Proteasome Inhibitor-Induced Modulation Reveals the Spliceosome As a Specific Therapeutic Vulnerability in Multiple Myeloma

Total Page:16

File Type:pdf, Size:1020Kb

Proteasome Inhibitor-Induced Modulation Reveals the Spliceosome As a Specific Therapeutic Vulnerability in Multiple Myeloma ARTICLE https://doi.org/10.1038/s41467-020-15521-4 OPEN Proteasome inhibitor-induced modulation reveals the spliceosome as a specific therapeutic vulnerability in multiple myeloma Hector H. Huang 1, Ian D. Ferguson1, Alexis M. Thornton2, Prabhakar Bastola 1, Christine Lam1, Yu-Hsiu T. Lin 1, Priya Choudhry 1, Margarette C. Mariano1, Makeba D. Marcoulis1, Chin Fen Teo3, Julia Malato4, Paul J. Phojanakong4, Thomas G. Martin III4,5, Jeffrey L. Wolf4,5, Sandy W. Wong4,5, Nina Shah4,5, ✉ Byron Hann4, Angela N. Brooks 2 & Arun P. Wiita 1,4 1234567890():,; Enhancing the efficacy of proteasome inhibitors (PI) is a central goal in myeloma therapy. We proposed that signaling-level responses after PI may reveal new mechanisms of action that can be therapeutically exploited. Unbiased phosphoproteomics after treatment with the PI carfilzomib surprisingly demonstrates the most prominent phosphorylation changes on splicing related proteins. Spliceosome modulation is invisible to RNA or protein abundance alone. Transcriptome analysis after PI demonstrates broad-scale intron retention, suggestive of spliceosome interference, as well as specific alternative splicing of protein homeostasis machinery components. These findings lead us to evaluate direct spliceosome inhibition in myeloma, which synergizes with carfilzomib and shows potent anti-tumor activity. Functional genomics and exome sequencing further support the spliceosome as a specific vulnerability in myeloma. Our results propose splicing interference as an unrecognized modality of PI mechanism, reveal additional modes of spliceosome modulation, and suggest spliceosome targeting as a promising therapeutic strategy in myeloma. 1 Department of Laboratory Medicine, University of California, San Francisco, CA, USA. 2 Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA. 3 Department of Physiology, University of California, San Francisco, CA, USA. 4 Helen Diller Family Comprehensive Cancer Center, ✉ University of California, San Francisco, CA, USA. 5 Department of Medicine, University of California, San Francisco, CA, USA. email: [email protected] NATURE COMMUNICATIONS | (2020) 11:1931 | https://doi.org/10.1038/s41467-020-15521-4 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15521-4 ultiple myeloma (MM) is a clonal malignancy of plasma 24 h for analysis based on our prior results demonstrating how Mcells with no known cure. Like normal plasma cells, the proteomic response to PI evolves over many hours9. This is in myeloma cells produce and secrete extremely high contrast with most phosphoproteomic studies, examining direct amounts of immunoglobulin. This unique function may be kinase effects on a timescale of minutes14. Here we instead con- exploited by therapeutically inhibiting the proteasome using the sider the indirect effects on phosphorylation induced by PI Food and Drug Administration-approved proteasome inhibitors exposure. Using label-free quantification of immobilized metal (PIs) bortezomib, carfilzomib (Cfz), and ixazomib. Proteotoxic affinity chromatography-isolated phosphopeptides, we found that stress caused by these first-line therapeutic agents has been pro- altered phosphorylation signatures were most prominent 24 h posed to induce the apoptotic function of the unfolded protein after treatment (Fig. 1 and Supplementary Fig. 1). In total, we response (UPR)1, leading to plasma cell death while largely quantified 5791 phosphosites in at least one technical replicate of sparing normal tissues2,3. However, despite the appealing sim- the timecourse, with >99% of phosphosites representing Ser or plicity of this mechanism, the canonical UPR is not always Thr phosphorylation events, as expected using this enrichment strongly induced in myeloma cells by PIs4 and is unlikely to be technique. the sole mode of PI cytotoxicity in MM. Indeed, many additional At each timepoint, we simultaneously performed single-end mechanisms of action of PIs have also been proposed, ranging RNA-seq for gene expression (Supplementary Data 2). Figure 1b from nuclear factor (NF)-κB inhibition to immune micro- environment effects to aberrant recycling of cytosolic amino 5,6 acids . a 1.Lysis IMAC Identifying the full range of PI mechanisms of action remains MM.1S 2.Reduce/ enrich phospho relevant given that acquired PI resistance is clinically widespread Add Cfz alkylate P 7,8 P but its origins remain unclear . Finding new methods to spe- P Harvest 0 h P cifically target PI-resistant disease, or molecules to synergize with ... 3.Trypsinize ... 8 h PIs to avoid resistance by driving deeper remissions, remains a (25 °C, 22h) Desalt ... 16 h long-standing goal. As one approach to achieving this goal, we peptides 24 h and others have studied the response of malignant plasma cells to 9–11 PIs using both gene expression and proteomic methods . P Notably, one of the most prominent features of the cellular mRNA Phospho- P P 12 peptides P P response to PIs is the activation of the heat shock response . This cDNA P mechanism leads to significant induction of cytosolic protein- folding chaperones, possibly to assist in protein refolding and decrease in unfolded protein stress. We and others9,12,13 have therefore proposed targeting mediators of the heat shock response RNA-seq LC-MS/MS as potential combination therapies with PIs. m/z However, one unresolved question is whether proteasome inhibition may carry additional effects on plasma cells that are b Log [8h,16h,24h]/0h not revealed by mRNA or protein abundance analysis alone. We Phospho RNA- 2 seq hypothesized that additional modalities of response, and thereby Rep1 Rep2 new myeloma-relevant therapeutic targets, may be revealed by 8 16 24 8 16 24 8 16 24 –6–4 –2 0462 studying the signaling-level response to PIs with unbiased mass RPS6 spectrometry-based phosphoproteomics. The large majority of RPS6 Phospho RNA- seq therapy-relevant investigations using this technique have focused EIF4E Rep1 Rep2 14 -BP1 on elucidating the effects of kinase inhibitors . However, we TRA2B 8 16 24 8 16 24 8 16 24 reasoned that a significant cellular perturbation such as protea- SRRM1 some inhibition would likely also indirectly perturb kinase and SRSF2 ZRANB2 phosphatase signaling in a broad fashion. SRSF2 TRA2A Here we use unbiased phosphoproteomics to quantify >5000 SRSF7 THRAP3 phosphopeptides in myeloma cells exposed to the irreversible PI SRSF2 Cfz. Surprisingly, we find the greatest increases in phosphoryla- SRRM1 SRSF7 ZRANB2 tion occur in proteins associated with the spliceosome machinery. SRSF5 SON A link between these processes is invisible at the gene expression TRA2A level. We further evaluate this link from a mechanistic and HNRNPD therapeutic perspective, finding that PIs lead to specific disrup- ZRANB2 PRPF4B tion of normal splicing. We suggest interference of splicing as an HNRNPF additional mechanism of action of PIs not previously explored. SRSF1 SON Inhibition of splicing has recently become a promising ther- CDK12 apeutic strategy in other hematologic malignancies15. Our results RPS6 reveal an intersection of cellular stress and the splicing machin- EIF4E -BP1 ery, which may have broad relevance in biology. Furthermore, we propose the spliceosome as a new and potentially selective ther- Fig. 1 Unbiased phosphoproteomic timecourse analysis of MM.1S cells apeutic target in myeloma. treated with the PI carfilzomib (Cfz). a Workflow of timecourse treatment of MM.1S cells with Cfz. Cells were allotted for both RNA-seq analysis and LC-MS/MS. b Downregulated (left panel) and upregulated (right panel) Results log2-transformed phosphopeptide MS1 intensities for two technical PI treatment leads to splicing factor phosphorylation.Wefirst replicates of proteins with unchanged transcript levels (RNA-seq). Labels used unbiased phosphoproteomics to examine the signaling-level highlight dephosphorylation of RPS6 and EIF4EBP1 on the left and response of MM.1s MM cells to Cfz. We chose timepoints across phosphorylation of splicing-related proteins on the right. 2 NATURE COMMUNICATIONS | (2020) 11:1931 | https://doi.org/10.1038/s41467-020-15521-4 | www.nature.com/naturecommunications NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15521-4 ARTICLE shows 58 upregulated (red) and 75 downregulated (blue) corrected Gene Ontology (GO) analysis confirms that all of the phosphopeptides from proteins with largely unchanged RNA top enriched biological processes involve RNA splicing regulation transcript abundance as detected by unsupervised hierarchical and mRNA processing (Fig. 2e and Supplementary Fig. 1b). This clustering. We found decreased phosphorylation of the transla- signaling response is much weaker at 10 nM Cfz, with only 25 tion factor EIF4E-BP1 as well as RPS6 (Fig. 1b), as expected upon upregulated phosphosites and none that are splicing related. PI-induced cellular stress9. While other downregulated phospho- These results suggest a strong dose–response effect of phosphor- peptides did not suggest any highly enriched biological function, ylation changes after proteasome inhibition, both across splicing among upregulated phosphosites we were surprised to find that factors and the broader proteome. 14 of the 58 were present on proteins related to pre-mRNA To differentiate changes at the signaling level to changes at the splicing. These primarily included the heterogeneous ribonucleo- protein level, unenriched peptides were also analyzed (Supple- protein (HNRNP) family as well as SRSF splicing
Recommended publications
  • Unrip (STRAP) (NM 007178) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC209149L3V Unrip (STRAP) (NM_007178) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: Unrip (STRAP) (NM_007178) Human Tagged ORF Clone Lentiviral Particle Symbol: STRAP Synonyms: MAWD; PT-WD; UNRIP Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) ACCN: NM_007178 ORF Size: 1050 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC209149). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_007178.2 RefSeq Size: 1924 bp RefSeq ORF: 1053 bp Locus ID: 11171 UniProt ID: Q9Y3F4 Domains: WD40 Protein Families: Druggable Genome MW: 38.4 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Unrip (STRAP) (NM_007178) Human Tagged ORF Clone Lentiviral Particle – RC209149L3V Gene Summary: The SMN complex plays a catalyst role in the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome.
    [Show full text]
  • Splicing Regulatory Factors in Breast Cancer Hallmarks and Disease Progression
    www.oncotarget.com Oncotarget, 2019, Vol. 10, (No. 57), pp: 6021-6037 Review Splicing regulatory factors in breast cancer hallmarks and disease progression Esmee Koedoot1, Liesanne Wolters1, Bob van de Water1 and Sylvia E. Le Dévédec1 1Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, The Netherlands Correspondence to: Sylvia E. Le Dévédec, email: [email protected] Keywords: hallmarks of cancer; breast cancer; alternative splicing; splice factors; RNA sequencing Received: April 23, 2019 Accepted: August 29, 2019 Published: October 15, 2019 Copyright: Koedoot et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT By regulating transcript isoform expression levels, alternative splicing provides an additional layer of protein control. Recent studies show evidence that cancer cells use different splicing events to fulfill their requirements in order to develop, progress and metastasize. However, there has been less attention for the role of the complex catalyzing the complicated multistep splicing reaction: the spliceosome. The spliceosome consists of multiple sub-complexes in total comprising 244 proteins or splice factors and 5 associated RNA molecules. Here we discuss the role of splice factors in the oncogenic processes tumors cells need to fulfill their oncogenic properties (the so-called the hallmarks of cancer). Despite the fact that splice factors have been investigated only recently, they seem to play a prominent role in already five hallmarks of cancer: angiogenesis, resisting cell death, sustaining proliferation, deregulating cellular energetics and invasion and metastasis formation by affecting major signaling pathways such as epithelial-to-mesenchymal transition, the Warburg effect, DNA damage response and hormone receptor dependent proliferation.
    [Show full text]
  • Entrez Symbols Name Termid Termdesc 117553 Uba3,Ube1c
    Entrez Symbols Name TermID TermDesc 117553 Uba3,Ube1c ubiquitin-like modifier activating enzyme 3 GO:0016881 acid-amino acid ligase activity 299002 G2e3,RGD1310263 G2/M-phase specific E3 ubiquitin ligase GO:0016881 acid-amino acid ligase activity 303614 RGD1310067,Smurf2 SMAD specific E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 308669 Herc2 hect domain and RLD 2 GO:0016881 acid-amino acid ligase activity 309331 Uhrf2 ubiquitin-like with PHD and ring finger domains 2 GO:0016881 acid-amino acid ligase activity 316395 Hecw2 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 361866 Hace1 HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1 GO:0016881 acid-amino acid ligase activity 117029 Ccr5,Ckr5,Cmkbr5 chemokine (C-C motif) receptor 5 GO:0003779 actin binding 117538 Waspip,Wip,Wipf1 WAS/WASL interacting protein family, member 1 GO:0003779 actin binding 117557 TM30nm,Tpm3,Tpm5 tropomyosin 3, gamma GO:0003779 actin binding 24779 MGC93554,Slc4a1 solute carrier family 4 (anion exchanger), member 1 GO:0003779 actin binding 24851 Alpha-tm,Tma2,Tmsa,Tpm1 tropomyosin 1, alpha GO:0003779 actin binding 25132 Myo5b,Myr6 myosin Vb GO:0003779 actin binding 25152 Map1a,Mtap1a microtubule-associated protein 1A GO:0003779 actin binding 25230 Add3 adducin 3 (gamma) GO:0003779 actin binding 25386 AQP-2,Aqp2,MGC156502,aquaporin-2aquaporin 2 (collecting duct) GO:0003779 actin binding 25484 MYR5,Myo1e,Myr3 myosin IE GO:0003779 actin binding 25576 14-3-3e1,MGC93547,Ywhah
    [Show full text]
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • Analysis of the Stability of 70 Housekeeping Genes During Ips Reprogramming Yulia Panina1,2*, Arno Germond1 & Tomonobu M
    www.nature.com/scientificreports OPEN Analysis of the stability of 70 housekeeping genes during iPS reprogramming Yulia Panina1,2*, Arno Germond1 & Tomonobu M. Watanabe1 Studies on induced pluripotent stem (iPS) cells highly rely on the investigation of their gene expression which requires normalization by housekeeping genes. Whether the housekeeping genes are stable during the iPS reprogramming, a transition of cell state known to be associated with profound changes, has been overlooked. In this study we analyzed the expression patterns of the most comprehensive list to date of housekeeping genes during iPS reprogramming of a mouse neural stem cell line N31. Our results show that housekeeping genes’ expression fuctuates signifcantly during the iPS reprogramming. Clustering analysis shows that ribosomal genes’ expression is rising, while the expression of cell-specifc genes, such as vimentin (Vim) or elastin (Eln), is decreasing. To ensure the robustness of the obtained data, we performed a correlative analysis of the genes. Overall, all 70 genes analyzed changed the expression more than two-fold during the reprogramming. The scale of this analysis, that takes into account 70 previously known and newly suggested genes, allowed us to choose the most stable of all genes. We highlight the fact of fuctuation of housekeeping genes during iPS reprogramming, and propose that, to ensure robustness of qPCR experiments in iPS cells, housekeeping genes should be used together in combination, and with a prior testing in a specifc line used in each study. We suggest that the longest splice variants of Rpl13a, Rplp1 and Rps18 can be used as a starting point for such initial testing as the most stable candidates.
    [Show full text]
  • Molecular Mechanisms Underlying Noncoding Risk Variations in Psychiatric Genetic Studies
    OPEN Molecular Psychiatry (2017) 22, 497–511 www.nature.com/mp REVIEW Molecular mechanisms underlying noncoding risk variations in psychiatric genetic studies X Xiao1,2, H Chang1,2 and M Li1 Recent large-scale genetic approaches such as genome-wide association studies have allowed the identification of common genetic variations that contribute to risk architectures of psychiatric disorders. However, most of these susceptibility variants are located in noncoding genomic regions that usually span multiple genes. As a result, pinpointing the precise variant(s) and biological mechanisms accounting for the risk remains challenging. By reviewing recent progresses in genetics, functional genomics and neurobiology of psychiatric disorders, as well as gene expression analyses of brain tissues, here we propose a roadmap to characterize the roles of noncoding risk loci in the pathogenesis of psychiatric illnesses (that is, identifying the underlying molecular mechanisms explaining the genetic risk conferred by those genomic loci, and recognizing putative functional causative variants). This roadmap involves integration of transcriptomic data, epidemiological and bioinformatic methods, as well as in vitro and in vivo experimental approaches. These tools will promote the translation of genetic discoveries to physiological mechanisms, and ultimately guide the development of preventive, therapeutic and prognostic measures for psychiatric disorders. Molecular Psychiatry (2017) 22, 497–511; doi:10.1038/mp.2016.241; published online 3 January 2017 RECENT GENETIC ANALYSES OF NEUROPSYCHIATRIC neurodevelopment and brain function. For example, GRM3, DISORDERS GRIN2A, SRR and GRIA1 were known to involve in the neuro- Schizophrenia, bipolar disorder, major depressive disorder and transmission mediated by glutamate signaling and synaptic autism are highly prevalent complex neuropsychiatric diseases plasticity.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genetics of Familial Non-Medullary Thyroid Carcinoma (FNMTC)
    cancers Review Genetics of Familial Non-Medullary Thyroid Carcinoma (FNMTC) Chiara Diquigiovanni * and Elena Bonora Unit of Medical Genetics, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-051-208-8418 Simple Summary: Non-medullary thyroid carcinoma (NMTC) originates from thyroid follicular epithelial cells and is considered familial when occurs in two or more first-degree relatives of the patient, in the absence of predisposing environmental factors. Familial NMTC (FNMTC) cases show a high genetic heterogeneity, thus impairing the identification of pivotal molecular changes. In the past years, linkage-based approaches identified several susceptibility loci and variants associated with NMTC risk, however only few genes have been identified. The advent of next-generation sequencing technologies has improved the discovery of new predisposing genes. In this review we report the most significant genes where variants predispose to FNMTC, with the perspective that the integration of these new molecular findings in the clinical data of patients might allow an early detection and tailored therapy of the disease, optimizing patient management. Abstract: Non-medullary thyroid carcinoma (NMTC) is the most frequent endocrine tumor and originates from the follicular epithelial cells of the thyroid. Familial NMTC (FNMTC) has been defined in pedigrees where two or more first-degree relatives of the patient present the disease in absence of other predisposing environmental factors. Compared to sporadic cases, FNMTCs are often multifocal, recurring more frequently and showing an early age at onset with a worse outcome. FNMTC cases Citation: Diquigiovanni, C.; Bonora, E.
    [Show full text]
  • Proteomics Provides Insights Into the Inhibition of Chinese Hamster V79
    www.nature.com/scientificreports OPEN Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment Jifeng Liu1,2, Tengfei Ma1,2, Mingzhong Gao3, Yilin Liu4, Jun Liu1, Shichao Wang2, Yike Xie2, Ling Wang2, Juan Cheng2, Shixi Liu1*, Jian Zou1,2*, Jiang Wu2, Weimin Li2 & Heping Xie2,3,5 As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment afecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the efect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and diferentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable diference between the two laboratories, whereby γ ray dose rate was signifcantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g.
    [Show full text]
  • Clinical Application of Chromosomal Microarray Analysis for Fetuses With
    Xu et al. Molecular Cytogenetics (2020) 13:38 https://doi.org/10.1186/s13039-020-00502-5 RESEARCH Open Access Clinical application of chromosomal microarray analysis for fetuses with craniofacial malformations Chenyang Xu1†, Yanbao Xiang1†, Xueqin Xu1, Lili Zhou1, Huanzheng Li1, Xueqin Dong1 and Shaohua Tang1,2* Abstract Background: The potential correlations between chromosomal abnormalities and craniofacial malformations (CFMs) remain a challenge in prenatal diagnosis. This study aimed to evaluate 118 fetuses with CFMs by applying chromosomal microarray analysis (CMA) and G-banded chromosome analysis. Results: Of the 118 cases in this study, 39.8% were isolated CFMs (47/118) whereas 60.2% were non-isolated CFMs (71/118). The detection rate of chromosomal abnormalities in non-isolated CFM fetuses was significantly higher than that in isolated CFM fetuses (26/71 vs. 7/47, p = 0.01). Compared to the 16 fetuses (16/104; 15.4%) with pathogenic chromosomal abnormalities detected by karyotype analysis, CMA identified a total of 33 fetuses (33/118; 28.0%) with clinically significant findings. These 33 fetuses included cases with aneuploidy abnormalities (14/118; 11.9%), microdeletion/microduplication syndromes (9/118; 7.6%), and other pathogenic copy number variations (CNVs) only (10/118; 8.5%).We further explored the CNV/phenotype correlation and found a series of clear or suspected dosage-sensitive CFM genes including TBX1, MAPK1, PCYT1A, DLG1, LHX1, SHH, SF3B4, FOXC1, ZIC2, CREBBP, SNRPB, and CSNK2A1. Conclusion: These findings enrich our understanding of the potential causative CNVs and genes in CFMs. Identification of the genetic basis of CFMs contributes to our understanding of their pathogenesis and allows detailed genetic counselling.
    [Show full text]
  • CLIP-Seq and Massively Parallel Functional Analysis of the CELF6
    bioRxiv preprint doi: https://doi.org/10.1101/401604; this version posted August 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. CLIP-Seq and massively parallel functional analysis of the CELF6 RNA binding protein reveals a role in destabilizing synaptic gene mRNAs through interaction with 3’UTR elements in vivo Michael A. Rieger1,2, Dana M. King1, Barak A. Cohen1, Joseph D. Dougherty1,2 1Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA 2Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA Contact: Dr. Joseph D. Dougherty Washington University School of Medicine Department of Genetics Campus Box 8232 4566 Scott Ave. St. Louis, Mo. 63110-1093 (314) 286-0752 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/401604; this version posted August 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract CELF6 is an RNA-binding protein in a family of proteins with roles in human health and disease, however little is known about the mRNA targets or in vivo function of this protein. We utilized HITS-CLIP/CLIP-Seq to identify, for the first time, in vivo targets of CELF6 and identify hundreds of transcripts bound by CELF6 in the brain. We found these are disproportionately mRNAs coding for synaptic proteins. We then conducted extensive functional validation of these targets, testing greater than 400 CELF6 bound sequence elements for their activity, applying a massively parallel reporter assay framework to evaluation of the CLIP data.
    [Show full text]
  • The Intellectual Disability Gene PQBP1 Rescues Alzheimer’S Disease
    Molecular Psychiatry (2018) 23:2090–2110 https://doi.org/10.1038/s41380-018-0253-8 ARTICLE The intellectual disability gene PQBP1 rescues Alzheimer’s disease pathology 1 1 1 1 1 2 Hikari Tanaka ● Kanoh Kondo ● Xigui Chen ● Hidenori Homma ● Kazuhiko Tagawa ● Aurelian Kerever ● 2 3 3 4 1 1,5 Shigeki Aoki ● Takashi Saito ● Takaomi Saido ● Shin-ichi Muramatsu ● Kyota Fujita ● Hitoshi Okazawa Received: 9 May 2018 / Revised: 9 August 2018 / Accepted: 6 September 2018 / Published online: 3 October 2018 © The Author(s) 2018. This article is published with open access Abstract Early-phase pathologies of Alzheimer’s disease (AD) are attracting much attention after clinical trials of drugs designed to remove beta-amyloid (Aβ) aggregates failed to recover memory and cognitive function in symptomatic AD patients. Here, we show that phosphorylation of serine/arginine repetitive matrix 2 (SRRM2) at Ser1068, which is observed in the brains of early phase AD mouse models and postmortem end-stage AD patients, prevents its nuclear translocation by inhibiting interaction with T-complex protein subunit α. SRRM2 deficiency in neurons destabilized polyglutamine binding protein 1 (PQBP1), a causative gene for intellectual disability (ID), greatly affecting the splicing patterns of synapse-related genes, as 1234567890();,: 1234567890();,: demonstrated in a newly generated PQBP1-conditional knockout model. PQBP1 and SRRM2 were downregulated in cortical neurons of human AD patients and mouse AD models, and the AAV-PQBP1 vector recovered RNA splicing, the synapse phenotype, and the cognitive decline in the two mouse models. Finally, the kinases responsible for the phosphorylation of SRRM2 at Ser1068 were identified as ERK1/2 (MAPK3/1).
    [Show full text]