Pathobiological Pseudohypoxia As a Putative Mechanism Underlying Myelodysplastic Syndromes

Total Page:16

File Type:pdf, Size:1020Kb

Pathobiological Pseudohypoxia As a Putative Mechanism Underlying Myelodysplastic Syndromes Published OnlineFirst August 23, 2018; DOI: 10.1158/2159-8290.CD-17-1203 RESEARCH ARTICLE Pathobiological Pseudohypoxia as a Putative Mechanism Underlying Myelodysplastic Syndromes Yoshihiro Hayashi1, Yue Zhang2, Asumi Yokota1, Xiaomei Yan1, Jinqin Liu2, Kwangmin Choi1, Bing Li2, Goro Sashida3, Yanyan Peng4, Zefeng Xu2, Rui Huang1, Lulu Zhang1, George M. Freudiger1, Jingya Wang2, Yunzhu Dong1, Yile Zhou1, Jieyu Wang1, Lingyun Wu1,5, Jiachen Bu1,6, Aili Chen6, Xinghui Zhao1, Xiujuan Sun2, Kashish Chetal7, Andre Olsson8, Miki Watanabe1, Lindsey E. Romick-Rosendale1, Hironori Harada9, Lee-Yung Shih10, William Tse11, James P. Bridges12, Michael A. Caligiuri13, Taosheng Huang4, Yi Zheng1, David P. Witte1, Qian-fei Wang6, Cheng-Kui Qu14, Nathan Salomonis7, H. Leighton Grimes1,8, Stephen D. Nimer15, Zhijian Xiao2, and Gang Huang1,2 ABSTRACT Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic disorders that are incurable with conventional therapy. Their incidence is increasing with global population aging. Although many genetic, epigenetic, splicing, and metabolic aberrations have been identified in patients with MDS, their clinical features are quite similar. Here, we show that hypoxia-independent activation of hypoxia-inducible factor 1α (HIF1A) signaling is both necessary and sufficient to induce dysplastic and cytopenic MDS phenotypes. The HIF1A transcriptional signature is generally activated in MDS patient bone marrow stem/progenitors. Major MDS-associated mutations (Dnmt3a, Tet2, Asxl1, Runx1, and Mll1) activate the HIF1A signature. Although inducible activation of HIF1A signaling in hematopoietic cells is sufficient to induce MDS phenotypes, both genetic and chemi- cal inhibition of HIF1A signaling rescues MDS phenotypes in a mouse model of MDS. These findings reveal HIF1A as a central pathobiologic mediator of MDS and as an effective therapeutic target for a broad spectrum of patients with MDS. SIGNIFICANCE: We showed that dysregulation of HIF1A signaling could generate the clinically relevant diversity of MDS phenotypes by functioning as a signaling funnel for MDS driver mutations. This could resolve the disconnection between genotypes and phenotypes and provide a new clue as to how a variety of driver mutations cause common MDS phenotypes. Cancer Discov; 8(11); 1–20. ©2018 AACR. See related commentary by Chen and Steidl, p. 1355. 13 1Divisions of Pathology and Experimental Hematology and Cancer Biol- Ohio. The Ohio State University Comprehensive Cancer Center, Columbus, 14 ogy, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio. 2State Ohio. Division of Hematology/Oncology, Aflac Cancer and Blood Disorders 15 Key Laboratory of Experimental Hematology, Institute of Hematology Center, Emory University School of Medicine, Atlanta, Georgia. Sylvester and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Comprehensive Cancer Center, University of Miami, Miami, Florida. Peking Union Medical College, Tianjin, China. 3International Research Note: Supplementary data for this article are available at Cancer Discovery Center for Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Online (http://cancerdiscovery.aacrjournals.org/). 4 Japan. Division of Human Genetics, Cincinnati Children’s Hospital Medi- Current address for Y. Hayashi: Laboratory of Oncology, School of Life 5 cal Center, Cincinnati, Ohio. Department of Hematology, Sixth Hospital Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; 6 Affiliated to Shanghai Jiaotong University, Shanghai, China. Key Labora- and current address for Y. Zhang: Henan University of Chinese Medicine, tory of Genomic and Precision Medicine, Collaborative Innovation Center Henan, China. of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. 7Division of Biomedical Informatics, Z. Xiao and G. Huang jointly supervised this work. Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio. 8Division of Y. Hayashi, Y. Zhang, and A. Yokota contributed equally to this article. Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Corresponding Authors: Gang Huang, Cincinnati Children’s Hospital Medi- 9 Ohio. Laboratory of Oncology, School of Life Science, Tokyo University of cal Center, 3333 Burnet Avenue, Room S7.607, Cincinnati, OH 45229. 10 Pharmacy and Life Sciences, Tokyo, Japan. Department of Hematology and Phone: 513-636-3214; E-mail: [email protected]; and Zhijian Xiao, Oncology, Chang Gung Memorial Hospital-Linkou and Chang Gung University [email protected] College of Medicine, Taoyuan, Taiwan. 11James Graham Brown Cancer Center, University of Louisville Hospital, Louisville, Kentucky. 12Division of Pul- doi: 10.1158/2159-8290.CD-17-1203 monary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, ©2018 American Association for Cancer Research. OF1 | CANCER DISCOVERY NOVEMBER 2018 www.aacrjournals.org Downloaded from cancerdiscovery.aacrjournals.org on September 28, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst August 23, 2018; DOI: 10.1158/2159-8290.CD-17-1203 Activation of HIF1A Signaling by Pseudohypoxia in MDS RESEARCH ARTICLE INTRODUCTION reveal fundamental insights into MDS pathogenesis and pre- sent novel opportunities for therapeutic intervention beyond Myelodysplastic syndromes (MDS) are a group of hetero- specific mutations for MDS. geneous clonal disorders that are characterized by ineffective Hypoxia-inducible factor-1α (HIF1A) is a critical transcrip- hematopoiesis and unilineage or multilineage dysplasia (1, 2). tion factor for the hypoxic response, angiogenesis, normal Because of its diversity and complexity, the pathogenesis of HSC regulation, and cancer development (8, 9). Importantly, MDS remains to be elucidated. Limited preclinical models HIF1A is also essential for the activation of innate and are available for dissecting the pathogenesis and testing new adaptive immunity (10). HIF1A is regulated by both oxygen- drugs, and each model has its limitations (3, 4). Stem-cell dependent and oxygen-independent mechanisms (11). HSCs transplantation is a curative strategy for MDS; however, few and progenitor cells (HSPC) isolated from patients with MDS patients are eligible for transplantation. Further elucida- display abnormal self-renewal and differentiation, and accu- tion of the pathogenesis of MDS and development of novel mulating clinical and research evidence suggests an impor- therapeutic strategies are needed. MDS are associated with tant role for systemic inflammation and immune activation mutations in chromatin-modifying enzymes, splicing fac- in MDS pathogenesis (12). Thus, we tested the impact of HIF1A tors, transcription factors, cohesin complex, and metabolic sig naling in MDS. enzymes that regulate hematopoietic stem cell (HSC) self- renewal, survival, and differentiation. Cooperating genetic lesions occur, involving signaling molecules that regulate RESULTS cell growth and proliferation (1, 2, 5). Although a number of heterogeneous genomic aberrations have been identified Activated HIF1A Pathway in a Broad in patients with MDS (6, 7), their key clinical phenotypes are Spectrum of Patients with MDS similar. Therefore, we hypothesized that driver mutations HIF1A is mainly regulated at translational and protein activate common underlying mechanisms involved in MDS levels. Thus, analyzing downstream HIF1A signature gene phenotypes. Identification of these key mediators would expression is a reliable approach to measure HIF1A activation. NOVEMBER 2018 CANCER DISCOVERY | OF2 Downloaded from cancerdiscovery.aacrjournals.org on September 28, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst August 23, 2018; DOI: 10.1158/2159-8290.CD-17-1203 RESEARCH ARTICLE Hayashi et al. To determine whether patients with MDS have an activated achieved doxycycline-inducible expression of both a stable HIF1A gene signature, we analyzed a published cohort of and constitutively active human HIF1A triple-point-mutant CD34+ bone marrow (BM) cells isolated from healthy donors (TPM; ref. 16) and wild-type (WT) ARNT (also known as (n = 17) or from patients with MDS (n = 183; ref. 13). This HIF1B, a subunit for dimerization with HIF1A; tet-on-TPM/ MDS cohort contains patients with refractory anemia (RA; ARNT; B6J/129 × 1 SvJ; Fig. 2A). After doxycycline admin- n = 55), refractory anemia with ring sideroblasts (RARS; n = istration, we found increased HIF1A protein expression 48), or refractory anemia with excess blast type 1 (RAEB1; n = in the c-KIT+ BM cells from Vav1-Cre/TPM mice (Fig. 2B). 37) or type 2 (RAEB2; n = 43). HIF1A regulates many genes, The resulting HIF1A protein expression level was 1.5-fold which could be either HIF1A direct targets or indirect tar- higher than in MllPTD/WT cells (Fig. 2C). To identify gene- gets (such as those regulated by HIF1A-regulated miRNAs). expression changes, we performed RNA-sequencing (RNA- The number of HIF1A-regulated genes exceeds 1,000 and seq) analysis of Vav1-Cre/TPM and wild-type c-KIT+ BM continues to increase (11). Notably, there are unique sets of cells. Pathway enrichment analysis revealed that a number target genes activated by HIF1A signaling in individual cell of HIF1A-related gene sets were significantly upregulated types (different lineage, at different maturation stage; ref. in the c-KIT+ BM cells from Vav1-Cre/TPM mice (Fig. 2D). 11). Recently, HIF1A-induced genes (which include both Notably, ARNT dimerizes not only with
Recommended publications
  • FK506-Binding Protein 12.6/1B, a Negative Regulator of [Ca2+], Rescues Memory and Restores Genomic Regulation in the Hippocampus of Aging Rats
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Neurobiology of Disease FK506-Binding Protein 12.6/1b, a negative regulator of [Ca2+], rescues memory and restores genomic regulation in the hippocampus of aging rats John C. Gant1, Eric M. Blalock1, Kuey-Chu Chen1, Inga Kadish2, Olivier Thibault1, Nada M. Porter1 and Philip W. Landfield1 1Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY 40536 2Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 DOI: 10.1523/JNEUROSCI.2234-17.2017 Received: 7 August 2017 Revised: 10 October 2017 Accepted: 24 November 2017 Published: 18 December 2017 Author contributions: J.C.G. and P.W.L. designed research; J.C.G., E.M.B., K.-c.C., and I.K. performed research; J.C.G., E.M.B., K.-c.C., I.K., and P.W.L. analyzed data; J.C.G., E.M.B., O.T., N.M.P., and P.W.L. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. NIH grants AG004542, AG033649, AG052050, AG037868 and McAlpine Foundation for Neuroscience Research Corresponding author: Philip W. Landfield, [email protected], Department of Pharmacology & Nutritional Sciences, University of Kentucky, 800 Rose Street, UKMC MS 307, Lexington, KY 40536 Cite as: J. Neurosci ; 10.1523/JNEUROSCI.2234-17.2017 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.
    [Show full text]
  • EGFR and Mtor As Therapeutic Targets in Glioblastoma
    www.oncotarget.com Oncotarget, 2019, Vol. 10, (No. 46), pp: 4721-4723 Editorial EGFR and mTOR as therapeutic targets in glioblastoma Michael W. Ronellenfitsch, Anna-Luisa Luger and Joachim P. Steinbach The quest for new and improved therapies for mammalian target of rapamycin complex 1 (mTORC1) glioblastoma (GB) has been mostly unsuccessful in signaling were found in the majority of GBs [3]. more than a decade despite significant efforts. The few Therefore, many hopes have rested on targeted therapies. exceptions include the optimization of classical alkylating However, the results from clinical trials have been largely chemotherapy by including lomustine in the first line disappointing [4]. Nevertheless, unplanned retrospective regimen for GB with a methylated MGMT promoter and subgroup analyses of the patient cohorts of negative tumor treating fields [1, 2]. The GB signaling network has clinical trials indicated that dysregulation or activation been well-characterized and genetic alterations resulting of signaling could be a predictive factor for susceptibility in activation of receptor tyrosine kinases and especially to pathway inhibition: Tumors with enhanced levels of epidermal growth factor receptor (EGFR) and downstream mTORC1 activation markers, including phosphorylated Figure 1: Scheme of EGFR signaling and DDIT4-mediated adaptive processes. Conditions of the glioblastoma microenvironment including hypoxia, alkylating therapy or irradiation trigger induction of DDIT4 which activates TSC1/2 to inhibit mTORC1 and can counteract epidermal growth factor receptor (EGFR)-mediated TSC1/2 inhibition. Inhibition of mTORC1 ultimately induces adaptive processes to cope with external stressors. www.oncotarget.com 4721 Oncotarget ribosomal protein S6 and phosphorylated mTOR itself, of effects. Depending on the half life and pharmacokinetics appeared to respond to pathway inhibition by the EGFR of the drugs, stepwise treatment algorithms could be an antibody nimotuzumab or the mTORC1 inhibitor option to prevent antagonistic effects.
    [Show full text]
  • Functions of the Mineralocorticoid Receptor in the Hippocampus By
    Functions of the Mineralocorticoid Receptor in the Hippocampus by Aaron M. Rozeboom A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2008 Doctoral Committee: Professor Audrey F. Seasholtz, Chair Professor Elizabeth A. Young Professor Ronald Jay Koenig Associate Professor Gary D. Hammer Assistant Professor Jorge A. Iniguez-Lluhi Acknowledgements There are more people than I can possibly name here that I need to thank who have helped me throughout the process of writing this thesis. The first and foremost person on this list is my mentor, Audrey Seasholtz. Between working in her laboratory as a research assistant and continuing my training as a graduate student, I spent 9 years in Audrey’s laboratory and it would be no exaggeration to say that almost everything I have learned regarding scientific research has come from her. Audrey’s boundless enthusiasm, great patience, and eager desire to teach students has made my time in her laboratory a richly rewarding experience. I cannot speak of Audrey’s laboratory without also including all the past and present members, many of whom were/are not just lab-mates but also good friends. I also need to thank all the members of my committee, an amazing group of people whose scientific prowess combined with their open-mindedness allowed me to explore a wide variety of interests while maintaining intense scientific rigor. Outside of Audrey’s laboratory, there have been many people in Ann Arbor without whom I would most assuredly have gone crazy.
    [Show full text]
  • Independence of Hif1a and Androgen Signaling Pathways in Prostate Cancer
    bioRxiv preprint doi: https://doi.org/10.1101/848424; this version posted November 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Independence of HIF1a and androgen signaling pathways in prostate cancer Maxine GB Tran1, 2*, Becky AS Bibby3†*, Lingjian Yang3, Franklin Lo1, Anne Warren1, Deepa Shukla1, Michelle Osborne1, James Hadfield1, Thomas Carroll1, Rory Stark1, Helen Scott1, Antonio Ramos-Montoya1, Charlie Massie1, Patrick Maxwell1, Catharine ML West3, 4, Ian G. Mills5,6** and David E. Neal1** 1Uro-oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, CB02 0RE, United Kingdom 2UCL division of Surgery and Interventional Science, Royal Free Hospital, Pond Street, London NW3 2QG 3Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital NHS Trust, Manchester, M20 4BX, United Kingdom 4Manchester Biomedical Research Centre, University of Manchester, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom. 5Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, BT9 7AE, United Kingdom 6Nuffield Department of Surgical Sciences, University of Oxford, OX3 9DU, UK *These authors contributed equally to this work **These authors contributed equally to this work †Corresponding author email: Becky Bibby, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital NHS Trust, Manchester, M20 4BX, United Kingdom, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/848424; this version posted November 26, 2019.
    [Show full text]
  • Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug
    cancers Article Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug Response Genes in Pediatric Acute Myeloid Leukemia David G.J. Cucchi 1 , Costa Bachas 1 , Marry M. van den Heuvel-Eibrink 2,3, Susan T.C.J.M. Arentsen-Peters 3, Zinia J. Kwidama 1, Gerrit J. Schuurhuis 1, Yehuda G. Assaraf 4, Valérie de Haas 3 , Gertjan J.L. Kaspers 3,5 and Jacqueline Cloos 1,* 1 Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] (D.G.J.C.); [email protected] (C.B.); [email protected] (Z.J.K.); [email protected] (G.J.S.) 2 Department of Pediatric Oncology/Hematology, Erasmus MC–Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands; [email protected] 3 Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; [email protected] (S.T.C.J.M.A.-P.); [email protected] (V.d.H.); [email protected] (G.J.L.K.) 4 The Fred Wyszkowski Cancer Research, Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel; [email protected] 5 Emma’s Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1081 HV Amsterdam, The Netherlands * Correspondence: [email protected] Received: 21 April 2020; Accepted: 12 May 2020; Published: 15 May 2020 Abstract: Novel treatment strategies are of paramount importance to improve clinical outcomes in pediatric AML. Since chemotherapy is likely to remain the cornerstone of curative treatment of AML, insights in the molecular mechanisms that determine its cytotoxic effects could aid further treatment optimization.
    [Show full text]
  • Transcriptional Events Co-Regulated by Hypoxia and Cold Stresses In
    Long et al. BMC Genomics (2015) 16:385 DOI 10.1186/s12864-015-1560-y RESEARCH ARTICLE Open Access Transcriptional events co-regulated by hypoxia and cold stresses in Zebrafish larvae Yong Long1, Junjun Yan1,2, Guili Song1, Xiaohui Li1,2, Xixi Li1,2, Qing Li1* and Zongbin Cui1* Abstract Background: Hypoxia and temperature stress are two major adverse environmental conditions often encountered by fishes. The interaction between hypoxia and temperature stresses has been well documented and oxygen is considered to be the limiting factor for the thermal tolerance of fish. Although both high and low temperature stresses can impair the cardiovascular function and the cross-resistance between hypoxia and heat stress has been found, it is not clear whether hypoxia acclimation can protect fish from cold injury. Results: Pre-acclimation of 96-hpf zebrafish larvae to mild hypoxia (5% O2) significantly improved their resistance to lethal hypoxia (2.5% O2) and increased the survival rate of zebrafish larvae after lethal cold (10°C) exposure. However, pre-acclimation of 96-hpf larvae to cold (18°C) decreased their tolerance to lethal hypoxia although their ability to endure lethal cold increased. RNA-seq analysis identified 132 up-regulated and 41 down-regulated genes upon mild hypoxia exposure. Gene ontology enrichment analyses revealed that genes up-regulated by hypoxia are primarily involved in oxygen transport, oxidation-reduction process, hemoglobin biosynthetic process, erythrocyte development and cellular iron ion homeostasis. Hypoxia-inhibited genes are enriched in inorganic anion transport, sodium ion transport, very long-chain fatty acid biosynthetic process and cytidine deamination. A comparison with the dataset of cold-regulated gene expression identified 23 genes co-induced by hypoxia and cold and these genes are mainly associated with oxidation-reduction process, oxygen transport, hemopoiesis, hemoglobin biosynthetic process and cellular iron ion homeostasis.
    [Show full text]
  • Effects of Rapamycin on Social Interaction Deficits and Gene
    Kotajima-Murakami et al. Molecular Brain (2019) 12:3 https://doi.org/10.1186/s13041-018-0423-2 RESEARCH Open Access Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero Hiroko Kotajima-Murakami1,2, Toshiyuki Kobayashi3, Hirofumi Kashii1,4, Atsushi Sato1,5, Yoko Hagino1, Miho Tanaka1,6, Yasumasa Nishito7, Yukio Takamatsu7, Shigeo Uchino1,2 and Kazutaka Ikeda1* Abstract The mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in cell metabolism, growth, and proliferation. The overactivation of mTOR has been implicated in the pathogenesis of syndromic autism spectrum disorder (ASD), such as tuberous sclerosis complex (TSC). Treatment with the mTOR inhibitor rapamycin improved social interaction deficits in mouse models of TSC. Prenatal exposure to valproic acid (VPA) increases the incidence of ASD. Rodent pups that are exposed to VPA in utero have been used as an animal model of ASD. Activation of the mTOR signaling pathway was recently observed in rodents that were exposed to VPA in utero, and rapamycin ameliorated social interaction deficits. The present study investigated the effect of rapamycin on social interaction deficits in both adolescence and adulthood, and gene expressions in mice that were exposed to VPA in utero. We subcutaneously injected 600 mg/kg VPA in pregnant mice on gestational day 12.5 and used the pups as a model of ASD. The pups were intraperitoneally injected with rapamycin or an equal volume of vehicle once daily for 2 consecutive days. The social interaction test was conducted in the offspring after the last rapamycin administration at 5–6 weeks of ages (adolescence) or 10–11 weeks of age (adulthood).
    [Show full text]
  • Ten Commandments for a Good Scientist
    Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre.
    [Show full text]
  • And EZH2-Regulated Gene, Has Differential Roles in AR-Dependent and -Independent Prostate Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No.4 RUNX1, an androgen- and EZH2-regulated gene, has differential roles in AR-dependent and -independent prostate cancer Ken-ichi Takayama1,2, Takashi Suzuki3, Shuichi Tsutsumi4, Tetsuya Fujimura5, Tomohiko Urano1,2, Satoru Takahashi6, Yukio Homma5, Hiroyuki Aburatani4 and Satoshi Inoue1,2,7 1 Department of Anti-Aging Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan 2 Department of Geriatric Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan 3 Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan 4 Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, Japan 5 Department of Urology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan 6 Department of Urology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan 7 Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan Correspondence to: Satoshi Inoue, email: [email protected] Keywords: RUNX1, androgen receptor, EZH2, prostate cancer Received: October 02, 2014 Accepted: December 09, 2014 Published: December 10, 2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Androgen receptor (AR) signaling is essential for the development of prostate cancer. Here, we report that runt-related transcription factor (RUNX1) could be a key molecule for the androgen-dependence of prostate cancer. We found RUNX1 is a target of AR and regulated positively by androgen.
    [Show full text]
  • Transcriptional Changes in Huntington Disease Identified Using Genome
    Human Molecular Genetics, 2010, Vol. 19, No. 8 1438–1452 doi:10.1093/hmg/ddq018 Advance Access published on January 20, 2010 Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis Kristina Becanovic1, Mahmoud A. Pouladi1, Raymond S. Lim2, Alexandre Kuhn3, Paul Pavlidis2, Ruth Luthi-Carter3, Michael R. Hayden1 and Blair R. Leavitt1,Ã 1Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4 2Centre for High-throughput Biology and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 and 3Brain Mind Institute, E´ cole Polytechnique Fe´de´rale de Lausanne (EPFL), Station 15, CH1015 Lausanne, Switzerland Received September 10, 2009; Revised and Accepted January 18, 2010 Evaluation of transcriptional changes in the striatum may be an effective approach to understanding the natural history of changes in expression contributing to the pathogenesis of Huntington disease (HD). We have performed genome-wide expression profiling of the YAC128 transgenic mouse model of HD at 12 and 24 months of age using two platforms in parallel: Affymetrix and Illumina. The data from these two powerful platforms were integrated to create a combined rank list, thereby revealing the identity of additional genes that proved to be differentially expressed between YAC128 and control mice. Using this approach, we ident- ified 13 genes to be differentially expressed between YAC128 and controls which were validated by quanti- tative real-time PCR in independent cohorts of animals. In addition, we analyzed additional time points relevant to disease pathology: 3, 6 and 9 months of age.
    [Show full text]
  • The Orphan Disease Networks
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE The Orphan Disease Networks Minlu Zhang,1,3,5 Cheng Zhu,1,5 Alexis Jacomy,4 Long J. Lu,1,2,3 and Anil G. Jegga1,2,3,* The low prevalence rate of orphan diseases (OD) requires special combined efforts to improve diagnosis, prevention, and discovery of novel therapeutic strategies. To identify and investigate relationships based on shared genes or shared functional features, we have con- ducted a bioinformatic-based global analysis of all orphan diseases with known disease-causing mutant genes. Starting with a bipartite network of known OD and OD-causing mutant genes and using the human protein interactome, we first construct and topologically analyze three networks: the orphan disease network, the orphan disease-causing mutant gene network, and the orphan disease-causing mutant gene interactome. Our results demonstrate that in contrast to the common disease-causing mutant genes that are predomi- nantly nonessential, a majority of orphan disease-causing mutant genes are essential. In confirmation of this finding, we found that OD-causing mutant genes are topologically important in the protein interactome and are ubiquitously expressed. Additionally, func- tional enrichment analysis of those genes in which mutations cause ODs shows that a majority result in premature death or are lethal in the orthologous mouse gene knockout models. To address the limitations of traditional gene-based disease networks, we also construct and analyze OD networks on the basis of shared enriched features (biological processes, cellular components, pathways, phenotypes, and literature citations).
    [Show full text]
  • Human/Mouse/Rat HIF-1 Alpha/HIF1A Antibody
    Human/Mouse/Rat HIF-1 alpha/HIF1A Antibody Monoclonal Mouse IgG1 Clone # 241809 Catalog Number: MAB1536 DESCRIPTION Species Reactivity Human/Mouse/Rat Specificity Detects human, mouse, and rat HIF-1 alpha/HIF1A. Source Monoclonal Mouse IgG1 Clone # 241809 Purification Protein A or G purified from hybridoma culture supernatant Immunogen E. coli-derived recombinant human HIF-1 alpha/HIF1A Arg575-Asn826 Accession # Q16665.1 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (-SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 1 µg/mL See Below Immunohistochemistry 5-25 µg/mL See Below Immunoprecipitation 1-3 µg/500 µg cell MCF‑7 human breast cancer cell line treated with CoCl2, see our available Western blot lysate detection antibodies Simple Western 10 µg/mL See Below Knockout Validated HIF-1 alpha/HIF1A is specifically detected in HeLa human cervical epithelial carcinoma parental cell line but is not detectable in HIF-1 alpha/HIF1A knockout HeLa cell line. DATA Western Blot Immunohistochemistry Detection of Human, Mouse, HIF-1 alpha/HIF1A in Human Kidney. and Rat HIF-1 alpha/HIF1A by HIF-1 alpha/HIF1A was detected in Western Blot. Western blot immersion fixed paraffin-embedded sections shows lysates of MCF-7 human of human kidney using Mouse Anti- breast cancer cell line, Balb-3T3 Human/Mouse/Rat HIF-1 alpha/HIF1A mouse embryonic fibroblast cell Monoclonal Antibody (Catalog # MAB1536) line, and PC-12 rat adrenal at 5 µg/mL for 1 hour at room temperature pheochromocytoma cell line followed by incubation with the Anti-Mouse untreated (-) or treated (+) with IgG VisUCyte™ HRP Polymer Antibody 150 μM CoCl2 for 8 hours.
    [Show full text]