Redox Control and Mechanism of Spx-Activated Transcription in Bacillus Subtilis

Total Page:16

File Type:pdf, Size:1020Kb

Redox Control and Mechanism of Spx-Activated Transcription in Bacillus Subtilis Redox Control and Mechanism of Spx-activated Transcription in Bacillus subtilis By Cierra A. Birch A Dissertation Presented to the Division of Environmental and Biomolecular Systems at Oregon Health and Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry and Molecular Biology School of Medicine Oregon Health and Science University July 2017 Table of Contents List of tables………………………………………………………………………………………………...............vi List of figures………………………………………………………………………………………………….........vi Acknowledgements……………………...………………………………………………………………….....viii Abstract ………………………………………………………………………………………………………...….…ix Chapter 1: Introduction…………………………………………………………………………………............................…1 Introduction to Bacillus subtilis and bacterial stress response…………………………..……..1 ROS production and oxidative stress response………………………….………..............................2 RNA polymerase and transcriptional control……………………………………………………….....7 RNA polymerase (RNAP): structure and assembly………………………………………….........7 Overview of bacterial transcription…………………………………………....................................10 Recruitment-based activated-transcription…………………………………………....................11 Activated-transcription by RNAP appropriation………...………………………………...........13 B. subtilis SigB-dependent general stress response.………………………………….…………...16 Redox control of oxidative stress response.………………………………………………….……....17 Introduction to Spx...................................................................................................................................19 B. subtilis Spx, a global transcriptional regulator…………………………………………..........19 Spx in other bacteria………………………………………………………………………………………....22 Control of Spx………………………………………………………………………………………………......23 Major research aims…………………………………………........................................................................30 Chapter 2, Part I: Exploring the role of the RNAP α subunit in Spx-activated transcription..............32 Introduction…………………………………………........................................................................................32 Results…………………………………………...................................................................................................37 Alignment of B. subtilis αCTD with those of other classes of bacteria.........................37 Complementation approach to uncover the role of putatively essential ii αCTD residues in Spx-activated transcription.......................................................................39 Effect on disulfide stress sensitivity of ectopically expressed rpoA mutant alleles. …………………………………….................................................................................42 Effect of ectopically expressed rpoA alleles on Spx-activated transcription in vivo. …………………………....................................................................................44 Salt stress uncovers defects in Spx-activated expression in cells expressing rpoAR261A, rpoAE255A and rpoAE298A mutant alleles……………....…..46 Evidence the rpoAE255A does not function in αCTD-σA interaction during Spx-activated transcription...........................................................................................................50 Purification of active RNAP from strains bearing ectopically expressed rpoA-His6 and mutant derivatives…..........................................................................................51 The rpoAE255A, rpoAE298A and rpoAR261A mutations confer defects in Spx interaction with RNAP and/or α subunit..................................................................53 rpoAE255A and rpoAE298A mutations reduce Spx-enhanced affinity of RNAP for promoter DNA…........................................................................................................59 Discussion…...............................................................................................................................................61 Chapter 2, Part II: Mutational analysis of possible σA-interacting Spx amino acid residues............65 Introduction...............................................................................................................................................65 Possible multi-subunit contact between Spx and multiple subunits of RNAP.......65 Structural determinants of Spx activity..................................................................................66 Spx amino acid residues K43, D40, and Q77 may function in Spx-RNAP interaction...........................................................................................................................................69 Results..........................................................................................................................................................73 Differential structural requirements of Spx activity among members of the Spx regulon...................................................................................................................................................73 sigAR362A affects control of Phyperspank- expressed proteins………...…………………73 iii Discussion...................................................................................................................................................77 Materials and methods (Part I).........................................................................................................76 Materials and methods (Part II).......................................................................................................76 Chapter 3: Redox control and Spx-dependent regulation of thiol homeostasis genes ........91 Introduction...............................................................................................................................................91 Thiol stress and redox buffering................................................................................…………...91 Functions of bacillithiol (BSH) .....................................................................................................93 Role of bacillithiol in other bacteria...........................................................................................97 Biosynthesis of BSH...........................................................................................................................98 Genomic organization of B. subtilis BSH biosynthetic genes.........................................101 B. subtilis ypjD operon organization is conserved in B. anthracis...............................102 Cis-acting elements of Spx-activated promoters...............................................................103 Architecture of the bsh operon promoters...........................................................................105 Results........................................................................................................................................................109 Effects of PypjD truncations on Spx-dependent activation..........................................109 Differential redox requirements of Spx activity among the Spx regulon……....…111 Differential redox requirements of B. subtilis Spx during activation of B. subtilis ypjD and B. anthracis ypjD (BA1554)………………......................................113 Effects of ypjD promoter mutations on Spx-dependent activation...........................117 Discussion..................................................................................................................................................121 Speculations on the functional significance of the ypjD operon organization….124 Materials and methods.......................................................................................................................109 Chapter 4: Summaries, future directions, and final remarks..........................................................132 Exploring the role of the RNAP α subunit in Spx-activated transcription.............132 Mutational analysis of possible σA-interacting Spx amino acid residues...............133 iv Redox control and Spx-dependent regulation of thiol homeostasis genes…........135 Final remarks..........................................................................................................................................138 v Tables Table 2.1 B. subtilis strains and plasmids used in Chapter 2: Part I……………….……...86 Table 2.2 Oligonucleotides used in Chapter 2: Part I………………………..…...……….….....87 Table 2.3 B. subtilis strains and plasmids used in Chapter 2: Part II…….…..………......89 Table 2.4 Oligonucleotides used in Chapter 2: Part II………………………………………......90 Table 3.1 B. subtilis strains and plasmids used in Chapter 3..……………….………….…130 Table 3.2 Oligonucleotides used in Chapter 3…………………………………………..………..131 Figures Figure 1.1 ROS production....................................................................................................................4 Figure 1.2 ROS and cysteine thiol oxidation..................................................................................6 Figure 1.3 RNAP holoenzyme subunits............................................................................................9 Figure 1.4 Recruitment-based transcriptional activation…………………………....…….…12 Figure 1.5 Pre-recruitment-based transcriptional activation….........................................15 Figure 1.6 Spx functions as a transcriptional activator and repressor...........................20 Figure 1.7 ClpXP-dependent proteolytic control of
Recommended publications
  • Human Prion-Like Proteins and Their Relevance in Disease
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Universitat Autònoma de Barcelona Departament de Bioquímica i Biologia Molecular Institut de Biotecnologia i Biomedicina HUMAN PRION-LIKE PROTEINS AND THEIR RELEVANCE IN DISEASE Doctoral thesis presented by Cristina Batlle Carreras for the degree of PhD in Biochemistry, Molecular Biology and Biomedicine from the Universitat Autònoma de Barcelona. The work described herein has been performed in the Department of Biochemistry and Molecular Biology and in the Institute of Biotechnology and Biomedicine, supervised by Prof. Salvador Ventura i Zamora. Cristina Batlle Carreras Prof. Salvador Ventura i Zamora Bellaterra, 2020 Protein Folding and Conformational Diseases Lab. This work was financed with the fellowship “Formación de Profesorado Universitario” by “Ministerio de Ciencia, Innovación y Universidades”. This work is licensed under a Creative Commons Attributions-NonCommercial-ShareAlike 4.0 (CC BY-NC- SA 4.0) International License. The extent of this license does not apply to the copyrighted publications and images reproduced with permission. (CC BY-NC-SA 4.0) Batlle, Cristina: Human prion-like proteins and their relevance in disease. Doctoral Thesis, Universitat Autònoma de Barcelona (2020) English summary ENGLISH SUMMARY Prion-like proteins have attracted significant attention in the last years.
    [Show full text]
  • Interaction and Functional Cooperation of the Cancer-Amplified Transcriptional Coactivator Activating Signal Cointegrator-2 and E2F-1 in Cell Proliferation
    948 Vol. 1, 948–958, November 2003 Molecular Cancer Research Interaction and Functional Cooperation of the Cancer-Amplified Transcriptional Coactivator Activating Signal Cointegrator-2 and E2F-1 in Cell Proliferation Hee Jeong Kong,1 Hyun Jung Yu,2 SunHwa Hong,2 Min Jung Park,2 Young Hyun Choi,3 Won Gun An,4 Jae Woon Lee,5 and JaeHun Cheong2 1Laboratory of Molecular Growth Regulation, National Institute of Health, Bethesda, MD; 2Department of Molecular Biology, Pusan National University, Busan, Republic of Korea; 3Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, Republic of Korea; 4Department of Biology, Kyungpook National University, DaeGu, Republic of Korea; and 5Department of Medicine/Endocrinology, Baylor College of Medicine Houston, TX. Abstract structure and recruitment of a transcription initiation complex Activating signal cointegrator-2 (ASC-2), a novel coac- containing RNA polymerase II to the promoter (1). Recent tivator, is amplified in several cancer cells and known to studies have shown that DNA-bound transcriptional activator interact with mitogenic transcription factors, including proteins accomplish these two tasks with the assistance of a serum response factor, activating protein-1, and nuclear class of proteins called transcriptional coactivators (2, 3). They factor-KB, suggesting the physiological role of ASC-2 in may be thought of as adaptors or components in a signaling the promotion of cell proliferation. Here, we show that pathway that transmits transcriptional activation signals from the expression pattern of ASC-2 was correlated with that DNA-bound activator proteins to the chromatin and transcrip- of E2F-1 for protein increases at G1 and S phase.
    [Show full text]
  • Original Article EP300 Regulates the Expression of Human Survivin Gene in Esophageal Squamous Cell Carcinoma
    Int J Clin Exp Med 2016;9(6):10452-10460 www.ijcem.com /ISSN:1940-5901/IJCEM0023383 Original Article EP300 regulates the expression of human survivin gene in esophageal squamous cell carcinoma Xiaoya Yang, Zhu Li, Yintu Ma, Xuhua Yang, Jun Gao, Surui Liu, Gengyin Wang Department of Blood Transfusion, The Bethune International Peace Hospital of China PLA, Shijiazhuang 050082, Hebei, P. R. China Received January 6, 2016; Accepted March 21, 2016; Epub June 15, 2016; Published June 30, 2016 Abstract: Survivin is selectively up-regulated in various cancers including esophageal squamous cell carcinoma (ESCC). The underlying mechanism of survivin overexpression in cancers is needed to be further studied. In this study, we investigated the effect of EP300, a well known transcriptional coactivator, on survivin gene expression in human esophageal squamous cancer cell lines. We found that overexpression of EP300 was associated with strong repression of survivin expression at the mRNA and protein levels. Knockdown of EP300 increased the survivin ex- pression as indicated by western blotting and RT-PCR analysis. Furthermore, our results indicated that transcription- al repression mediated by EP300 regulates survivin expression levels via regulating the survivin promoter activity. Chromatin immunoprecipitation (ChIP) analysis revealed that EP300 was associated with survivin gene promoter. When EP300 was added to esophageal squamous cancer cells, increased EP300 association was observed at the survivin promoter. But the acetylation level of histone H3 at survivin promoter didn’t change after RNAi-depletion of endogenous EP300 or after overexpression of EP300. These findings establish a negative regulatory role for EP300 in survivin expression. Keywords: Survivin, EP300, transcription regulation, ESCC Introduction transcription factors and the basal transcrip- tion machinery, or by providing a scaffold for Survivin belongs to the inhibitor of apoptosis integrating a variety of different proteins [6].
    [Show full text]
  • Crystal Structure of the Bacteriophage T4 Late-Transcription Coactivator Gp33 with the Β-Subunit Flap Domain of Escherichia Coli RNA Polymerase
    Crystal structure of the bacteriophage T4 late-transcription coactivator gp33 with the β-subunit flap domain of Escherichia coli RNA polymerase The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Twist, K.-A. F., E. A. Campbell, P. Deighan, S. Nechaev, V. Jain, E. P. Geiduschek, A. Hochschild, and S. A. Darst. 2011. “Crystal Structure of the Bacteriophage T4 Late-Transcription Coactivator gp33 with the -Subunit Flap Domain of Escherichia Coli RNA Polymerase.” Proceedings of the National Academy of Sciences 108 (50): 19961– 66. https://doi.org/10.1073/pnas.1113328108. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41483152 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Crystal structure of the bacteriophage T4 late- transcription coactivator gp33 with the β-subunit flap domain of Escherichia coli RNA polymerase Kelly-Anne F. Twista,1, Elizabeth A. Campbella, Padraig Deighanb, Sergei Nechaevc,2, Vikas Jainc,3, E. Peter Geiduschekc, Ann Hochschildb, and Seth A. Darsta,4 aLaboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065; bDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; and cDivision of Biological Sciences, Section of Molecular Biology, University
    [Show full text]
  • Termin Translat Trna Utr Mutat Protein Signal
    Drugs & Chemicals 1: Tumor Suppressor Protein p53 2: Heterogeneous-Nuclear Ribonucleo- (1029) proteins (14) activ apoptosi arf cell express function inactiv induc altern assai associ bind mdm2 mutat p53 p73 pathwai protein regul complex detect exon famili genom respons suppress suppressor tumor wild-typ interact intron isoform nuclear protein sensit site specif splice suggest variant 3: RNA, Transfer (110) 4: DNA Primers (1987) codon contain differ eukaryot gene initi amplifi analysi chain clone detect dna express mrna protein region ribosom rna fragment gene genotyp mutat pcr sequenc site speci suggest synthesi polymorph popul primer reaction region restrict sequenc speci termin translat trna utr 5: Saccharomyces cerevisiae Proteins 6: Apoptosis Regulatory Proteins (291) (733) activ apoptosi apoptosis-induc albican bud candida cerevisia complex encod apoptot bcl-2 caspas caspase-8 cell eukaryot fission function growth interact involv death fasl induc induct ligand methyl necrosi pathwai program sensit surviv trail mutant pomb protein requir saccharomyc strain suggest yeast 7: Plant Proteins (414) 8: Membrane Proteins (1608) access arabidopsi cultivar flower hybrid leaf leav apoptosi cell conserv domain express function gene human identifi inhibitor line maiz plant pollen rice root seed mammalian membran mice mous mutant seedl speci thaliana tomato transgen wheat mutat protein signal suggest transport 1 9: Tumor Suppressor Proteins (815) 10: 1-Phosphatidylinositol 3-Kinase activ arrest cell cycl cyclin damag delet dna (441) 3-kinas activ
    [Show full text]
  • Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the Tna Operon of Escherichia Coli
    JOURNAL OF BACTERIOLOGY, Aug. 1995, p. 4451–4456 Vol. 177, No. 15 0021-9193/95/$04.0010 Copyright 1995, American Society for Microbiology Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the tna Operon of Escherichia coli CHARLES YANOFSKY* AND VIRGINIA HORN Department of Biological Sciences, Stanford University, Stanford, California 94305-5020 Received 13 March 1995/Accepted 27 May 1995 The growth-inhibiting drug bicyclomycin, known to be an inhibitor of Rho factor activity in Escherichia coli, was shown to increase basal level expression of the tryptophanase (tna) operon and to allow growth of a tryptophan auxotroph on indole. The drug also relieved polarity in the trp operon and permitted growth of a trp double nonsense mutant on indole. Nine bicyclomycin-resistant mutants were isolated and partially characterized. Recombination data and genetic and biochemical complementation analyses suggest that five have mutations that affect rho, three have mutations that affect rpoB, and one has a mutation that affects a third locus, near rpoB. Individual mutants showed decreased, normal, or increased basal-level expression of the tna operon. All but one of the resistant mutants displayed greatly increased tna operon expression when grown in the presence of bicyclomycin. The tna operon of the wild-type drug-sensitive parent was also shown to be highly expressed during growth with noninhibitory concentrations of bicyclomycin. These findings demonstrate that resistance to this drug may be acquired by mutations at any one of three loci, two of which appear to be rho and rpoB. Zwiefka et al. (24) found that the antibiotic bicyclomycin segment and interacts with the transcribing RNA polymerase (bicozamycin), an inhibitor of the growth of several gram- molecule, causing it to terminate transcription (7, 9).
    [Show full text]
  • A Thyroid Hormone Receptor Coactivator Negatively Regulated by the Retinoblastoma Protein
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 9040–9045, August 1997 Biochemistry A thyroid hormone receptor coactivator negatively regulated by the retinoblastoma protein KAI-HSUAN CHANG*†,YUMAY CHEN*†,TUNG-TI CHEN*†,WEN-HAI CHOU*†,PHANG-LANG CHEN*, YEN-YING MA‡,TERESA L. YANG-FENG‡,XIAOHUA LENG§,MING-JER TSAI§,BERT W. O’MALLEY§, AND WEN-HWA LEE*¶ *Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245; ‡Department of Genetics, Obstetrics, and Gynecology, Yale University School of Medicine, New Haven, CT 06510; and §Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030 Contributed by Bert W. O’Malley, June 9, 1997 ABSTRACT The retinoblastoma protein (Rb) plays a E2F-1, a transcription factor important for the expression of critical role in cell proliferation, differentiation, and devel- several genes involved in cell cycle progression from G1 to S opment. To decipher the mechanism of Rb function at the (18). Rb inhibits E2F-1 activity by blocking its transactivation molecular level, we have systematically characterized a num- region (19–21). In contrast, Rb has been shown to have the ber of Rb-interacting proteins, among which is the clone C5 ability to increase the transactivating activity of the members described here, which encodes a protein of 1,978 amino acids of the CCAATyenhancer binding protein (CyEBP) family, and with an estimated molecular mass of 230 kDa. The corre- to be required for CyEBPs-dependent adipocyte and mono- sponding gene was assigned to chromosome 14q31, the same cytes differentiation (16–17).
    [Show full text]
  • EZH2 Reduction Is an Essential Mechanoresponse for The
    Li et al. Cell Death and Disease (2020) 11:757 https://doi.org/10.1038/s41419-020-02963-3 Cell Death & Disease ARTICLE Open Access EZH2 reduction is an essential mechanoresponse for the maintenance of super-enhancer polarization against compressive stress in human periodontal ligament stem cells Qian Li1,XiwenSun2,YunyiTang2, Yanan Qu2, Yanheng Zhou1 and Yu Zhang2 Abstract Despite the ubiquitous mechanical cues at both spatial and temporal dimensions, cell identities and functions are largely immune to the everchanging mechanical stimuli. To understand the molecular basis of this epigenetic stability, we interrogated compressive force-elicited transcriptomic changes in mesenchymal stem cells purified from human periodontal ligament (PDLSCs), and identified H3K27me3 and E2F signatures populated within upregulated and weakly downregulated genes, respectively. Consistently, expressions of several E2F family transcription factors and EZH2, as core methyltransferase for H3K27me3, decreased in response to mechanical stress, which were attributed to force-induced redistribution of RB from nucleoplasm to lamina. Importantly, although epigenomic analysis on H3K27me3 landscape only demonstrated correlating changes at one group of mechanoresponsive genes, we observed a genome-wide destabilization of super-enhancers along with aberrant EZH2 retention. These super- enhancers were tightly bounded by H3K27me3 domain on one side and exhibited attenuating H3K27ac deposition fl 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; and attening H3K27ac peaks along with compensated EZH2 expression after force exposure, analogous to increased H3K27ac entropy or decreased H3K27ac polarization. Interference of force-induced EZH2 reduction could drive actin filaments dependent spatial overlap between EZH2 and super-enhancers and functionally compromise the multipotency of PDLSC following mechanical stress. These findings together unveil a specific contribution of EZH2 reduction for the maintenance of super-enhancer stability and cell identity in mechanoresponse.
    [Show full text]
  • Structure of the Rho Transcription Terminator: Mechanism of Mrna Recognition and Helicase Loading
    Cell, Vol. 114, 135–146, July 11, 2003, Copyright 2003 by Cell Press Structure of the Rho Transcription Terminator: Mechanism of mRNA Recognition and Helicase Loading Emmanuel Skordalakes and James M. Berger* this process by a number of factors, such as NusG, Department of Molecular and Cell Biology which serve as antiterminators to ameliorate the termi- University of California, Berkeley nation properties of the enzyme (Sullivan and Gottes- 239 Hildebrand Hall, #3206 man, 1992). Berkeley, California 94720 Tethering of Rho to a rut site is independent of ATP binding and/or hydrolysis (Galluppi and Richardson, 1980; McSwiggen et al., 1988) and is mediated by an Summary N-terminal domain in each protomer of the Rho hexamer (Martinez et al., 1996a, 1996b; Allison et al., 1998; Bri- In bacteria, one of the major transcriptional termina- ercheck et al., 1998). Previous high-resolution NMR and tion mechanisms requires a RNA/DNA helicase known X-ray crystal structures of the N-terminal mRNA binding as the Rho factor. We have determined two structures domain of Rho have provided a structural view of this of Rho complexed with nucleic acid recognition site fold and its interactions with target substrates (Allison mimics in both free and nucleotide bound states to et al., 1998; Briercheck et al., 1998; Bogden et al., 1999). 3.0 A˚ resolution. Both structures show that Rho forms The domain consists of a three-helix bundle that rests a hexameric ring in which two RNA binding sites—a on top of a five-stranded ␤ barrel. The barrel belongs primary one responsible for target mRNA recognition to the oligonucleotide/oligossacharide binding (OB) pro- and a secondary one required for mRNA translocation tein superfamily and is primarily responsible for Rho’s and unwinding—point toward the center of the ring.
    [Show full text]
  • Rapid Isolation and Identification of Bacteriophage T4-Encoded Modifications of Escherichia Coli RNA Polymerase
    Rapid Isolation and Identification of Bacteriophage T4-Encoded Modifications of Escherichia coli RNA Polymerase: A Generic Method to Study Bacteriophage/Host Interactions Lars F. Westblade,† Leonid Minakhin,‡ Konstantin Kuznedelov,‡ Alan J. Tackett,†,§ Emmanuel J. Chang,†,4 Rachel A. Mooney,⊥ Irina Vvedenskaya,‡ Qing Jun Wang,† David Fenyö,† Michael P. Rout,† Robert Landick,⊥ Brian T. Chait,† Konstantin Severinov,‡ and Seth A. Darst*,† The Rockefeller University, New York, New York 10065, Waksman Institute for Microbiology and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, Department of Natural Sciences, York College/City University of New York, Jamaica, New York 11451, and Departments of Biochemistry and Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706 Received July 19, 2007 Bacteriophages are bacterial viruses that infect bacterial cells, and they have developed ingenious mechanisms to modify the bacterial RNA polymerase. Using a rapid, specific, single-step affinity isolation procedure to purify Escherichia coli RNA polymerase from bacteriophage T4-infected cells, we have identified bacteriophage T4-dependent modifications of the host RNA polymerase. We suggest that this methodology is broadly applicable for the identification of bacteriophage-dependent alterations of the host synthesis machinery. Keywords: Escherichia
    [Show full text]
  • Theoretical Principles of in Vitro Selection Using Combinatorial
    Theoretical Principles of In Vitro Selection UNIT 9.1 Using Combinatorial Nucleic Acid Libraries Over the past decade, a new paradigm for binding proteins, peptides, and small organic drug discovery (Gold, 1995) and biological molecules (reviewed in Klug and Famulok, research (Gold et al., 1995) has been developed 1994; Gold, 1995; Gold et al., 1995). This unit from technologies that integrate combinatorial presents a theoretical overview of in vitro af- chemistry with rounds of selection and ampli- finity selection using SELEX technology. fication, a technique that is called in vitro se- A schematic representation of the SELEX lection. Systematic Evolution of Ligands by process is shown in Figure 9.1.1 and may be EXponential enrichment, or SELEX (Ellington used to describe SELEX performed with librar- and Szostak, 1990; Tuerk and Gold, 1990) is a ies of RNA, RNA derivatives, or DNA. For the flexible and extremely successful form of this purposes of developing a mathematical model, technology that uses combinatorial libraries of the SELEX process for affinity binding may be oligonucleotides containing regions of ran- summarized in four steps: (1) generation of a domized sequence as potential ligands. Oli- library of potential ligands, (2) binding of the gonucleotide libraries (containing randomized library to the target molecule, (3) partitioning regions) provide, after selection, compounds of the bound ligands from the unbound ligands, that bind tightly to the intended target. The and (4) amplification of the partitioned ligands process of in vitro selection was called SELEX to generate a new, enriched library, leading by Tuerk and Gold (1990), while the selected again to step 1.
    [Show full text]
  • Abdullahi, Akilu Nuclear 80S Ribosomes Increase Upon Serum Starvation 51
    Posters A-Z Abdullahi, Akilu Nuclear 80S ribosomes increase upon serum starvation 51 Abernathy, Emma Virus-induced global cytoplasmic mRNA degradation impacts 52 transcription rates in mammalian cells Acosta-Alvear, Diego Blueprint of the mammalian IRE1 interactome revealed by unbiased 53 systems-level analyses Afroz, Tariq A fly-trap mechanism provides sequence-specific RNA recognition by 54 CPEB proteins Agarwala, Prachi 5' UTR localized G-quadruplexes synergistically modulate TGFß2 55 expression Ali Khan, Abrar Functional genetic variations in proximal promoter alter the expression 56 of 3-hydroxy-3-methyl glutaryl-coenzyme A reductase gene in spontaneously hypertensive rat ALqosaibi, Amany I. The role of some genes in Telomere Position Effect appears to involve 57 post-transcriptional regulation of a sub-telomeric reporter gene Alshiekh, Alak Targeting BRCA1 mRNA by tunable miR mimics 58 Alves, Lysangela The mRNAs associated to a zinc finger protein shift during stress 59 conditions: The zinc finger protein TcZC3H39 and the stress response in Trypanosoma cruzi Andries, Vanessa Role of NANOS3 in tumor progression 60 Antic, Sanja mRNA degradation on the ribosome in Drosophila cells 61 EMBO | EMBL Symposia: The Complex Life of mRNA Archambaud, Cristel The intestinal microbiota interferes with the microRNA response upon 62 oral Listeria infection Arnese, Renato Generation of a knock-in mouse model for the in vivo study of local 63 protein synthesis: a preliminary screening Babour, Anna Licensing mRNP for nuclear export: a role for chromatin
    [Show full text]