Collecting Data

Total Page:16

File Type:pdf, Size:1020Kb

Collecting Data Statistics deal with the collection, presentation, analysis and interpretation of data.Insurance (of people and property), which now dominates many aspects of our lives, utilises statistical methodology. Social scientists, psychologists, pollsters, medical researchers, governments and many others use statistical methodology to study behaviours of populations. You need to know the following statistical terms. A variable is a characteristic of interest in each element of the sample or population. For example, we may be interested in the age of each of the seven dwarfs. An observation is the value of a variable for one particular element of the sample or population, for example, the age of the dwarf called Bashful (= 619 years). A data set is all the observations of a particular variable for the elements of the sample, for example, a complete list of the ages of the seven dwarfs {685, 702,498,539,402,685, 619}. Collecting data Census The population is the complete set of data under consideration. For example, a population may be all the females in Ireland between the ages of 12 and 18, all the sixth year students in your school or the number of red cars in Ireland. A census is a collection of data relating to a population. A list of every item in a population is called a sampling frame. Sample A sample is a small part of the population selected. A random sample is a sample in which every member of the population has an equal chance of being selected. Data gathered from a sample are called statistics. Conclusions drawn from a sample can then be applied to the whole population (this is called statistical inference). However, it is very important that the sample chosen is representative of that population to avoid bias. Bias Bias (unfairness) is anythingthat distorts the data so that they will not give a representative sample. Bias can occur in sampling due to: 1. Failing to identiff the correct population. 2. A sample size that is too small or using a sample that is not representative. 3. Careless or dishonest answers to questions. 4. Using questions that are misleading or ambiguous. 5. Failure to respond to a survey. 6. Errors in recording the data, for example, recording23 as 32. 7. The data can go out of date, for example, conclusions drawn from an opinion poll can change over a period of time. Reasons for using samples: 1. They are fast and cheap. 2. It is essential when the sampling units are destroyed (called destructive sampling). For example, we cannot test the lifetimes of every light bulb manufactured until they fail. 3. Quality of information gained is more manageable and better controlled leading to better accuracy. (More time and money can be spent on the sample.) 4. It is often very difficult to gather data on a whole population. Sample survey A survey collects data (information). A sample survey is a survey that collects data from a sample of the population, usually using a questionnaire. Questionnaires are well-designed forms that are used to conduct sample surveys. The main survey methods are: . Personal interview: People are asked questions directly. This is regularly used in market research. Telephone survey: Often used for a personal interview. Postal survey: A survey is sent to someone's address. Online questionnaires: People fill out the questionnaire online. Advantages and disadvantages of surveys are as follows. Method Advantages Disadvantages Personal interview . High response rate. Can be expensive. (face to face) . Can ask many questions. Interviewer can influence response. Can ask more personal questions. Telephone survey . High response rate. Can be expensive. Can ask many questions. Interviewer can influence response. Can ask more personal questions. Easier to tell lies. Postal survey . Relatively cheap. Poor response rate. Can ask many questions. Partly completed. Can ask more personal questions. Limited in the type of data collected. No way of clariffing any questions. Online . Cheap and fast to collect large . Limited to those with access to an questionnaires volumes of data. online computer. This leads to . More flexible design. sample bias. Ease of editing. Technical problems (crashes, freezes). Can be sent directly to a database . Protecting privacy is an ethical issue. such as Microsoft Excel. No interviewer bias. Anonymity. No geographical problems. Other methods for collecting data Experiment An experiment is a controlled study in which the researcher understands cause-and-effect relationships. The study is controlled. This method of collecting data is very popular with drug companies testing a new drug. Observational studies Data obtained by making observations are called observational studies. The data is collected by counting, measuring or noting things that happen. For example, a traffic survey might be done in this way to reveal the number of vehicles passing over a bridge. Important factors are place, time of day and the amount of time spent collecting the data. Observational studies can be laborious and time consuming. Designed experiments Data obtained by an experiment are called designed experiments. The data is collected by counting or measuring, a.E. throwing a die or tossing two coins a number of times and recording the results. The key things to remember are that the experiment must be repeated a number of times and that the experiment must be capable of being repeated by other people. Data capture is the process by rvhich data are transferred from apaper copy, e.g.aquestionnaire, to an electronic file, usually on a computer. Also, in an experiment, we can measure the effects, if any, that result from changes in the situation. Descriptive statistics is the use of graphs, charts, tables, various measurements and calculations to organise and summarise information (data). It attempts to focus our information and reduce it to a manageable size. Inferential statistics is when a portion or a sample of a population is studied and conclusions are reached about the entire population. The table below gives examples of sampling a particular population and how it might be carried out. Population Sample 30 million actual voters in a UK An exit poll of 16,500 actual voters who were asked who general election they voted for. All owners of dogs A telephone survey of 1,000 dog owners. A11 prison inmates A criminal justice study of 200 prison inmates. The CEOs of all private companies Results from surveys sent to 120 CEOs of private companies. Legal aliens living in Ireland A sociological study conducted by a university researcher of 250 legal aliens. Adult children of drug addicts A psychological study of 75 such individuals. I der: Quantitative data Qualitative data Which can be counted or measured Which cannot be measured We divide quantitative data into We divide qualitative data into (i) Discrete data (i) Categorical data (ii) Continuous data (ii) Ordinal data Quantitative data Discrete and continuous data Data which can only have certain individual values are called discrete data. Discrete variables usually result from counting. Discrete variable Possible values for the variable Number of students in a class of 0, 1,2 ... 30 30 with blood type A The number of times a coin r,2,3 is tossed before atail appears This has no upper limit since atail might never appear! Data which are measured on some scale and can take any value on that scale are called continuous data. A continuous variable usually results from making a measurement of some type. Continuous variable Possible values for the variable The amount of time (r) in hours spent on one day All real numbers between 0 and 24 inclusive, by certain individuals on Facebook i.e.0<t<24,where/eR. The heights for those individuals having heights All real numbers between 178 and Wwhere equal to or greater than 178 cm W rs the tallest height of all such individuals. Qualitative data Categorical and ordinal data Data which fit into a group or category are called categoric tl data. If the categories have an obvious order, the data are said to be ordinal. Categorical variable Possible ordinal level data values associated with the variable Restaurant service Poor, goo4 excellent. Pain level None, low, moderate, severe. County of residence Wicklow, Dublin, Cork, Sligo, etc. No ordinal values in this case. Blood type O, A, B, AB No ordinal values here. A class test in English poetry consists of 20 questions. The resulting score reflects the work rate and aptitude in English poetry of the test candidate. How could the score be reported? What are the possible values for the scores? Describe the variable in terms of discrete, continuous, categorical, ordinal. Solution: This is an interesting question and solution. It illustrates different answers, yet all are correct. It shows how important it is for the examination candidate to be creative. The score reported would likely be the number or percentage of correct answers. In other words, the number of correct answers would give a whole number score from 0 to 20, presuming equal credit per question (0 incorrect, I correct). Similarly, the percentage correct would yield a score from 0 to 100 in steps of five. Here the scores would be discrete. The position is complicated if each question does not have equal credit. However, if the teacher considered not only the answer but the reasoning process used to arrive at the answers and assigned partial credit for each problem, the score could be any real number between 0 and 20 or any real number between 0 and 100 per cent continuously, i.e. the data would be continuous. Alternatively, the teacher might allocate a grade ofA, B, C, D, E, F and NG to each candidate based on a scale deemed suitable at the time.
Recommended publications
  • Regression Summary Project Analysis for Today Review Questions: Categorical Variables
    Statistics 102 Regression Summary Spring, 2000 - 1 - Regression Summary Project Analysis for Today First multiple regression • Interpreting the location and wiring coefficient estimates • Interpreting interaction terms • Measuring significance Second multiple regression • Deciding how to extend a model • Diagnostics (leverage plots, residual plots) Review Questions: Categorical Variables Where do those terms in a categorical regression come from? • You cannot use a categorical term directly in regression (e.g. 2(“Yes”)=?). • JMP converts each categorical variable into a collection of numerical variables that represent the information in the categorical variable, but are numerical and so can be used in regression. • These special variables (a.k.a., dummy variables) use only the numbers +1, 0, and –1. • A categorical variable with k categories requires (k-1) of these special numerical variables. Thus, adding a categorical variable with, for example, 5 categories adds 4 of these numerical variables to the model. How do I use the various tests in regression? What question are you trying to answer… • Does this predictor add significantly to my model, improving the fit beyond that obtained with the other predictors? (t-ratio, CI, p-value) • Does this collection of predictors add significantly to my model? Partial-F (Note: the only time you need partial F is when working with categorical variables that define 3 or more categories. In these cases, JMP shows you the partial-F as an “Effect Test”.) • Does my full model explain “more than random variation”? Use the F-ratio from the Anova summary table. Statistics 102 Regression Summary Spring, 2000 - 2 - How do I interpret JMP output with categorical variables? Term Estimate Std Error t Ratio Prob>|t| Intercept 179.59 5.62 32.0 0.00 Run Size 0.23 0.02 9.5 0.00 Manager[a-c] 22.94 7.76 3.0 0.00 Manager[b-c] 6.90 8.73 0.8 0.43 Manager[a-c]*Run Size 0.07 0.04 2.1 0.04 Manager[b-c]*Run Size -0.10 0.04 -2.6 0.01 • Brackets denote the JMP’s version of dummy variables.
    [Show full text]
  • Using Survey Data Author: Jen Buckley and Sarah King-Hele Updated: August 2015 Version: 1
    ukdataservice.ac.uk Using survey data Author: Jen Buckley and Sarah King-Hele Updated: August 2015 Version: 1 Acknowledgement/Citation These pages are based on the following workbook, funded by the Economic and Social Research Council (ESRC). Williamson, Lee, Mark Brown, Jo Wathan, Vanessa Higgins (2013) Secondary Analysis for Social Scientists; Analysing the fear of crime using the British Crime Survey. Updated version by Sarah King-Hele. Centre for Census and Survey Research We are happy for our materials to be used and copied but request that users should: • link to our original materials instead of re-mounting our materials on your website • cite this as an original source as follows: Buckley, Jen and Sarah King-Hele (2015). Using survey data. UK Data Service, University of Essex and University of Manchester. UK Data Service – Using survey data Contents 1. Introduction 3 2. Before you start 4 2.1. Research topic and questions 4 2.2. Survey data and secondary analysis 5 2.3. Concepts and measurement 6 2.4. Change over time 8 2.5. Worksheets 9 3. Find data 10 3.1. Survey microdata 10 3.2. UK Data Service 12 3.3. Other ways to find data 14 3.4. Evaluating data 15 3.5. Tables and reports 17 3.6. Worksheets 18 4. Get started with survey data 19 4.1. Registration and access conditions 19 4.2. Download 20 4.3. Statistics packages 21 4.4. Survey weights 22 4.5. Worksheets 24 5. Data analysis 25 5.1. Types of variables 25 5.2. Variable distributions 27 5.3.
    [Show full text]
  • Analysis of Variance with Categorical and Continuous Factors: Beware the Landmines R. C. Gardner Department of Psychology Someti
    Analysis of Variance with Categorical and Continuous Factors: Beware the Landmines R. C. Gardner Department of Psychology Sometimes researchers want to perform an analysis of variance where one or more of the factors is a continuous variable and the others are categorical, and they are advised to use multiple regression to perform the task. The intent of this article is to outline the various ways in which this is normally done, to highlight the decisions with which the researcher is faced, and to warn that the various decisions have distinct implications when it comes to interpretation. This first point to emphasize is that when performing this type of analysis, there are no means to be discussed. Instead, the statistics of interest are intercepts and slopes. More on this later. Models. To begin, there are a number of approaches that one can follow, and each of them refers to a different model. Of primary importance, each model tests a somewhat different hypothesis, and the researcher should be aware of precisely which hypothesis is being tested. The three most common models are: Model I. This is the unique sums of squares approach where the effects of each predictor is assessed in terms of what it adds to the other predictors. It is sometimes referred to as the regression approach, and is identified as SSTYPE3 in GLM. Where a categorical factor consists of more than two levels (i.e., more than one coded vector to define the factor), it would be assessed in terms of the F-ratio for change when those levels are added to all other effects in the model.
    [Show full text]
  • A Computationally Efficient Method for Selecting a Split Questionnaire Design
    Iowa State University Capstones, Theses and Creative Components Dissertations Spring 2019 A Computationally Efficient Method for Selecting a Split Questionnaire Design Matthew Stuart Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Social Statistics Commons Recommended Citation Stuart, Matthew, "A Computationally Efficient Method for Selecting a Split Questionnaire Design" (2019). Creative Components. 252. https://lib.dr.iastate.edu/creativecomponents/252 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A Computationally Efficient Method for Selecting a Split Questionnaire Design Matthew Stuart1, Cindy Yu1,∗ Department of Statistics Iowa State University Ames, IA 50011 Abstract Split questionnaire design (SQD) is a relatively new survey tool to reduce response burden and increase the quality of responses. Among a set of possible SQD choices, a design is considered as the best if it leads to the least amount of information loss quantified by the Kullback-Leibler divergence (KLD) distance. However, the calculation of the KLD distance requires computation of the distribution function for the observed data after integrating out all the missing variables in a particular SQD. For a typical survey questionnaire with a large number of categorical variables, this computation can become practically infeasible. Motivated by the Horvitz-Thompson estima- tor, we propose an approach to approximate the distribution function of the observed in much reduced computation time and lose little valuable information when comparing different choices of SQDs.
    [Show full text]
  • Describing Data: the Big Picture Descriptive Statistics Community
    The Big Picture Describing Data: Categorical and Quantitative Variables Population Sampling Sample Statistical Inference Exploratory Data Analysis Descriptive Statistics Community Coalitions (n = 175) In order to make sense of data, we need ways to summarize and visualize it. Summarizing and visualizing variables and relationships between two variables is often known as exploratory data analysis (also known as descriptive statistics). The type of summary statistics and visualization methods to use depends on the type of variables being analyzed (i.e., categorical or quantitative). One Categorical Variable Frequency Table “What is your race/ethnicity?” A frequency table shows the number of cases that fall into each category: White Black “What is your race/ethnicity?” Hispanic Asian Other White Black Hispanic Asian Other Total 111 29 29 2 4 175 Display the number or proportion of cases that fall into each category. 1 Proportion Proportion The sample proportion (̂) of directors in each category is White Black Hispanic Asian Other Total 111 29 29 2 4 175 number of cases in category pˆ The sample proportion of directors who are white is: total number of cases 111 ̂ .63 63% 175 Proportion and percent can be used interchangeably. Relative Frequency Table Bar Chart A relative frequency table shows the proportion of cases that In a bar chart, the height of the bar corresponds to the fall in each category. number of cases that fall into each category. 120 111 White Black Hispanic Asian Other 100 .63 .17 .17 .01 .02 80 60 40 All the numbers in a relative frequency table sum to 1.
    [Show full text]
  • Questionnaire Analysis Using SPSS
    Questionnaire design and analysing the data using SPSS page 1 Questionnaire design. For each decision you make when designing a questionnaire there is likely to be a list of points for and against just as there is for deciding on a questionnaire as the data gathering vehicle in the first place. Before designing the questionnaire the initial driver for its design has to be the research question, what are you trying to find out. After that is established you can address the issues of how best to do it. An early decision will be to choose the method that your survey will be administered by, i.e. how it will you inflict it on your subjects. There are typically two underlying methods for conducting your survey; self-administered and interviewer administered. A self-administered survey is more adaptable in some respects, it can be written e.g. a paper questionnaire or sent by mail, email, or conducted electronically on the internet. Surveys administered by an interviewer can be done in person or over the phone, with the interviewer recording results on paper or directly onto a PC. Deciding on which is the best for you will depend upon your question and the target population. For example, if questions are personal then self-administered surveys can be a good choice. Self-administered surveys reduce the chance of bias sneaking in via the interviewer but at the expense of having the interviewer available to explain the questions. The hints and tips below about questionnaire design draw heavily on two excellent resources. SPSS Survey Tips, SPSS Inc (2008) and Guide to the Design of Questionnaires, The University of Leeds (1996).
    [Show full text]
  • Which Statistical Test
    Which Statistical Test Using this aid Understand the definition of terms used in the aid. Start from Data in Figure 1 and go towards the right to select the test you want depending on the data you have. Then go to the relevant instructions (S1, S2, S3, S4, S5, S6, S7, S8, S9 or S10) to perform the test in SPSS. The tests are mentioned below. S1: Normality Test S2: Parametric One-Way ANOVA Test S3: Nonparametric Tests for Several Independent Variables S4: General Linear Model Univariate Analysis S5: Parametric Paired Samples T Test S6: Nonparametric Two Related Samples Test S7: Parametric Independent Samples T Tests S8: Nonparametric Two Independent Samples T Tests S9: One-Sample T Test S10: Crosstabulation (Chi-Square) Test Definition of Terms Data type is simply the various ways that you use numbers to collect data for analysis. For example in nominal data you assign numbers to certain words e.g. 1=male and 2=female. Or rock can be classified as 1=sedimentary, 2=metamorphic or 3=igneous. The numbers are just labels and have no real meaning. The order as well does not matter. For ordinal data the order matters as they describe order e.g. 1st, 2nd 3rd. They can also be words such as ‘bad’, ‘medium’, and ‘good’. Both nominal and ordinal data are also refer to as categorical data. Continuous data refers to quantitative measurement such as age, salary, temperature, weight, height. It is good to understand type of data as they influence the type of analysis that you can do.
    [Show full text]
  • Getting Started with the Public Use File: 2015 and Beyond
    Getting Started with the Public Use File: 2015 and Beyond LAST UPDATED: MAY 2021 U.S. DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT U.S. CENSUS BUREAU U.S. DEPARTMENT OF COMMERCE Department of Housing and Urban Development | Office of Policy Development and Research Contents 1. Overview ...................................................................................................... 1 2. 2015 Sample Design Review ........................................................................... 1 3. PUF Availability ............................................................................................. 2 3. PUF File Structures ........................................................................................ 3 3.1. PUF Relational File Structure................................................................................... 3 3.2. PUF Flat File Structure ............................................................................................ 3 4. AHS Codebook .............................................................................................. 3 5. PUF and the Internal Use File .......................................................................... 4 6. PUF Respondent Types ................................................................................... 5 7. Variable Types and Names in the PUF ............................................................. 5 8. Replicating PUF Estimates in the AHS Summary Tables ..................................... 6 9. “Not Applicable” and “Not Reported” Codes in the PUF ..................................
    [Show full text]
  • General Linear Models (GLM) for Fixed Factors
    NCSS Statistical Software NCSS.com Chapter 224 General Linear Models (GLM) for Fixed Factors Introduction This procedure performs analysis of variance (ANOVA) and analysis of covariance (ANCOVA) for factorial models that include fixed factors (effects) and/or covariates. This procedure uses multiple regression techniques to estimate model parameters and compute least squares means. This procedure also provides standard error estimates for least squares means and their differences and calculates many multiple comparison tests (Tukey- Kramer, Dunnett, Bonferroni, Scheffe, Sidak, and Fisher’s LSD) with corresponding adjusted P-values and simultaneous confidence intervals. This procedure also provides residuals for checking assumptions. This procedure cannot be used to analyze models that include nested (e.g., repeated measures ANOVA, split-plot, split-split-plot, etc.) or random factors (e.g., randomized block, etc.). If you your model includes nested and/or random factors, use General Linear Models (GLM), Repeated Measures ANOVA, or Mixed Models instead. If you have only one fixed factor in your model, then you might want to consider using the One-Way Analysis of Variance procedure or the One-Way Analysis of Variance using Regression procedure instead. If you have only one fixed factor and one covariate in your model, then you might want to consider using the One-Way Analysis of Covariance (ANCOVA) procedure instead. Kinds of Research Questions A large amount of research consists of studying the influence of a set of independent variables on a response (dependent) variable. Many experiments are designed to look at the influence of a single independent variable (factor) while holding other factors constant.
    [Show full text]
  • Linear Regression
    Linear Regression Blythe Durbin-Johnson, Ph.D. April 2017 We are video recording this seminar so please hold questions until the end. Thanks When to Use Linear Regression •Continuous outcome variable •Continuous or categorical predictors *Need at least one continuous predictor for name “regression” to apply When NOT to Use Linear Regression • Binary outcomes • Count outcomes • Unordered categorical outcomes • Ordered categorical outcomes with few (<7) levels Generalized linear models and other special methods exist for these settings Some Interchangeable Terms • Outcome • Predictor • Response • Covariate • Dependent Variable • Independent Variable Simple Linear Regression Simple Linear Regression • Model outcome Y by one continuous predictor X: 푌 = 훽0+ 훽1X + ε • ε is a normally distributed (Gaussian) error term Model Assumptions • Normally distributed residuals ε • Error variance is the same for all observations • Y is linearly related to X • Y observations are not correlated with each other • X is treated as fixed, no distributional assumptions • Covariates do not need to be normally distributed! A Simple Linear Regression Example Data from Lewis and Taylor (1967) via http://support.sas.com/documentation/cdl/en/statug/68162/HTML/default/viewer.htm#statug_reg_examples03.htm Goal: Find straight line that minimizes sum of squared distances from actual weight to fitted line “Least squares fit” A Simple Linear Regression Example—SAS Code proc reg data = Children; model Weight = Height; run; Children is a SAS dataset including variables Weight
    [Show full text]
  • How Do We Summarize One Categorical Variable? What Visual
    How do we summarize one categorical variable? What visual displays and numerical measures are appropriate? 1 Recall that, when we say Distribution we mean What values the variable can take And How often the variable takes those values. Exploratory Data Analysis for one categorical variable is very simple since both the components are simple! And … you have most likely seen these before!! For visual displays we typically use a bar chart or pie chart or similar variation to display the results for the variable in a graphical form. For numerical measures we simply provide a table, called a frequency distribution, which gives the possible values along with the frequency and percentage for each value. 2 Here are a few variables available in a subset of the Framingham data. We have a random id number for each individual along with the individual’s gender (categorical) age (quantitative) body mass index measurement (quantitative) diabetes status –yes or no (categorical) and body mass index groups or categories: underweight, normal, overweight, obese (categorical) {Some information about the study can be found at: http://www.framinghamheartstudy.org/ If you have trouble using the link above, copy and paste the URL above into your browser.} 3 The frequency distributions (using SAS statistical software) for the two binary categorical variables gender and diabetes status are shown. Most software packages give both the frequency and percentage. In this case we also obtain the cumulative frequency and cumulative percentage. This can be useful for ordinal categorical variables to quickly summarize the percentage greater or less than a certain category.
    [Show full text]
  • A Package for Covariate-Constrained Randomization and the Clustered Permutation Test for Cluster Randomized Trials by Hengshi Yu, Fan Li, John A
    CONTRIBUTED RESEARCH ARTICLE 191 cvcrand: A Package for Covariate-constrained Randomization and the Clustered Permutation Test for Cluster Randomized Trials by Hengshi Yu, Fan Li, John A. Gallis and Elizabeth L. Turner Abstract The cluster randomized trial (CRT) is a randomized controlled trial in which randomization is conducted at the cluster level (e.g., school or hospital) and outcomes are measured for each individual within a cluster. Often, the number of clusters available to randomize is small (≤ 20), which increases the chance of baseline covariate imbalance between comparison arms. Such imbalance is particularly problematic when the covariates are predictive of the outcome because it can threaten the internal validity of the CRT. Pair-matching and stratification are two restricted randomization approaches that are frequently used to ensure balance at the design stage. An alternative, less commonly-used restricted randomization approach is covariate-constrained randomization. Covariate-constrained randomization quantifies baseline imbalance of cluster-level covariates using a balance metric and randomly selects a randomization scheme from those with acceptable balance by the balance metric. It is able to accommodate multiple covariates, both categorical and continuous. To facilitate imple- mentation of covariate-constrained randomization for the design of two-arm parallel CRTs, we have developed the cvcrand R package. In addition, cvcrand also implements the clustered permutation test for analyzing continuous and binary outcomes collected from a CRT designed with covariate- constrained randomization. We used a real cluster randomized trial to illustrate the functions included in the package. Introduction Cluster randomized trials (CRTs) randomize clusters of individuals, such as schools, hospitals or clinics (Brown and Li, 2015).
    [Show full text]