Reprinted from the Journal of the American Chemical Society, 1990,t-I? 1190. Copyright @ 199^0by the American Chemical Society and reprinted by permission of the copyright owner.

Comparisonsof Rate Constantsfor Thiolate-Disulfide Interchangein Water and in Polar Aprotic SolventsUsing Dynamic rH NMR Line ShapeAnalysis

RajeevaSingh and GeorgeM. Whitesides*

Contributionfront theDepartment o.f Chenri.rtrt, Hurrard L nirer.sit.t, Cambridse, ,llassat'husr'tts (): | -l\ Rt',t'itcd .lulr ll. i 919

Abstract:The rateconstants for representativethiolate-disuliide intcrchange rcactions are larger in DMSO andDMF than in waterb1 a iactorof approximately2300 at 24 oC. The logof the rateconstant is directlyproportional to the molefraction ol DrO in mixturesof DMSO and D2O,even at smallmole fractions of D2O. This linearproportionality suggests that thiolate anionis not specificallysolvated by waterand that hydrogenbonding is relativelyunimportant in stabilizingthis species. The valucsof -\Sr for thiolate-disulfideinterchange are approximately-10 cal/(degmol), presumptivelybecause of lossin the entropyof the reactantsin goingfrom groundto transitionstate, partially compensated by a gain in entropyfrom solvent release.Introduction of a hydroxylgroup p to the C-S bondslows the reactionby a factorof 2-15; the introductionof methyl groupsp to the C-S bondslows the rate by factorsof 3-20. A numberof substanceshave been screened as potentialcatalysts ior thiolate-disulfideinterchange in water: noneshowed useful levels of catalyticactivity, although phenylselenol did accelerate the interchangesignificantly.

This paperexamines the influenceof solventon rate constants in proteinsmay be enzvmecatalyzed.e-la Many aspectsof the for thiolate-disulfideinterchange (eq l: nuc = nucleophile,c = mechanismof thiolate-disulfideinterchange are understood'15-22 central,lg = leavinggroup). This reactionis one of broad

Rn*S-+ S-SRls : (8) Saxena,V. P.; Wetlaufer,D. B. Biochemistry1970,9,5015-5022. I (9) Freedman,R. B. Nature 1987,329,196-191. Rc (10) Lang,K.; Schmid,F. X. Nature1988, 331,453-455. --'5*'n -- ( I I Pain. R. TrendsBiochem. Soc. 1987,12, 309-312. ;'n"*3---s lt Rrucs-s + sRrs (1) ) llll (12) Wetzel,R. TrendsBiochem. Soc. 1987, 12,478-482. LR"JRe (13) Pigiet,V. P.;Schuster,B. J. Proc.Natl. Acad.Sci. U.S.A.l9t6,8-?, 7643-7647. importancein biochemistry.r-7Although it is oftennot catalyzed (14) Holmgren,A. Ann. Reu.Biochem. 1985, 54,23'l-271. enzymaticallyin vivo,8the formation of certaincystine linkages (15) Szajewski,R. P.;Whitesides, G. M. "/.Am. Chem.Soc.1980, 102, 20n-2026. (16) Whitesides,G. M.; Lilburn,J. E.; Szajewski,R. P. J Org. Chem. (l) Freedman,R. B.; Hillson,D. A. In The Enzymologyof Post-Trans- 1977,42,332-338. lational Modificationof Proteins;Hawkins, H. C., Freedman,R. B., Eds.; (17) Shaked,Z.;Szajewski, R. P.;Whitesides, G.M. Biochemistry1980, Academic:London. 1980; pp 157-212. r9.4156-4t66. (2) Creighton,T, E. J. Phys.Chem.l985, 89, 2452-2459. ( l8) Whitesides,G. M.; Houk,J.; Patterson,M. A. K. J. Org.Chem. 1983, (3) Creighton,T. E. MethodsEnzymol. 1984, 107,305-329. 48, 112-|5. (4) Ziegler,D. M. Ann. Reu.Biochem. 1985, 54,305-329. ( l9) Houk,J.; Singh, R.; Whitesides,G. M. MethodsEnzymol. 1987, 143, (5) Gilbert,H. F. MethodsEnzymol. 1984, 107, 330-351. 129-140. (6) Buchanan,B, B. Ann. Reu,Plant Physiol.1980, 31,345-361. (20) Hupe,D. J.;Pohl, E. R. /sr.J. Chem.1985,26,395-399. (7) Jocelyn,P. C. Biochemistryof the SH Group; Academic: London, (21) Wilson.J. M.; Bayer,R. J.;Hupe, D. J. J. Am. Chem.Soc.1977,99, 1972. Huxtable,R. J. Biochemistryof ; Plenum:New York, 1986. 1922-7926. T hio I ate- Di s u lfi de I nt erc hange J. Am. Chem.Soc., Vol. I12, .\'o.3, 1990 llgl (A) EXPERIMENTAL SIMUI^ATED temp (K) (u-1s-11 366 _J1--/1.- -rL-[- 53s 352 _/LJ\-- _I_A-_ 3L2

339 -nu,AA-- -^j\_ 145

333 J\l\ JU\- 93 0.0 0.2 0.4 0.6 0.8 1.0 327 J AA-_\-./ J\jL 64 x uro M\J /\,{\- jrJ\/\- 32]- ) 42 Figure2. Eifectof changingthe molefraction oi D,O on thesecond- /\,{AI orderrate constant (k) of thiolate-disulfideinterchangc of potassium 315 __/"'-J "'_ _/Ju\,t_ 24 l-hrdroxyethanethiolateandits disulfide in mixruresoi D\1SO-d,5and ilillt D.O at 197K. Therate constant has units of N'l-rs-r 309 ---]v\J\Jl- _,1\_/U_ IY j,L,u- Methods 302 -,Ltljt- 13 We haveinvestigated self-exchange betueen RS and RSSR rH Hz with useof dynamic N MR spectroscop\:-r:- for four reasons: J.260 540 L260 540 (i) The ratesof representativethiolate-disuliide inrcrchange re- actionsin polar,aprotic solvents are too fast to be studiedcon- (B) venientlyby conventionalkinetic techniques. (ii) Thiolarcanions areeasily oxidized, and exclusion of atmosphericoxrgen is com- parativelyeasy in sealedNMR tubesbut moredifficult in rhc 294 ri- 77 042 typesof apparatusused in classicalkinetic techniques. (iii) The intcrchangereaction is dcgenerateand can be crunrincdat 288 -rrL _/._ L2862 equilibrium. Determinationof ratesof' rcactionrbr \\IR spectroscoprinvolvcd prcparation of'onlr .r :rnulcr.rlnplc of thiolateand disull'ide : it \\J\ n()tnccc\\.ir\ t\) \\ tlhdrrru .ilrquots .rybu 283 -JL ()rtr) lrcpitrc nrultrplc:rrrn[r]c-: rr,, r Thc :rcthricncpcak.: adjacent ttrthc thi,rl.rtc,rntidr.ull'rtic nr(rrclrC:.rrc.cpiii'i.lted br approxi- nrltclr0.-r-1 ; rl00 [lz.rl .100\ll{zr. th:..cprtr.itionmade the 277 Jl. 1 235 analrsis ol- thc lrnc:h.rpc\ rcl.rtr\ .1;.1rghti',.rrrr clr ard. Representativeexpcrrntcntal 5pc!tr.i .trc :ho\\ n rn Figurel. Estimationof rateconstants 272 -ilu -r^r-- 5306 from the'ccrro:rintcntal sDectra was rl accomplishedby visualcomparison of r-\pcnnrcntalspectra and spectrasimulated with the programD\MR+.:o The tcmperature 267 ,_-,lr\_ _/\_ 38s9 dependenceof the chemicalshifts ol the thiorareand disurfide speciescould be measuredindependently': the Erpcrintental Sectioncontains details. Solutionsof thiolatesin poraraororic 260 -,tL _^1_ 25't2 solventswere prepared by reactionof thiolswith I equir ttf po- tassium/erl-butoxidc. The natureof the counterionhad no in- fluenceon the rcaction. Further,addition of l8-crown-6(l equir/equirthiollte) to the reactionsystem involving potassium 250 _Jiii_ 1508 l- hrd rorr Hz etha ncr h iolate a nd bis(2-h1 drox_v-ethyl ) disulfi de did not influencethe rareof thiolate-disuliideinterchanse. 950 bbu vbu oou Results Figurel. Experimentaland calculated line shapes for _100\,tHz rH NMR spectraat severaltemperatures oi (A) sodiuml-hrdrorrethane- Rateconstants and ActivationParameters. Table I summarizes (3.8 thiolate M) andbis(2-hydroxyethyl) disulfide (1.9 \,I; in D2O;(B) rate constantsobtained in this work and valuesof relevant potassium 2-hydroxyethanethiolate(66mM) andbis(2-hrdroxyethyl) thermodynamicparameters derived from variable-temperature disulfide(31 mM) in DMF-d7.The peak assignmenrs are m = (HO-C- work.2e The most importantobservation i12CH2S)2;n = HOCH2CH2S-;1 = (HOCHTCH2S)2;s = HOCHzC- in this tableis that the /12S-;u,v=HCON(CH)2. rate constantsfor thiolate-disulfideinterchange are faster in it is an sp2 reactionin which thiolateanion attacks the disulfide bond along the S-S axis. The symmetry and structureof the (22) Freter.R: Pohl.E. R.; Hupe, D. J. J. Org. Chem.1979, 44. transitionstate are not known in detail,although the chargeis t71t*t771. concentratedon the terminalsulfur atoms. (23) Sandstrom,J. Dt'namic,\'MR Spectroscop)':Academic: London. r982. The influence of solventon the rate of reactionshas not been (24) Binsch.G.; Kessler,H. Angew,.Chem., Int. Ed. Engl. 1980. 19. exploredand wouldprovide mechanistically useful information 4t l-428. concerningcharge distributions and about differencesin solvation (25) Binsch,G. Top.Stereochem. 1968, J, 97-192. (26) of groundand transitionstates. This work reportscomparisons Binsch.G.ln Dvnamicl\'luclear Magnetic Resonance Spectroscopl:1 Jackman,L. M., Cotton,F. A., Eds.;Academic: of rate constants New York, 1982;pp 45-81. for representativethiolate-disulfide interchange (27) Selenol-diselenideinterchange in waterresults in exchange-averaged reactionsin water and in the polar aprotic solventsDMSo and lH NMR spectra:Pleasants, J. C.;Guo, W.; Rabenstein,D. L. J. Am. Chem. DMF. lt had threeobjectives: to clarify the roleof solvation; Soc.1989, ll1,6553-6558. Tan, K. S.;Arnold, A. P.;Rabenstein. D.L. Can. to indicatcwhethcr changes in the polarityof the reactionmedium J. Chem.1988, 66, 54-60. For the slowerthioltisulfide interchange,separate 'H NMR resonanceswere observed for anddisulfide in aqueoussolution: would providea method of controllingthe rate of the reaction; Rabenstein,D. L.; Theriault,Y. Can. J. Chem. 1984,6'2, 1672-1680. and to evaluatethc possibilitythat a weaklysolvated thiorate Theriault.Y.; Cheesman,B. V.; Arnold,A. P.; Rabenstein,D. L. Can.J. nucleophilcmight be exceptionallyreactive. The observationof Chem.1984,62,1312-1319.Theriault, Y.; Rabenstein,D. L, Can.J. Chem. 1985,6J,2225-2231. a correlationbetween reactivity and solvationmight providethe (28) oNuno.written by Prof.C. H. Bushwelleret al. is availablefrom the basisfor strategiesfor the designof catalysts for thiolate-disulfide QuantumChemistry Program Exchange, Department of Chemistry,Indiana interchanee. U niversity. ll92 J. Am. Chem. Soc..Vol. I12, No. 3, 1990 Singh and Whitesides

-SR Table L Rate Constantsfor DegenerateThiolate-Disulfide Interchange: RS- + RSSR : RSSR + 10-3ka.b lGI (M-t s-t; (kcal/mol) ATI ASI RS- M' solvent (291K) (291 K) (kcal/mol) (call(deg mol)) -10 HOCH2CH25- Na' Dzo 0.0077 t6.2 IJ -l K+ Dro 0.0095 16.r IJ I -13 K+ DMF-d7 20 r 1.5 8 K* DMSO-d6 21 l.l t1 cH3cH2cH2cH2s- Na+ DMF-di +J l.l K+ DMSO-d6 54 1.0 cH3c(cH3)2cH2s- K+ DMF-d7 l5 t.t K+ DMSO-d6 l6 1.1 -10 HOC(CH3)2CH25- K+ DMSO-d6 t.l r3.2 l0 -16 HOCH2C(CHr)2CH25- K+ DMSO-d6 0.67 r 3.5 9 bRate oUncertaintiesare k, *10%: AGl, +0.1 kcal/mol;lHt, +1 kcal/mol;A^Sl, *2 cal/(degmol). constantswere inferred from visual com- parisonof thc simulatedrH NMR Iine shapeswith the experimentalline shapes;details are given in the ExperimentalSection.

DMSO and in DMF than in watcr by a factor of approximately T ("C) 90705030 10 -10 -50 x 103. Thc log of the rate constantdepends linearly on the 3 5 solventcomposition in mixtures of D2O and DMSO-d6 @q 2, Figurc2). There is no evidencefor specificsolvation of thiolate 4 Jfogk=llGtGXD,o r3 Q) '\*\- anionby water(specific solvation would be reflectedin nonlinearitl I in thisplot. especially at smallvalues of 1p,6). This observation 1 \ suggeststhat hydrogenbonding between water and the thiolate is relativelyunimportant. anion 2.5 3.0 4.0 4.5 The rate of thiolate-disulfideinterchange reaction shows only modestsensitivity to stericeffects and to groupscapable of in- 1o3T'1( x-1) tramolecularhydrogen bonding. Introductionof methyl groups Figure3. Plotof log k vs I for the thiolate-disulfideinterchange of slowsthe reactiononly by factorsof 3-20. This lT 0 to the C-S bond sodium2-hydroxyethanethiolate (3.8M) andits disulfide (1.9 M) in D2O insensitivityis expectedfor an Sp2 reactioninvolving front-side (t); potassium2-hydroxyethanethiolate (66mM) andits disulfide (31 attackof RS- alongthe S-S axisof the disulfide.Intramolecular mM) in DMF-d7 (r); potassium3-hydroxy-2,2-dimethylpropanethiolate hydrogenbonding between hydroxyl and thiolate doesnot sig- (0.20M) andits disulfide(0.10 M) in DMSO-de(o); potassium2- nificantlymodify the rate of interchangeof 2-hydroxlethane- hydroxy-2-mcth1'lpropanethiolate(0.18M) and its disulfide (0.09 M) in thiolate: the rate constantfor thiolate-disulfideinterchange DMSO-d^(O) Therate constants have units of M-r s-r. reactionof potassiuml-butanethiolate is onll nrice that of po- tassium2-hydroxyethanethiolate in DMSO. Introductionof a rntcrprctcdsinrlarlr.r' Thc determinationof lS+ and JH+ by \ \1R involvcerrors. and theirvalues hydroxylgroup either li or 1 to the C-S bondin stericallihindered thc dr nanric nrcthodmar alkyl thiolatesslows the interchangereaction bi approximatell shouldbc trcatcdri ith caution.lr''rl a factorof l5 in polar aproticsolvents. A gem-dimethyleffectl0 The Thiolate-Disulfidelnterchange Reaction Is Not Easily and weakersolvation of the hydroxyl group in the sterically Catalyzed. Ratesof many thiolate-disulfidereactions in water hinderedcase may result in greater intramolecularhydrogen follow a Bronstedrelation in the valuesof pK" of the participating bondingthan in the stericallyunhindered 2-hydroxyethanethiolate. species(eq 3 is one expressiondescribing this relation).32 We On the basisof theseobservations, we suggestthat differences havesurveyed a number of aromatic having valuesof pKu in rateswith changesin solventfor 2-hydroxyethanethiolateare centeredaround pH 7, in the hopethat thesespecies might, by representativeof differencesexpected for other alkane thiolates. virtue of chargedelocalization and possibleweak solvationin water, Arrheniusplots yielded the thermodynamicparameters sum- proveto be more reactivein thiolate-disulfideinterchange than marizedin Table I (Figure 3). For HOCH2CH2S-,A11' de- would be predictedon the basisof eq 3.33 Theseand a range going -7AS' is approximateli' creasedin from D2O to DMF; log k = 6.3 + 0.59 pKunu"- 0.40pK.' - 0.59p6"ts (3) constant. We rationalizethe valueof the entropyof activation in thesereactions as a compromisebetween two factors. The of othertypes of potentialcatalysts did not showuseful catalytic reactioninvolves two particlesgoing to one in the transitionstate activity. The detailedresults are given in the Experimental and is thus intrinsicallyentropically disfavored. The observation Section. that ,\S+ is - -10 cal/(deg mol) suggestsa partial compensation We screenedfor catalysisin water by incubatingthe potentially of the unfavorableloss in translationaland rotationalentropy by catalyticadditive with an equimolarmixture of 2-carboxy-1,3- someother factor,presumptively solvent release. Thermodynamic propanedithioland bis(2-hydroxyethyl)disulfide. We followed data for other thiolate-disulfideinterchange reactions have been

(3 I ) In the caseof potassium2-hydroxyethanethiolate and its disulfidein were to be 7.7 kcal/mol and -13 (29) From the dataof Creighton(Creighton, T. E. "/. Mol. Biol.1975,96, DMF-d7,the valuesof AIl+ and A,St found 767-776)we havecalculated the rateconstant Ik = l9 M-rs-r(25 "C)] for cal/(deg mol) with carefulcalibration of temperature.The valuesof AIll the reactionof dithiothreitolwith bis(2-hydroxyethyl)disulfide in waterIt and AS* calculatedwithout calibrationof temperaturewere 10.6kcal/mol = 16ob(l+ lgp(a-pH).kob = 4.5M-rs-r;pH = 8.7;pK"(dithiothreitol) = 9.21. and-2 cal/(degmol). The valueof AGr wasalmost unaffected by the error We have to divide Creighton'srate constantby two (to accountfor the in temperature. presenceof two symmetricalthiol groupsin dithiothreitol)in order to compare (32) Two other equationsgive similar Bronstedcorrelations. The 0 'C)] with our rate constant[9.5 M-' t-t 124 for HOCH2CH2S-K*/ coefficientsare thereforenot sharplydefined by the availabledata. These (HOCH2CH25)2interchange in D2O. The identityof thesetwo rateconstants Bronstedequations should be consideredprimarily as kinetic modelsfor -0.98) is accidentalbut doesindicate that the two independentmeasurements are thiol-disulfideinterchange in water.r5A Bronstedslope (B = hasbeen in closeagreement. Some representativevalues of rate constantsof thio- observedfor the reactionof symmetricalalkyl disulfideswith triphenyl- late*disuliideinterchange from the literature are k = 57 M-r s-r for the phosphinein 50Vodioxane-water: Overman, L. E.; O'Connor,E. M. J. Am. oCl5 reactionof, mercaptoethanol and oxidizedglutathione in water,pH 7, 30 Chem.Soc. 1916, 98,'77 1-7'l 5. and k = 2 x 105M-l s-l for the reactionof mercaptoethanolwith Ellman's (33) Catalysisof acylationof hydroxyl groups using N,N-(dimethyl- reagentin water,pH 7, 30 oC.16 amino)pyridine(DMAP) is an exampleof the strategyof enhancingnucleo- (30) Schleyer,P. v. R. J. Am. Chem.Soc. 1961,8J, 1368-1373. Ingold, philicityand chargedelocalization: Hofle, G.;Steglich, W.; Vorbruggen,H' C. K. "/. Chem.Soc. 1921. 119.305-329. Angew.Chem., Int. Ed. Engl. 1978,17, 569-583. Th io I at e- Di su lfi de I nt erc' hange J. Am. Chem. Soc.,Vol. I I2, No. 3, t990 ll93

rl Table IL Comparisonsof Ratesof Reactionsin Water and in polar lns....s.snl NonproticSolvents

rRj l0-3(ft,or/kH20) reactlon or l0-l(r(.or/KHro) ({=SorO) solvent X=S X=O ref iF\ * RX + RXXR RXXR * \:I li \\* RX- DMSO-d6 L.) ns-+ RSSR / 1\, nssn* DMF-d7 2.2 I ,r/ \\_ C2H5X-+ [{+: C2HsXH DMSO 700 1.6x lOe a I C6H.X * Mel ' DMF 32 1900 b p-O2NC6HaX-* * /tt Mel DMF 0.24 15 b \- Dp C6H.X * p-OrNCuHal- DMF 4.0 lxl04 b oArnett, E. M.; Small,L. E. J. Am. Chem.Soc. 19l1-.99. g0g-g16. tJupe,D. J.; Jencks, W. P.J. Am.Chem. Soc.1977.99,15t-464. ,Clare, B.W.: Cook, D.; Ko, E. C. F.;Mac, Y. C.;Parker, A. J.J. Ant.Chem. Soc. 1966.88,l9ll-1916. Parker. A. J.Chem. Rer,. 1969, 69.1-32. Figure4. Hypotheticalplot of freeenergy vs reactioncoordinate Therate for comparison-sarereported for DMF andmethanol at 0 oC thiolate-disulfideintcrchange reaction in watcrancl in DolaraDrotlc solvents(DMSO. DMF). the morestrongl\ dcstabilized (Figure .l). This inferencedoes not dependstrongl\ on the structurcof the transitionstate, pro- thc rateof reactionby monitoringthe increascin absorpriorrar ridcd that thc churgcis dclocalizedover the threesulfur centers, 330 nm due to the product4-carboxl'- I .J-dithiolanc trq +t. .rsis indccdinl'crrcd from the Bronstedrelation that describes (HSCH2)2CHCOO-+ (HOCH2CH2S)z * the reaction in $ iitcr. s ---cH" Thc proposalthat the increasein rate in going from water to DMSo or D\4 F correlaresprimarily with the dielectricconstant + 2HocH2cH2sH(4) IS--