Photomultiplier Handbook

Total Page:16

File Type:pdf, Size:1020Kb

Photomultiplier Handbook Contents 1. lntroduction............................................................... 3 Early development, photoemitter and secondary-emitter development, applications development, photomultiplier and solid-state detectors compared 2. Photomultiplier Design . , . 10 Photoemission, practical photocathode materials, opaque and semitransparent photocathodes, glass transmission and spectral response, thermionic emission, secondary emission, time tag in photoemission and secondary emission 3. Electron Optics of Photomultipliers , . 26 Electron-optical design considerations, design methods for photomultiplier electron optics, specific photomultiplier electron-optical configurations, anode configurations 4. Photomultiplier Characteristics . , . 36 Photocathode-related characteristics, gain-related characteristics, dark current and noise, time effects, pulse counting, scintillation counting, liquid scintillation counting, environmental effects 5. Photomultiplier Applications . 80 Summary of selection criteria, applied voltage considerations, mechanical considerations, optical considera- tions, specific photomultiplier applications Appendix A. Typical Photomultiplier Applications and Selection Guide . 119 Appendix B.Glossary of Terms Related to Photomultiplier lubes and Their Applica- I . 125 Appendix C.Spectral Response Designation Systems . 132 Appendix D. Photometric Units and Photometric-to-Radiant Conversion............. I 37 Appendix E.Spectral Response and Source-Detector Matching......... .......... I 43 Appendix F.Radiant Energy and Sources......................................148 Appendix G. Statistical Theory of Noise in Photomultiplier Tubes. I 60 Index........................................................................ 177 information furnished by BURLE INDUSTRIES, INC. is believed to be accurate and reliable. However, no responsibility of liability is assumed by BURLE for its use, nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or other rights of BURLE INDUSTRIES, INC. BURLE ® and BURLE INDUSTRIES, INC.® are registered trademarks of BURLE TECHNOLOGIES, INC. Marca(s) Registrada(s). Copyright © 1980 by BURLE TECHNOLOGIES, INC. All rights reserved. No part of this book may be copied or reproduced in any form or by any means -- graphic, electronic, or mechanical or incorporated into any information storage or retrieval system, without the written permission of the copyright owner. Supersedes PMT-62, 8-80 Printed in U.S.A./ 10-89 TP-136 2 1. Introduction The photomultiplier is a very versatile and without need for additional signal amplifica- sensitive detector of radiant energy in the tion. Extremely fast time response with rise ultraviolet, visible, and near infrared regions times as short as a fraction of a nanosecond of the electromagnetic spectrum. A schemat- provides a measurement capability in special ic diagram of a typical photomultiplier tube applications that is unmatched by other is given in Fig. 1. The basic radiation sensor radiation detectors. is the photocathode which is located inside a vacuum envelope. Photoelectrons are emit- ted and directed by an appropriate electric EARLY DEVELOPMENT field to an electrode or dynode within the The development (history) of the photo- envelope. A number of secondary electrons multiplier is rooted in early studies of secon- are emitted at this dynode for each imping- dary emission. In 1902, Austin and Starke1 ing primary photoelectron. These secondary reported that the metal surfaces impacted by electrons in turn are directed to a second cathode rays emitted a larger number of elec- dynode and so on until a final gain of trons than were incident. The use of secon- perhaps 106 is achieved. The electrons from dary emission as a means for signal the last dynode are collected by an anode amplification was proposed as early as which provides the signal current that is read 1919.2 In 1935, Iams and Salzberg 3 of RCA out. reported on a single-stage photomultiplier. The device consisted of a semicylindrical photocathode, a secondary emitter mounted on the axis, and a collector grid surrounding the secondary emitter. The tube had a gain of about eight. Because of its better frequen- cy response the single-stage photomultiplier was intended for replacement of the gas- filled phototube as a sound pickup for movies. But despite its advantages, it saw only a brief developmental sales activity PHOTOELECTRONS before it became obsolete. 92cs-32288 Multistage Devices Fig. 1 - Schematic representation of a photo- multiplier tube and its operation In 1936, Zworykin, Morton, and Malter, all of RCA4 reported on a multistage photomultiplier. Again, the principal con- For a large number of applications, the templated application was sound-on-film photomultiplier is the most practical or sen- pickup. Their tube used a combination of sitive detector available. The basic reason electrostatic and magnetic fields to direct for the superiority of the photomultiplier is electrons from stage to stage. A photograph the secondary-emission amplification that of a developmental sample is given in Fig. 2. makes it possible for the tube to approach Although the magnetic-type photomultiplier “ideal” device performance limited only by provided high gain, it had several dif- the statistics of photoemission. Amplifica- ficulties. The adjustment of the magnetic tions ranging from 103 to as much as 108 field was very critical, and to change the gain provide output signal levels that are com- by reducing the applied voltage, the patible with auxiliary electronic equipment magnetic field also had to be adjusted. 3 Photomultiplier Handbook Another problem was that its rather wide Snyder 8 and by Janes and Gloverg, all of open structure resulted in high dark current RCA. The basic electron-optics of the cir- because of feedback from ions and light cular cage was thus well determined by 1941 developed near the output end of the device. and has not changed to the present time For these reasons, and because of the although improvements have been made in development of electrostatically focused processing, construction, and performance photomultipliers, commercialization did not of the 931A product. follow. The success of the 931 type also resulted from the development of a much improved 10 photocathode, Cs3Sb, reported by Gorlich in 1936. The first experimental photo- multipliers had used a Ag-O-Cs photocath- ode having a typical peak quantum efficien- cy of 0.4% at 800 nm. (The Ag-O-Cs layer Fig. 2 - Magnetic-type multistage photomul- was also used for the dynodes.) The new tiplier reported by Zworykin, Morton, and Cs3Sb photocathode had a quantum effi- Malter in 1936. ciency of 12% (higher today) at 400 nm. It was used in the first 931’s, both as a photocathode and as a secondary-emitting material for the dynodes. The design of multistage electrostatically focused photomultipliers required an analysis of the equipotential surfaces be- tween electrodes and of the electron trajec- PHOTOEMITTER AND SECONDARY- tories. Before the days of high-speed com- EMITTER DEVELOPMENT puters, this problem was solved by a Photocathode Materials mechanical analogue: a stretched rubber membrane. By placing mechanical models of Much of the development work on the electrodes under the membrane, the photomultiplier tubes has been concerned height of the membrane was controlled and with their physical configuration and the corresponded to the electrical potential of related electron optics. But a very important the electrode. Small balls were then allowed part of the development of photomultiplier to roll from one electrode to the next. The tubes was related to the photocathode and trajectories of the balls were shown to cor- secondary-emission surfaces and their pro- respond to those of the electrons in the cor- cessing. RCA was very fortunate during the responding electrostatic fields. Working 1950’s and 60’s in having on its staff, prob- with the rubber-dam analogue, both J.R. ably the world’s foremost photocathode ex- Pierce5 of Bell Laboratories and J.A. pert, Dr. A.H. Sommer. His treatise on Rajchman6 of RCA devices linear arrays of Photoemissive Materials1 1 continues to pro- electrodes that provided good focusing prop- vide a wealth of information to all erties. Although commerical designs did not photocathode process engineers. result immediately from the linear dynode Sommer explored the properties of array, The Rajchmann design with some numerous photocathode materials-par- modifications eventually was, and still is, ticularly alkali-antimonides. Perhaps his used in photomultipliers-particularly for most noteworthy contribution was the high-gain wide-bandwidth requirements. multialkali photocathode (S-20 spectral response). This photocathode, Na2KSb:Cs, First Commercial Devices is important because of its high sensitivity in The first commercially successful the red and near infrared; the earlier Cs3Sb photomultiplier was the type 931. This tube photocathode spectral response barely ex- had a compact circular array of nine tends through the visible, although it is very dynodes using electrostatic focusing. The sensitive in the blue where most scintillators first such arrangement was described by emit. Zworykin and Rajchman.7 Modifications Bialkali photocathodes were also de- were later reported by Rajchmann and veloped by Sommer and have proven to be 4 Introduction better in some applications than the Cs3Sb
Recommended publications
  • Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode
    BNL-81607-2008-IR C-A/APl#328 October 2008 Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode Qiong Wu Collider-Accelerator Department Brookhaven National Laboratory Upton, NY 11973 Notice: This document bas been authorized by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the US.Department of Energy. Tbe United States Government retains a non- exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form ofthis document, or allow others to do so, for United States Government purposes. MEASUREMENTSAND STUDIES OF SECONDARY ELECTRONEMISSION OF DIAMONDAMPLIFIED PHOTOCATHODE Qiong Wu September, 2008 CONTENTS 1 Introduction .......................................................................................................... 1 1.1 The Diamond Amplified Photocathode (DAF') hoject .................................... 1 1.2 Advantages of diamond for amplified photocathodes ...................................... 4 1.2.1 Wide Band Gq ..... ....................................... 5 1.2.2 Best Rigidiiy ..................... ............ 6 1.2.3 Highest Thermal Conducfivity ................................................................................................ 7 1.2.4 Very high Mobility and Sahrralion Velocity............ ....................... ....8 2 DAP Design ........................................................................................................ 10 2.1 vacuum ..........................................................................................................
    [Show full text]
  • Building a Photomultiplier Tube Testing Lab and Measuring Dark Rate
    Building a photomultiplier tube testing lab and measuring dark rate Suffolk County Community College and Brookhaven National Lab Lab Setup • Dark box set up to hold four Photomultiplier tubes simultaneously and output signals • Three step data collection 1. Discriminator 2. Delay Generator 3. Visual Scalar • Labview collects and files data and Oscilloscope shows signal outputs from PMTs Wiring Discriminator: The PMTs constantly output a signal (Dark current) regardless of whether or not it detected a photon. The discriminator sets a voltage that has to be exceeded for the signal to pass through. Delay Generator: The delay generator receives the input from the discriminator and outputs to the visual scalar. When active, the delay generator allows the signal to pass through, but only for a set period of time. Visual Scalar: The visual scalar receives the output from the delay generator and outputs the number of signals it receives. Dark Box “light tight” testing • The first problem we encountered with the dark box was there was there was a measureable difference in counts when testing with the lights on vs. the lights off. This meant that the box wasn’t completely sealed • We taped any visible weaknesses in the box and added a layer of foam tape between the box and the lid • We tested the modified box at several different voltages with the lights both on and off and the differences were negligible • The data is plotted above, the red line represents the data collected with the lights on and the black line represents the data with the lights off Dark Current • PMTs constantly output a very low signal whether or not the have detected a photon.
    [Show full text]
  • DESIGN and EVALUATION of CONTROLS for DRIFT, VIDEO GAIN, and COLOR BALANCE in SPACEBORNE FACSIMILE CAMERAS by Stephen J. Katrber
    NASA TECHNICAL NOTE @ NASA Tli D-73.3 m % & m U.S.A. m (NASA-TN-D-7333) DESIGN AND EVALUATION OP CONTROLS FOR DRIFT, VIDEO GAIN, AND COLOR BALANCE IN SPACEBORNE FACSIMILE CAMERAS (NASA) 33 p HC $3.00 CSCL 14E Unclas 4 81/10 23462 Z DESIGN AND EVALUATION OF CONTROLS FOR DRIFT, VIDEO GAIN, AND COLOR BALANCE IN SPACEBORNE FACSIMILE CAMERAS by Stephen J. Katrberg, W. Lane Kelly IV, QR~Q~F~&$.MH?AlMS Carroll W. Rowland, and Ernest E. Burcher GQdhU.* . .b"'3H8 Langley Research Center Humpton, Vu. 23665 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. DECEMBER 1973 1. Report No. a. Government Accasrion No. 3. Recipient's Catalog No. NASA TN D-7333 4. Title and Subtitle 5. Report Date DESIGN AND EVALUATION OF CONTROLS FOR DRIFT, December 1973 VIDEO GAIN, AND COLOR BALANCE IN SPACEBORNE 6. Performing Organization Code FACSIMILE CAMERAS 7. Author(s1 8. Performing Organization Rwrt No. Stephen J. Katzberg, W. Lane Kelly IV, Carroll W. Rowland, L-8845 and Ernest E. Burcher 10. Work Unit No. g. Rrforming Organintion Name and Addrerr 502-03-52-04 NASA Langley Research Center 11. Contract or Grant No. Hampton, Va. 23665 13. Type of Repon and Period Covered 12. Sponsoring Agency Name and Addresr Technical Note National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 15:' Subplementary Notes 16. AbsuaR The facsimile camera is an optical-mechanical scanning device which has become an attractive candidate as an imaging system for planetary landers and rovers. This paper presents electronic techniques which permit the acquisition and reconstruction of high-quality images with this device, even under varying lighting conditions.
    [Show full text]
  • Leds As Single-Photon Avalanche Photodiodes by Jonathan Newport, American University
    LEDs as Single-Photon Avalanche Photodiodes by Jonathan Newport, American University Lab Objectives: Use a photon detector to illustrate properties of random counting experiments. Use limiting probability distributions to perform statistical analysis on a physical system. Plot histograms. Condition a detector’s signal for further electronic processing. Use a breadboard, power supply and oscilloscope to construct a circuit and make measurements. Learn about semiconductor device physics. Reading: Taylor 3.2 – The Square-Root Rule for a Counting Experiment pp. 48-49 Taylor 5.1-5.3 – Histograms and the Normal Distribution pp. 121-135 Taylor Ch. 11 – The Poisson Distribution pp. 245-254 Taylor Problem 5.6 – The Exponential Distribution p. 155 Experiment #1: Lighting an LED A Light-Emitting Diode is a non-linear circuit element that can produce a controlled amount of light. The AND113R datasheet shows that the luminous intensity is proportional to the current flowing through the LED. As illustrated in the IV curve shown below, the current flowing through the diode is in turn proportional to the voltage across the diode. Diodes behave like a one-way valve for current. When the voltage on the Anode is more positive than the voltage on the Cathode, then the diode is said to be in Forward Bias. As the voltage across the diode increases, the current through the diode increases dramatically. The heat generated by this current can easily destroy the device. It is therefore wise to install a current-limiting resistor in series with the diode to prevent thermal runaway. When the voltage on the Cathode is more positive than the voltage on the Anode, the diode is said to be in Reverse Bias.
    [Show full text]
  • Abstract an Introduction to the Physics and Applications Of
    Abstract An Introduction To The Physics And Applications Of Electron Sources Kevin L. Jensen Naval Research Laboratory Models of thermal, field, photo, and secondary emission, as well as space charge limited current flow, have existed since the 1920’s. With the realization that such sources were crucial to Radar and communications, research in harnessing their capabilities greatly accelerated, and now they are key components of cutting edge applications such as High Power Microwave generation and x-ray Free Electron Lasers. Although the processes behind the emission mechanisms (namely, heat, electric field, photoemission effect, and ejection of secondaries due to a high energy primary beam) appear distinct, they can all be understood collectively using simple models from quantum mechanics, condensed matter physics, and electrostatics. A description of the theoretical models and some history behind each mechanism, examples of the kinds of emitters that employ those mechanisms, and the challenges to utilizing the beams generated by various electron source candidates (particularly with respect to beam parameters such as current density, space charge, emittance, and brightness) will be covered. A full description of the canonical emission equations of thermal (Richardson), field (Fowler-Nordheim), photo (Fowler-DuBridge), and secondary (Young) equations is given – but even more interestingly, a demonstration of how the equations are fundamentally related is explored. Processes that affect emission, such as electrostatic shielding, coatings, space charge (Child-Langmuir), and complications due to material properties (metal versus semiconductor) shall be described. Biographical Summary Kevin L. Jensen is a theoretical physicist whose research concerns emission properties of electron sources, particularly cold cathodes and photocathodes, but also thermal and secondary sources, for vacuum nanoelectronics, space-based applications, high power microwave generation, and particle accelerators and Free Electron Lasers.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title TESTING TECHNIQUES USED IN THE QUALITY SELECTION OF RCA 6810 MULTIPLIER PHOTOTUBES Permalink https://escholarship.org/uc/item/5jv0v3kb Author Kirsten, Frederick A. Publication Date 1956-10-16 eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA ' TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Diuision, Ext. 5545 BERKELEY, CALIFORNIA DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. · UCRL- 3430(rev.) Engineering Distribution UNIVERSITY OF CALIFORNIA Radiation Laboratory Berkeley,. California Contract No. W -7405-eng-48 • •·l TESTING TECHNIQUES USED IN THE QUALITY SELECTION OF RCA 6810 MULTIPLIER PHOTOTUBES .
    [Show full text]
  • Study of Velocity Distribution of Thermionic Electrons with Reference to Triode Valve
    Bulletin of Physics Projects, 1, 2016, 33-36 Study of Velocity Distribution of Thermionic electrons with reference to Triode Valve Anupam Bharadwaj, Arunabh Bhattacharyya and Akhil Ch. Das # Department of Physics, B. Borooah College, Ulubari, Guwahati-7, Assam, India # E-mail address: [email protected] Abstract Velocity distribution of the elements of a thermodynamic system at a given temperature is an important phenomenon. This phenomenon is studied critically by several physicists with reference to different physical systems. Most of these studies are carried on with reference to gaseous thermodynamic systems. Basically velocity distribution of gas molecules follows either Maxwell-Boltzmann or Fermi-Dirac or Bose-Einstein Statistics. At the same time thermionic emission is an important phenomenon especially in electronics. Vacuum devices in electronics are based on this phenomenon. Different devices with different techniques use this phenomenon for their working. Keeping all these in mind we decided to study the velocity distribution of the thermionic electrons emitted by the cathode of a triode valve. From our work we have found the velocity distribution of the thermionic electrons to be Maxwellian. 1. Introduction process of electron emission by the process of increase of Metals especially conductors have large number of temperature of a metal is called thermionic emission. The free electrons which are basically valence electrons. amount of thermal energy given to the free electrons is Though they are called free electrons, at room temperature used up in two ways- (i) to overcome the surface barrier (around 300K) they are free only to move inside the metal and (ii) to give a velocity (kinetic energy) to the emitted with random velocities.
    [Show full text]
  • Iii. Modern Electronic Techniques Applied to Physics and Engineering
    _~__~~n~~____ I_~__ III. MODERN ELECTRONIC TECHNIQUES APPLIED TO PHYSICS AND ENGINEERING A. DESIGN AND CONSTRUCTION OF A MICROWAVE ACCELERATOR Staff: Professor J. C. Slater Professor A. F. Kip Dr. W. H. Bostick R. J. Debs P. T. Demos M. Labitt L. Maier S. J. Mason I. Polk J. R. Terrall Since the last progress report, primary emphasis has been on con- struction of additional lengths of accelerating cavity and the associated equipment necessary for operation. Primary design work has been finished on all components necessary for operation of the accelerator and most com- ponents are in the process of being assembled. The following items include recent developments and design details which have not been mentioned earlier. Delivery on the 2-Mev Van de Graaff machine is expected at an early date. A pulsing circuit to modulate the electron beam from the Van de Graaff machine has been designed and built. Since this circuit is to be placed in the dome of the machine at high pres- sure, all component parts have been subjected to 400 lb/in2 pressure to ensure that they have the necessary strength. Machining work on the one-foot accelerator sections is essentially completed. Assembly and brazing of the parts are now in progress. The final design for the 20-foot accelerator tube has been slightly modified in that it has been divided into three sections which are isolated from each other rf-wise by short drift tubes which act as waveguides beyond cut-off. The primary purpose of this procedure is to allow for tuning each section to optimum frequency independently.
    [Show full text]
  • Alkamax Application Note.Pdf
    OLEDs are an attractive and promising candidate for the next generation of displays and light sources (Tang, 2002). OLEDs have the potential to achieve high performance, as well as being ecologically clean. However, there are still some development issues, and the following targets need to be achieved (Bardsley, 2001). Z Lower the operating voltage—to reduce power consumption, allowing cheaper driving circuitry Z Increase luminosity—especially important for light source applications Z Facilitate a top-emission structure—a solution to small aperture of back-emission AMOLEDs Z Improve production yield These targets can be achieved (Scott, 2003) through improvements in the metal-organic interface and charge injection. SAES Getters’ Alkali Metal Dispensers (AMDs) are widely used to dope photonic surfaces and are applicable for use in OLED applications. This application note discusses use of AMDs in fabrication of alkali metal cathode layers and doped organic electron transport layers. OLEDs OLEDs are a type of LED with organic layers sandwiched between the anode and cathode (Figure 1). Holes are injected from the anode and electrons are injected from the cathode. They are then recombined in an organic layer where light emission takes place. Cathode Unfortunately, fabrication processes Electron transport layer are far from ideal. Defects at the Emission layer cathode-emission interface and at the Hole transport layer anode-emission interface inhibit Anode charge transfer. Researchers have added semiconducting organic transport layers to improve electron Figure 1 transfer and mobility from the cathode to the emission layer. However, device current levels are still too high for large-size OLED applications. SAES Getters S.p.A.
    [Show full text]
  • Characterisation of Silicon Photomultipliers for the Detection of Near Ultraviolet and Visible Light
    Universit`adegli Studi di Trento { Dipartimento di Fisica Fondazione Bruno Kessler { Integrated Radiation and Image Sensors Characterisation of Silicon Photomultipliers for the detection of Near Ultraviolet and Visible light Cycle XXIX G. Zappala' Supervised by: N. Zorzi Abstract Light measurements are widely used in physics experiments and medical ap- plications. It is possible to find many of them in High{Energy Physics, As- trophysics and Astroparticle Physics experiments and in the PET or SPECT medical techniques. Two different types of light detectors are usually used: thermal detectors and photoelectric effect based detectors. Among the first type detectors, the Bolometer is the most widely used and developed. Its in- vention dates back in the nineteenth century. It represents a good choice to detect optical power in far infrared and microwave wavelength regions but it does not have single photon detection capability. It is usually used in the rare events Physics experiments. Among the photoelectric effect based detectors, the Photomultiplier Tube (PMT) is the most important nowadays for the de- tection of low{level light flux. It was invented in the late thirties and it has the single photon detection capability and a good quantum efficiency (QE) in the near{ultraviolet (NUV) and visible regions. Its drawbacks are the high bias voltage requirement, the difficulty to employ it in strong magnetic field environments and its fragility. Other widely used light detectors are the Solid{State detectors, in particular the silicon based ones. They were developed in the last sixty years to become a good alternative to the PMTs. The silicon photodetectors can be divided into three types depending on the operational bias voltage and, as a conse- quence, their internal gain: photodiodes, avalanche photodiodes (APDs) and Geiger{mode detectors, Single Photon Avalanche Diodes (SPADs).
    [Show full text]
  • 3 Large Photocathode Photodetectors Using Photon Amplification
    Large Photocathode Photodetectors Using Photon Amplification and Phase-Space Compression Alex Carrio1, Joseph Dowling1, Kevin Greener1, Sean McGuiness1, Victor Podrasky1, John Sullivan1, David R Winn1*, 2 2 Burak Bilki , Yasar Onel 1. Department of Physics, Fairfield University, Fairfield, CT 06824 USA 2. Department of Astronomy & Physics, University of Iowa, Iowa City, IA, USA *Corresponding – [email protected] Abstract: We describe a simple technique to both amplify incident photons and compress their angular x area phase space. These Optical Compressor Amplifier Tubes (OCA Tube) use techniques analogous to image intensifiers, using vacuum photocathodes to detect photons as converted to photoelectrons, amplify the photons via photoelectron bombardment of fast scintillators, and compress the optical phase space onto optical fibers, so that small, high gain photodetectors, like miniature PMT or SiPM, can be used to detect photons from large areas, at comparatively low cost. The properties of and benefits of OCA tubes are described. Introduction: Photomultiplier tubes (PMT) and SiPM are ubiquitous in particle detection apparatus and experiments. Their virtues are the ability to generate detectable signals from one photon, at high speed. In general, PMT gain-bandwidth is still unmatched. Experiments planned for high energy physics, particle astrophysics, intensity frontier and intermediate energy and nuclear physics anticipate the need for: a) Large areas of photocathode for non-accelerator experiments such as for nucleon decay, neutrino oscillations, or large underwater or ice detectors for astrophysical phenomena. b) Cosmic gamma ray telescopes and cosmic ray detectors, both terrestrial, and in satellites, which need to operate at low power, low mass, remotely, and over long times.
    [Show full text]
  • Telecommunications Provider Locator
    Telecommunications Provider Locator Industry Analysis & Technology Division Wireline Competition Bureau February 2003 This report is available for reference in the FCC’s Information Center at 445 12th Street, S.W., Courtyard Level. Copies may be purchased by calling Qualex International, Portals II, 445 12th Street SW, Room CY- B402, Washington, D.C. 20554, telephone 202-863-2893, facsimile 202-863-2898, or via e-mail [email protected]. This report can be downloaded and interactively searched on the FCC-State Link Internet site at www.fcc.gov/wcb/iatd/locator.html. Telecommunications Provider Locator This report lists the contact information and the types of services sold by 5,364 telecommunications providers. The last report was released November 27, 2001.1 All information in this report is drawn from providers’ April 1, 2002, filing of the Telecommunications Reporting Worksheet (FCC Form 499-A).2 This report can be used by customers to identify and locate telecommunications providers, by telecommunications providers to identify and locate others in the industry, and by equipment vendors to identify potential customers. Virtually all providers of telecommunications must file FCC Form 499-A each year.3 These forms are not filed with the FCC but rather with the Universal Service Administrative Company (USAC), which serves as the data collection agent. Information from filings received after November 22, 2002, and from filings that were incomplete has been excluded from the tables. Although many telecommunications providers offer an extensive menu of services, each filer is asked on Line 105 of FCC Form 499-A to select the single category that best describes its telecommunications business.
    [Show full text]