An induction principle for consequence in arithmetic universes Maria Emilia Maietti Dipartimento di Matematica Pura ed Applicata, University of Padova, via Trieste n.63, 35121 Padova, Italy
[email protected] Steven Vickers School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
[email protected] February 15, 2012 Abstract Suppose in an arithmetic unverse we have two predicates φ and for natural numbers, satisfying a base case φ(0) ! (0) and an induction step that, for generic n, the hypothesis φ(n) ! (n) allows one to deduce φ(n + 1) ! (n + 1). Then it is already true in that arithmetic universe that (8n)(φ(n) ! (n)). This is substantially harder than in a topos, where cartesian closedness allows one to form an exponential φ(n) ! (n). The principle is applied to the question of locatedness of Dedekind sections. The development analyses in some detail a notion of \subspace" of an arithmetic universe, including open or closed subspaces and a boolean algebra generated by them. There is a lattice of subspaces generated by the opens and the closed, and it is isomorphic to the free Boolean algebra over the distributive lattice of subobjects of 1 in the arithmetic universe. 1 Introduction As has often been said, toposes embody two quite different ideas, under which they are considered either as generalized universes of sets or as generalized topological spaces. Our aim here is to explore the same idea when applied to arithmetic universes (see [Joy05], [Mai10a]) instead of toposes. The geometric structure of Grothendieck toposes { that is to say, the structure that is used to generate them when one builds classifying toposes, that is preserved by inverse image functors for geometric morphisms, and that appears in Giraud's Theorem { is the set-indexed colimits and finite limits.