UNDERSTANDING the ONE-WAY ANOVA the One-Way Analysis of Variance (ANOVA) Is a Procedure for Testing the Hypothesis That K Population Means Are Equal, Where K > 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Internal Validity Is About Causal Interpretability
Internal Validity is about Causal Interpretability Before we can discuss Internal Validity, we have to discuss different types of Internal Validity variables and review causal RH:s and the evidence needed to support them… Every behavior/measure used in a research study is either a ... Constant -- all the participants in the study have the same value on that behavior/measure or a ... • Measured & Manipulated Variables & Constants Variable -- when at least some of the participants in the study • Causes, Effects, Controls & Confounds have different values on that behavior/measure • Components of Internal Validity • “Creating” initial equivalence and every behavior/measure is either … • “Maintaining” ongoing equivalence Measured -- the value of that behavior/measure is obtained by • Interrelationships between Internal Validity & External Validity observation or self-report of the participant (often called “subject constant/variable”) or it is … Manipulated -- the value of that behavior/measure is controlled, delivered, determined, etc., by the researcher (often called “procedural constant/variable”) So, every behavior/measure in any study is one of four types…. constant variable measured measured (subject) measured (subject) constant variable manipulated manipulated manipulated (procedural) constant (procedural) variable Identify each of the following (as one of the four above, duh!)… • Participants reported practicing between 3 and 10 times • All participants were given the same set of words to memorize • Each participant reported they were a Psyc major • Each participant was given either the “homicide” or the “self- defense” vignette to read From before... Circle the manipulated/causal & underline measured/effect variable in each • Causal RH: -- differences in the amount or kind of one behavior cause/produce/create/change/etc. -
Validity and Reliability of the Questionnaire for Compliance with Standard Precaution for Nurses
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cadernos Espinosanos (E-Journal) Rev Saúde Pública 2015;49:87 Original Articles DOI:10.1590/S0034-8910.2015049005975 Marília Duarte ValimI Validity and reliability of the Maria Helena Palucci MarzialeII Miyeko HayashidaII Questionnaire for Compliance Fernanda Ludmilla Rossi RochaIII with Standard Precaution Jair Lício Ferreira SantosIV ABSTRACT OBJECTIVE: To evaluate the validity and reliability of the Questionnaire for Compliance with Standard Precaution for nurses. METHODS: This methodological study was conducted with 121 nurses from health care facilities in Sao Paulo’s countryside, who were represented by two high-complexity and by three average-complexity health care facilities. Internal consistency was calculated using Cronbach’s alpha and stability was calculated by the intraclass correlation coefficient, through test-retest. Convergent, discriminant, and known-groups construct validity techniques were conducted. RESULTS: The questionnaire was found to be reliable (Cronbach’s alpha: 0.80; intraclass correlation coefficient: (0.97) In regards to the convergent and discriminant construct validity, strong correlation was found between compliance to standard precautions, the perception of a safe environment, and the smaller perception of obstacles to follow such precautions (r = 0.614 and r = 0.537, respectively). The nurses who were trained on the standard precautions and worked on the health care facilities of higher complexity were shown to comply more (p = 0.028 and p = 0.006, respectively). CONCLUSIONS: The Brazilian version of the Questionnaire for I Departamento de Enfermagem. Centro Compliance with Standard Precaution was shown to be valid and reliable. -
Regression Summary Project Analysis for Today Review Questions: Categorical Variables
Statistics 102 Regression Summary Spring, 2000 - 1 - Regression Summary Project Analysis for Today First multiple regression • Interpreting the location and wiring coefficient estimates • Interpreting interaction terms • Measuring significance Second multiple regression • Deciding how to extend a model • Diagnostics (leverage plots, residual plots) Review Questions: Categorical Variables Where do those terms in a categorical regression come from? • You cannot use a categorical term directly in regression (e.g. 2(“Yes”)=?). • JMP converts each categorical variable into a collection of numerical variables that represent the information in the categorical variable, but are numerical and so can be used in regression. • These special variables (a.k.a., dummy variables) use only the numbers +1, 0, and –1. • A categorical variable with k categories requires (k-1) of these special numerical variables. Thus, adding a categorical variable with, for example, 5 categories adds 4 of these numerical variables to the model. How do I use the various tests in regression? What question are you trying to answer… • Does this predictor add significantly to my model, improving the fit beyond that obtained with the other predictors? (t-ratio, CI, p-value) • Does this collection of predictors add significantly to my model? Partial-F (Note: the only time you need partial F is when working with categorical variables that define 3 or more categories. In these cases, JMP shows you the partial-F as an “Effect Test”.) • Does my full model explain “more than random variation”? Use the F-ratio from the Anova summary table. Statistics 102 Regression Summary Spring, 2000 - 2 - How do I interpret JMP output with categorical variables? Term Estimate Std Error t Ratio Prob>|t| Intercept 179.59 5.62 32.0 0.00 Run Size 0.23 0.02 9.5 0.00 Manager[a-c] 22.94 7.76 3.0 0.00 Manager[b-c] 6.90 8.73 0.8 0.43 Manager[a-c]*Run Size 0.07 0.04 2.1 0.04 Manager[b-c]*Run Size -0.10 0.04 -2.6 0.01 • Brackets denote the JMP’s version of dummy variables. -
Using Survey Data Author: Jen Buckley and Sarah King-Hele Updated: August 2015 Version: 1
ukdataservice.ac.uk Using survey data Author: Jen Buckley and Sarah King-Hele Updated: August 2015 Version: 1 Acknowledgement/Citation These pages are based on the following workbook, funded by the Economic and Social Research Council (ESRC). Williamson, Lee, Mark Brown, Jo Wathan, Vanessa Higgins (2013) Secondary Analysis for Social Scientists; Analysing the fear of crime using the British Crime Survey. Updated version by Sarah King-Hele. Centre for Census and Survey Research We are happy for our materials to be used and copied but request that users should: • link to our original materials instead of re-mounting our materials on your website • cite this as an original source as follows: Buckley, Jen and Sarah King-Hele (2015). Using survey data. UK Data Service, University of Essex and University of Manchester. UK Data Service – Using survey data Contents 1. Introduction 3 2. Before you start 4 2.1. Research topic and questions 4 2.2. Survey data and secondary analysis 5 2.3. Concepts and measurement 6 2.4. Change over time 8 2.5. Worksheets 9 3. Find data 10 3.1. Survey microdata 10 3.2. UK Data Service 12 3.3. Other ways to find data 14 3.4. Evaluating data 15 3.5. Tables and reports 17 3.6. Worksheets 18 4. Get started with survey data 19 4.1. Registration and access conditions 19 4.2. Download 20 4.3. Statistics packages 21 4.4. Survey weights 22 4.5. Worksheets 24 5. Data analysis 25 5.1. Types of variables 25 5.2. Variable distributions 27 5.3. -
Statistical Analysis 8: Two-Way Analysis of Variance (ANOVA)
Statistical Analysis 8: Two-way analysis of variance (ANOVA) Research question type: Explaining a continuous variable with 2 categorical variables What kind of variables? Continuous (scale/interval/ratio) and 2 independent categorical variables (factors) Common Applications: Comparing means of a single variable at different levels of two conditions (factors) in scientific experiments. Example: The effective life (in hours) of batteries is compared by material type (1, 2 or 3) and operating temperature: Low (-10˚C), Medium (20˚C) or High (45˚C). Twelve batteries are randomly selected from each material type and are then randomly allocated to each temperature level. The resulting life of all 36 batteries is shown below: Table 1: Life (in hours) of batteries by material type and temperature Temperature (˚C) Low (-10˚C) Medium (20˚C) High (45˚C) 1 130, 155, 74, 180 34, 40, 80, 75 20, 70, 82, 58 2 150, 188, 159, 126 136, 122, 106, 115 25, 70, 58, 45 type Material 3 138, 110, 168, 160 174, 120, 150, 139 96, 104, 82, 60 Source: Montgomery (2001) Research question: Is there difference in mean life of the batteries for differing material type and operating temperature levels? In analysis of variance we compare the variability between the groups (how far apart are the means?) to the variability within the groups (how much natural variation is there in our measurements?). This is why it is called analysis of variance, abbreviated to ANOVA. This example has two factors (material type and temperature), each with 3 levels. Hypotheses: The 'null hypothesis' might be: H0: There is no difference in mean battery life for different combinations of material type and temperature level And an 'alternative hypothesis' might be: H1: There is a difference in mean battery life for different combinations of material type and temperature level If the alternative hypothesis is accepted, further analysis is performed to explore where the individual differences are. -
Analysis of Variance with Categorical and Continuous Factors: Beware the Landmines R. C. Gardner Department of Psychology Someti
Analysis of Variance with Categorical and Continuous Factors: Beware the Landmines R. C. Gardner Department of Psychology Sometimes researchers want to perform an analysis of variance where one or more of the factors is a continuous variable and the others are categorical, and they are advised to use multiple regression to perform the task. The intent of this article is to outline the various ways in which this is normally done, to highlight the decisions with which the researcher is faced, and to warn that the various decisions have distinct implications when it comes to interpretation. This first point to emphasize is that when performing this type of analysis, there are no means to be discussed. Instead, the statistics of interest are intercepts and slopes. More on this later. Models. To begin, there are a number of approaches that one can follow, and each of them refers to a different model. Of primary importance, each model tests a somewhat different hypothesis, and the researcher should be aware of precisely which hypothesis is being tested. The three most common models are: Model I. This is the unique sums of squares approach where the effects of each predictor is assessed in terms of what it adds to the other predictors. It is sometimes referred to as the regression approach, and is identified as SSTYPE3 in GLM. Where a categorical factor consists of more than two levels (i.e., more than one coded vector to define the factor), it would be assessed in terms of the F-ratio for change when those levels are added to all other effects in the model. -
Validity and Reliability in Quantitative Studies Evid Based Nurs: First Published As 10.1136/Eb-2015-102129 on 15 May 2015
Research made simple Validity and reliability in quantitative studies Evid Based Nurs: first published as 10.1136/eb-2015-102129 on 15 May 2015. Downloaded from Roberta Heale,1 Alison Twycross2 10.1136/eb-2015-102129 Evidence-based practice includes, in part, implementa- have a high degree of anxiety? In another example, a tion of the findings of well-conducted quality research test of knowledge of medications that requires dosage studies. So being able to critique quantitative research is calculations may instead be testing maths knowledge. 1 School of Nursing, Laurentian an important skill for nurses. Consideration must be There are three types of evidence that can be used to University, Sudbury, Ontario, given not only to the results of the study but also the demonstrate a research instrument has construct Canada 2Faculty of Health and Social rigour of the research. Rigour refers to the extent to validity: which the researchers worked to enhance the quality of Care, London South Bank 1 Homogeneity—meaning that the instrument mea- the studies. In quantitative research, this is achieved University, London, UK sures one construct. through measurement of the validity and reliability.1 2 Convergence—this occurs when the instrument mea- Correspondence to: Validity sures concepts similar to that of other instruments. Dr Roberta Heale, Validity is defined as the extent to which a concept is Although if there are no similar instruments avail- School of Nursing, Laurentian accurately measured in a quantitative study. For able this will not be possible to do. University, Ramsey Lake Road, example, a survey designed to explore depression but Sudbury, Ontario, Canada 3 Theory evidence—this is evident when behaviour is which actually measures anxiety would not be consid- P3E2C6; similar to theoretical propositions of the construct ered valid. -
A Computationally Efficient Method for Selecting a Split Questionnaire Design
Iowa State University Capstones, Theses and Creative Components Dissertations Spring 2019 A Computationally Efficient Method for Selecting a Split Questionnaire Design Matthew Stuart Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Social Statistics Commons Recommended Citation Stuart, Matthew, "A Computationally Efficient Method for Selecting a Split Questionnaire Design" (2019). Creative Components. 252. https://lib.dr.iastate.edu/creativecomponents/252 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A Computationally Efficient Method for Selecting a Split Questionnaire Design Matthew Stuart1, Cindy Yu1,∗ Department of Statistics Iowa State University Ames, IA 50011 Abstract Split questionnaire design (SQD) is a relatively new survey tool to reduce response burden and increase the quality of responses. Among a set of possible SQD choices, a design is considered as the best if it leads to the least amount of information loss quantified by the Kullback-Leibler divergence (KLD) distance. However, the calculation of the KLD distance requires computation of the distribution function for the observed data after integrating out all the missing variables in a particular SQD. For a typical survey questionnaire with a large number of categorical variables, this computation can become practically infeasible. Motivated by the Horvitz-Thompson estima- tor, we propose an approach to approximate the distribution function of the observed in much reduced computation time and lose little valuable information when comparing different choices of SQDs. -
Describing Data: the Big Picture Descriptive Statistics Community
The Big Picture Describing Data: Categorical and Quantitative Variables Population Sampling Sample Statistical Inference Exploratory Data Analysis Descriptive Statistics Community Coalitions (n = 175) In order to make sense of data, we need ways to summarize and visualize it. Summarizing and visualizing variables and relationships between two variables is often known as exploratory data analysis (also known as descriptive statistics). The type of summary statistics and visualization methods to use depends on the type of variables being analyzed (i.e., categorical or quantitative). One Categorical Variable Frequency Table “What is your race/ethnicity?” A frequency table shows the number of cases that fall into each category: White Black “What is your race/ethnicity?” Hispanic Asian Other White Black Hispanic Asian Other Total 111 29 29 2 4 175 Display the number or proportion of cases that fall into each category. 1 Proportion Proportion The sample proportion (̂) of directors in each category is White Black Hispanic Asian Other Total 111 29 29 2 4 175 number of cases in category pˆ The sample proportion of directors who are white is: total number of cases 111 ̂ .63 63% 175 Proportion and percent can be used interchangeably. Relative Frequency Table Bar Chart A relative frequency table shows the proportion of cases that In a bar chart, the height of the bar corresponds to the fall in each category. number of cases that fall into each category. 120 111 White Black Hispanic Asian Other 100 .63 .17 .17 .01 .02 80 60 40 All the numbers in a relative frequency table sum to 1. -
Statistical Significance Testing in Information Retrieval:An Empirical
Statistical Significance Testing in Information Retrieval: An Empirical Analysis of Type I, Type II and Type III Errors Julián Urbano Harlley Lima Alan Hanjalic Delft University of Technology Delft University of Technology Delft University of Technology The Netherlands The Netherlands The Netherlands [email protected] [email protected] [email protected] ABSTRACT 1 INTRODUCTION Statistical significance testing is widely accepted as a means to In the traditional test collection based evaluation of Information assess how well a difference in effectiveness reflects an actual differ- Retrieval (IR) systems, statistical significance tests are the most ence between systems, as opposed to random noise because of the popular tool to assess how much noise there is in a set of evaluation selection of topics. According to recent surveys on SIGIR, CIKM, results. Random noise in our experiments comes from sampling ECIR and TOIS papers, the t-test is the most popular choice among various sources like document sets [18, 24, 30] or assessors [1, 2, 41], IR researchers. However, previous work has suggested computer but mainly because of topics [6, 28, 36, 38, 43]. Given two systems intensive tests like the bootstrap or the permutation test, based evaluated on the same collection, the question that naturally arises mainly on theoretical arguments. On empirical grounds, others is “how well does the observed difference reflect the real difference have suggested non-parametric alternatives such as the Wilcoxon between the systems and not just noise due to sampling of topics”? test. Indeed, the question of which tests we should use has accom- Our field can only advance if the published retrieval methods truly panied IR and related fields for decades now. -
Collecting Data
Statistics deal with the collection, presentation, analysis and interpretation of data.Insurance (of people and property), which now dominates many aspects of our lives, utilises statistical methodology. Social scientists, psychologists, pollsters, medical researchers, governments and many others use statistical methodology to study behaviours of populations. You need to know the following statistical terms. A variable is a characteristic of interest in each element of the sample or population. For example, we may be interested in the age of each of the seven dwarfs. An observation is the value of a variable for one particular element of the sample or population, for example, the age of the dwarf called Bashful (= 619 years). A data set is all the observations of a particular variable for the elements of the sample, for example, a complete list of the ages of the seven dwarfs {685, 702,498,539,402,685, 619}. Collecting data Census The population is the complete set of data under consideration. For example, a population may be all the females in Ireland between the ages of 12 and 18, all the sixth year students in your school or the number of red cars in Ireland. A census is a collection of data relating to a population. A list of every item in a population is called a sampling frame. Sample A sample is a small part of the population selected. A random sample is a sample in which every member of the population has an equal chance of being selected. Data gathered from a sample are called statistics. Conclusions drawn from a sample can then be applied to the whole population (this is called statistical inference). -
Relations Between Inductive Reasoning and Deductive Reasoning
Journal of Experimental Psychology: © 2010 American Psychological Association Learning, Memory, and Cognition 0278-7393/10/$12.00 DOI: 10.1037/a0018784 2010, Vol. 36, No. 3, 805–812 Relations Between Inductive Reasoning and Deductive Reasoning Evan Heit Caren M. Rotello University of California, Merced University of Massachusetts Amherst One of the most important open questions in reasoning research is how inductive reasoning and deductive reasoning are related. In an effort to address this question, we applied methods and concepts from memory research. We used 2 experiments to examine the effects of logical validity and premise– conclusion similarity on evaluation of arguments. Experiment 1 showed 2 dissociations: For a common set of arguments, deduction judgments were more affected by validity, and induction judgments were more affected by similarity. Moreover, Experiment 2 showed that fast deduction judgments were like induction judgments—in terms of being more influenced by similarity and less influenced by validity, compared with slow deduction judgments. These novel results pose challenges for a 1-process account of reasoning and are interpreted in terms of a 2-process account of reasoning, which was implemented as a multidimensional signal detection model and applied to receiver operating characteristic data. Keywords: reasoning, similarity, mathematical modeling An important open question in reasoning research concerns the arguments (Rips, 2001). This technique can highlight similarities relation between induction and deduction. Typically, individual or differences between induction and deduction that are not con- studies of reasoning have focused on only one task, rather than founded by the use of different materials (Heit, 2007). It also examining how the two are connected (Heit, 2007).