection of redox activity, hypocotyl seg- (1-aminocyclopropane-1-carboxylic acid), precur- ments were cut to apical and basal parts and incu- sor of ethylene, was measured. bated for 15 min in 1 mm Tris-HCl [tris(hydoxy- 878 M. Filek et al. ·The Effect of Electric Field on Callus Induction methyl)aminomethane hydrochloride] (pH 7.2) containing 0.5 mm CaCl2 and 50 mm KCl. Redox reaction was initiated by introducing 1 mm K3Fe(CN)6 and followed as the decrease in ab- sorbance at λ = 420 nm (Federico and Giartosio, 1983).
Recommended publications
  • Callus Induction, Direct and Indirect Organogenesis of Ginger (Zingiber Officinale Rosc)
    Vol. 15(38), pp. 2106-2114, 21 September, 2016 DOI: 10.5897/AJB2016.15540 Article Number: B7FF38560550 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper Callus induction, direct and indirect organogenesis of ginger (Zingiber officinale Rosc) Ammar Mohammed Ahmed Ali1*, Mawahib ElAmin Mohamed El-Nour2 and Sakina Mohamed Yagi3 1Department of Biology, Faculty of Education, Hajjah University, Yemen. 2Department of Biology and Biotechnology, Faculty of Science and Technology, AL Neelain University, Sudan. 3Botany Department, Faculty of Science, University of Khartoum, Sudan. Received 25 June, 2016; Accepted 7 September, 2016 The present study aimed to induce callus, direct and indirect organogenesis of ginger (Zingiber officinale Rosc) by using Murashige and Skoog (MS) medium fortified with different concentrations and combinations of growth regulators. Shoot tip, in vitro leaf and root segments were used as explants to induce callus by MS medium containing (0.00 as control, 0.5, 1.00, 2.00 and 3.00 mg/L) of 2,4-dichloro- phenoxyacetic acid (2,4-D). Callus induced was subcultured on MS+2,4-D at different concentrations (0.5, 1.00, 2.00 and 3.00 mg/L) and one concentration 0.5 mg/L of 6-benzyl amino purine (BAP) was used. The sprouting buds (about 1 to 1.5 cm) were used as explants for direct shoots and roots induction by MS medium + 2.00, 3.00 and 4.5 mg/L of BAP. Callus induced by 1.00 mg/L 2,4-D was regenerated on MS + 0.5 mg/L 2,4-D to obtain a green callus, this callus was transferred to MS medium with combinations of 0.5 mg/L 1-naphthaleneacetic acid (NAA) with different concentrations of BAP (1.00, 2.00,3.00 and 4.00 mg/L) for indirect organogenesis.
    [Show full text]
  • Auxins Cytokinins and Gibberellins TD-I Date: 3/4/2019 Cell Enlargement in Young Leaves, Tissue Differentiation, Flowering, Fruiting, and Delay of Aging in Leaves
    Informational TD-I Revision 2.0 Creation Date: 7/3/2014 Revision Date: 3/4/2019 Auxins, Cytokinins and Gibberellins Isolation of the first Cytokinin Growing cells in a tissue culture medium composed in part of coconut milk led to the realization that some substance in coconut milk promotes cell division. The “milk’ of the coconut is actually a liquid endosperm containing large numbers of nuclei. It was from kernels of corn, however, that the substance was first isolated in 1964, twenty years after its presence in coconut milk was known. The substance obtained from corn is called zeatin, and it is one of many cytokinins. What is a Growth Regulator? Plant Cell Growth regulators (e.g. Auxins, Cytokinins and Gibberellins) - Plant hormones play an important role in growth and differentiation of cultured cells and tissues. There are many classes of plant growth regulators used in culture media involves namely: Auxins, Cytokinins, Gibberellins, Abscisic acid, Ethylene, 6 BAP (6 Benzyladenine), IAA (Indole Acetic Acid), IBA (Indole-3-Butyric Acid), Zeatin and trans Zeatin Riboside. The Auxins facilitate cell division and root differentiation. Auxins induce cell division, cell elongation, and formation of callus in cultures. For example, 2,4-dichlorophenoxy acetic acid is one of the most commonly added auxins in plant cell cultures. The Cytokinins induce cell division and differentiation. Cytokinins promote RNA synthesis and stimulate protein and enzyme activities in tissues. Kinetin and benzyl-aminopurine are the most frequently used cytokinins in plant cell cultures. The Gibberellins is mainly used to induce plantlet formation from adventive embryos formed in culture.
    [Show full text]
  • The Establishment of Cell Suspension Cultures of <Emphasis Type="Italic">
    In Vitro Cell. Dev. Biol. 26:425-430,April 1990 1990Tissue Culture Association 0883-8364/90 $01.50+0.00 THE ESTABLISHMENT OF CELL SUSPENSION CULTURES OF GLADIOLUS THAT REGENERATE PLANTS KATHRYN KAMO, JANET CHEN, ANDROGER LAWSON United States Department of Agriculture, Florist and Nursery Crops Laboratory, Beltsville Agricultural Research Center, Beltsville, .Maryland 20705 (Received 27 September 1989; accepted 27 January. 1990~ SUMMARY Inflorescence stalks from greenhouse-grown Gladiolus plants of the cuhivars 'Blue Isle' and 'Hunting Song' cultured on a nurashige and Skoog basal salts medium supplemented with 53.6 /~M l-napthaleneacetic acid formed a compact, not friable type of callus that regenerated plantlets. Cormel slices and intact plantlets of three cultivars {'Peter Pears,' 'Rosa Supreme,' 'Jenny Lee') propagated through tissue culture formed a friable type of callus when cultured on Murashige and Skoog basal salts medium supplemented with 2,4-dichlorophenoxyacetic acid. This friable callus readily formed a cell suspension when the callus was placed in a liquid medium. Plants were regenerated from two-month-old suspension cell cultures of the commercial cultivar 'Peter Pears' after the suspension cells had been cultured on solid medium. Key words: flower bulb crops; monocot cell suspensions. INTRODUCTION Regeneration of Gladiolus has been reported from The ability to regenerate plants from cell suspensions floral explants ~33). The explants formed either a thin and protoplasts is important for future experiments in layer of callus or no callus prior to plant regeneration. In genetic engineering. Monocots have been relatively addition, Wilfret ~31) reported that shoot tips grown in difficult to manipulate in culture, although there has liquid medium developed callus more readily than on been much progress recently, particularly with crops of solid medium, but plant regeneration from the callus was agronomic significance.
    [Show full text]
  • Regenerative Effects of Transplanted Mesenchymal Stem Cells in Fracture Healing
    TISSUE-SPECIFIC STEM CELLS Regenerative Effects of Transplanted Mesenchymal Stem Cells in Fracture Healing a a b c a FROILA´ N GRANERO-MOLTO´ , JARED A. WEIS, MICHAEL I. MIGA, BENJAMIN LANDIS, TIMOTHY J. MYERS, c a b d a,e LYNDA O’REAR, LARA LONGOBARDI, E. DUCO JANSEN, DOUGLAS P. MORTLOCK, ANNA SPAGNOLI Departments of aPediatrics and eBiomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Departments of bBiomedical Engineering, cPediatrics, and dMolecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA Key Words. Mesenchymal stem cells • Fracture healing • CXCR4 • Bone morphogenic protein 2 • Stem cell niche ABSTRACT Mesenchymal stem cells (MSC) have a therapeutic poten- migration at the fracture site is time- and dose-dependent tial in patients with fractures to reduce the time of healing and, it is exclusively CXCR4-dependent. MSC improved the and treat nonunions. The use of MSC to treat fractures is fracture healing affecting the callus biomechanical proper- attractive for several reasons. First, MSCs would be imple- ties and such improvement correlated with an increase in menting conventional reparative process that seems to be cartilage and bone content, and changes in callus morphol- defective or protracted. Secondly, the effects of MSCs treat- ogy as determined by micro-computed tomography and ment would be needed only for relatively brief duration of histological studies. Transplanting CMV-Cre-R26R-Lac reparation. However, an integrated approach to define the Z-MSC, we found that MSCs engrafted within the callus multiple regenerative contributions of MSC to the fracture endosteal niche. Using MSCs from BMP-2-Lac Z mice genet- repair process is necessary before clinical trials are initiated.
    [Show full text]
  • " Shoot Organogenesis in Callus Induced from Pedicel Explants of Common Bean (Phaseolus Vulgaris L.)"
    J. AMER. SOC. HORT. SCI. 118(1):158-162. 1993. Shoot Organogenesis in Callus Induced from Pedicel Explants of Common Bean (Phaseolus vulgaris L.) Mohamed F. Mohamed1, Dermot P. Coyne2, and Paul E. Read3 Department of Horticulture, University of Nebraska, Lincoln, NE 68583-0724 Additional index words. benzyladenine, indoleacetic acid, pedicel, plant regeneration, somaclonal variation, thidiazuron, tissue culture Abstract. Plant regeneration has been achieved in two common bean lines from pedicel-derived callus that was separated from the explant and maintained through successive subcultures. Callus was induced either on B 5 or MS medium containing 2% sucrose and enriched with 0.5 or 1.0 mg thidiaznron/liter alone or plus various concentrations of indoleacetic acid. The presence of 0.07 or 0.14 g ascorbic acid/liter in the maintenance media prolonged the maintenance time. Up to 40 shoot primordia were observed in 4-week-old cultures obtained from 40 to 50 mg callus tissues on shoot-induction medium containing 1-mg benzyladenine/liter. These shoot primordia developed two to five excisable shoots (>0.5 cm) on medium with 0.1-mg BA/liter. A histological study confirmed the organogenic nature of regeneration from the callus tissues. The R2 line from a selected variant plant showed stable expression of increased plant height and earlier maturity. Chemical names used: ascorbic acid, N- (phenylmethyl)-1H-pnrin-6-amine [benzyl- adenine, BA], 1H-indole-3-acetic acid (IAA), N- phenyl-N’-1,2,3-thiadiazol-5-ylurea [thidiazuron, TDZ]. Large-seeded legumes are difficult to regenerate from callus The objective of this study was to explore and develop meth- cultures.
    [Show full text]
  • Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology?
    fpls-10-00536 April 25, 2019 Time: 16:16 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library REVIEW published: 26 April 2019 doi: 10.3389/fpls.2019.00536 Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? Attila Fehér1,2* 1 Department of Plant Biology, University of Szeged, Szeged, Hungary, 2 Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary Recent findings call for the critical overview of some incorrectly used plant cell and tissue culture terminology such as dedifferentiation, callus, totipotency, and somatic embryogenesis. Plant cell and tissue culture methods are efficient means to preserve and propagate genotypes with superior germplasm as well as to increase genetic variability for breading. Besides, they are useful research tools and objects of plant Edited by: developmental biology. The history of plant cell and tissue culture dates back to more Jian Xu, than a century. Its basic methodology and terminology were formulated preceding National University of Singapore, Singapore modern plant biology. Recent progress in molecular and cell biology techniques Reviewed by: allowed unprecedented insights into the underlying processes of plant cell/tissue Ying Hua Su, culture and regeneration. The main aim of this review is to provide a theoretical Shandong Agricultural University, China framework supported by recent experimental findings to reconsider certain historical, Kalika Prasad, even dogmatic, statements widely used by plant scientists and teachers such as “plant Indian Institute of Science Education cells are totipotent” or “callus is a mass of dedifferentiated cells,” or “somatic embryos and Research Thiruvananthapuram, India have a single cell origin.” These statements are based on a confused terminology.
    [Show full text]
  • Transcriptome Comparison Between Pluripotent and Non-Pluripotent Calli Derived from Mature Rice Seeds
    www.nature.com/scientificreports OPEN Transcriptome comparison between pluripotent and non‑pluripotent calli derived from mature rice seeds Sangrea Shim1,2, Hee Kyoung Kim3, Soon Hyung Bae1, Hoonyoung Lee1, Hyo Ju Lee3, Yu Jin Jung3* & Pil Joon Seo1,2* In vitro plant regeneration involves a two‑step practice of callus formation and de novo organogenesis. During callus formation, cellular competence for tissue regeneration is acquired, but it is elusive what molecular processes and genetic factors are involved in establishing cellular pluripotency. To explore the mechanisms underlying pluripotency acquisition during callus formation in monocot plants, we performed a transcriptomic analysis on the pluripotent and non‑pluripotent rice calli using RNA‑ seq. We obtained a dataset of diferentially expressed genes (DEGs), which accounts for molecular processes underpinning pluripotency acquisition and maintenance. Core regulators establishing root stem cell niche were implicated in pluripotency acquisition in rice callus, as observed in Arabidopsis. In addition, KEGG analysis showed that photosynthetic process and sugar and amino acid metabolism were substantially suppressed in pluripotent calli, whereas lipid and antioxidant metabolism were overrepresented in up‑regulated DEGs. We also constructed a putative coexpression network related to cellular pluripotency in rice and proposed potential candidates conferring pluripotency in rice callus. Overall, our transcriptome‑based analysis can be a powerful resource for the elucidation of the molecular mechanisms establishing cellular pluripotency in rice callus. Callus is a pluripotent cell mass, which can be produced from a single diferentiated somatic cell 1,2. Pluripotent callus can undergo de novo organ formation or embryogenesis, giving rise to a new organ or even an entire plant 2.
    [Show full text]
  • Cellular Differentiation and Totipotency the Potential of a Cell to Grow and Develop Into a Multicellular Or Multiorganed Organism Is Termed As Cellular Totipotency
    Prepared for M.Sc. Sem III Botany by Prof. (Dr.) Manorma Kumari Cellular differentiation and Totipotency The potential of a cell to grow and develop into a multicellular or multiorganed organism is termed as cellular totipotency. Since the potential lies mainly in cellular differentiation this indicates that all genes responsible for differentiation are present within individual cells and many of them that remain inactive in differentiated tissues or organs are able to express only under adequate culture conditions. The development of an adult organism from a single cell (zygote) is the result of the integration of cell division and cell differentiation. Isolated cells from differentiated tissues are generally non-dividing and quiescent. To express totipotency the differentiated cells first undergo dedifferentiation and then redifferentiation. The phenomenon of mature cells of explant reverting to a meristematic state and forming undifferentiated callus tissue is termed as dedifferentiation, whereas the ability of dedifferentiated cells to form a whole plant or plant-organ is termed redifferentiation. These two phenomena of dedifferentiation and redifferentiation are inherent in the capacity of a plant cell, and thus giving rise to a whole plant. During the process of redifferentiation cells of callus undergo cellular differentiation or cytodifferentiation. Cytodifferentiation can be studied under different headings – (A) Vascular differentiation (xylogenesis & phloem differentiation) Xylogenesis is the differentiation of parenchyma into
    [Show full text]
  • Callus Induction, Proliferation, and Plantlets Regeneration of Two Bread Wheat (Triticum Aestivum L.) Genotypes Under Saline and Heat Stress Conditions
    International Scholarly Research Network ISRN Agronomy Volume 2012, Article ID 367851, 8 pages doi:10.5402/2012/367851 Research Article Callus Induction, Proliferation, and Plantlets Regeneration of Two Bread Wheat (Triticum aestivum L.) Genotypes under Saline and Heat Stress Conditions Laid Benderradji,1 Faic¸alBrini,2 Kamel Kellou,1 Nadia Ykhlef,1 Abdelhamid Djekoun,1 Khaled Masmoudi,2 and Hamenna Bouzerzour3 1 Genetic, Biochemistry & Plant Biotechnology Laboratory, Constantine University, Constantine 25000, Algeria 2 Plant Protection & Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisia 3 Biology Department, Faculty of Sciences, S´etif University, S´etif 19000, Algeria Correspondence should be addressed to Faic¸al Brini, [email protected] Received 22 August 2011; Accepted 21 September 2011 Academic Editors: W. J. Rogers and Z. Yanqun Copyright © 2012 Laid Benderradji et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Response of two genotypes of bread wheat (Triticum aestivum), Mahon-Demias (MD) and Hidhab (HD1220), to mature embryo culture, callus production, and in vitro salt and heat tolerance was evaluated. For assessment of genotypes to salt and heat tolerance, growing morphogenic calli were exposed to different concentrations of NaCl (0, 5, 10, and 15 g·L−1) and under different thermal stress intensities (25, 30, 35, and 40◦C). Comparison of the two genotypes was reported for callus induction efficiency from mature embryo. While, for salt and heat tolerance, the proliferation efficiency, embryonic efficiency, and regeneration efficiency were used.
    [Show full text]
  • Effects of Different Plant Hormones on Callus Induction and Plant Regeneration of Miniature Roses (Rosa Hybrida L.)
    Horticulture International Journal Research Article Open Access Effects of different plant hormones on callus induction and plant regeneration of miniature roses (Rosa hybrida L.) Abstract Volume 2 Issue 4 - 2018 Miniature roses (Rosa hybrida L.) are increasingly popular flowering potted plants. In this Jiayu Liu, Huan Feng, Yanqin Ma, Li Zhang, study, we used leaves of new cultivars of Rosa hybrida as explants and MS medium as basal medium, to explore optimal combinations and concentrations of growth regulators Haitao Han, Xuan Huang on callus, adventitious buds and root induction. Our results demonstrated that MS medium Department of Life Science, Northwest University, China supplemented with 3.0mgL-1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0mgL-1 6-Benzylaminopurine (6-BA) could result to 100% callus induction ratio. Furthermore, we Correspondence: Xuan Huang, Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology showed that 6-BA was of essential importance during the induction of adventitious buds in -1 -1 and Biotechnology in Western China, Ministry of Education, R.hybrida. On MS medium containing 1.0mgL 6-BA, (0.05-0.5) mgL naphthaleneacetic College of Life Science, Northwest University, Xi’an 710069, -1 acid (NAA) and (0.02-0.2) mgL Thidizuron (TDZ), adventitious buds could be regenerated China, Tell: +86-29-8830-3484, Fax: +86-29-8830-3572, from calli and the redifferentiation ratio reached 92.6%. Of note, our data supported the Email [email protected] indispensable role of auxin during rooting induction, because 1/4MS medium enabled 100% rooting frequency when 0.1mgL-1 NAA was supplemented.
    [Show full text]
  • Induction, Multiplication, and Evaluation of Antioxidant Activity of Polyalthia Bullata Callus, a Woody Medicinal Plant
    plants Article Induction, Multiplication, and Evaluation of Antioxidant Activity of Polyalthia bullata Callus, a Woody Medicinal Plant Munirah Adibah Kamarul Zaman 1, Azzreena Mohamad Azzeme 1,* , Illy Kamaliah Ramle 1, Nurfazlinyana Normanshah 1, Siti Nurhafizah Ramli 1, Noor Azmi Shaharuddin 1,2, Syahida Ahmad 1 and Siti Nor Akmar Abdullah 2,3 1 Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Seri Kembangan 43400, Malaysia; [email protected] (M.A.K.Z.); [email protected] (I.K.R.); [email protected] (N.N.); [email protected] (S.N.R.); [email protected] (N.A.S.); [email protected] (S.A.) 2 Institute of Plantation Studies, Universiti Putra Malaysia, Selangor, Seri Kembangan 43400, Malaysia; [email protected] 3 Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Seri Kembangan 43400, Malaysia * Correspondence: [email protected]; Tel.: +60-3-9769-8265 Received: 31 October 2020; Accepted: 9 December 2020; Published: 14 December 2020 Abstract: Polyalthia bullata is an endangered medicinal plant species. Hence, establishment of P. bullata callus culture is hoped to assist in mass production of secondary metabolites. Leaf and midrib were explants for callus induction. Both of them were cultured on Murashige and Skoog (MS) and Woody Plant Medium (WPM) containing different types and concentrations of auxins (2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA), picloram, and dicamba). The callus produced was further multiplied on MS and WPM supplemented with different concentrations of 2,4-D, NAA, picloram, dicamba, indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA) media.
    [Show full text]
  • Use of Plant Cell Cultures for a Sustainable Production of Innovative Ingredients COSMETICS PLANT CELL CULTURE
    9-2012 English Edition International Journal for Applied Science • Personal Care • Detergents • Specialties D. Schmid, F. Zülli Use of Plant Cell Cultures for a Sustainable Production of Innovative Ingredients COSMETICS PLANT CELL CULTURE D. Schmid, F. Zülli* Use of Plant Cell Cultures for a Sustainable Production of Innovative Ingredients ■ Plant Cell Cultures Instead of entiated plant cells (e.g. leaf cells, fruit in order to adapt to environmental con- Wild Plant Harvesting cells) to undergo de-differentiation and, ditions. In this way, plants can survive under the right stimuli, to regenerate a dormancy periods and regenerate when Plants that survive in high altitude habi- whole plant. Because of their sessile na- the conditions are again optimal. Totipo- tats of the Alps, medicinal herbs from Ti- ture, plants had to adopt this plasticity tency can be used for in vitro propaga- bet or orchids from the Amazonian area tion of plants or for the cultivation of are examples of attractive raw materials undifferentiated plant cells. Plant cell for cosmetic ingredients. These are all cultures can be initiated from nearly all rare plants or plant species that are pro- plant tissues. The tissue material which tected by CITES, the Convention on In- is obtained from the plant to culture is ternational Trade in Endangered Species called an explant. As a kind of wound re- of Wild Fauna and Flora. Harvesting of action, new cells are formed on the cut wild plants is forbidden or not done be- Abstract surfaces of the explant. The cells slowly cause of sustainability reasons. Cultiva- divide to form a colorless cell mass which tion of these plants in fields is in many here is an ongoing trend to is called callus (Fig.
    [Show full text]