Species Richness and Genome Size Diversity in with Different Developmental Strategies: A DNA Barcoding Enabled Study

by

João Lima

A Thesis presented to The University of Guelph

In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology

Guelph, Ontario, Canada

© João Lima, May, 2012

ABSTRACT

Species Richness and Genome Size Diversity in Hymenoptera with Different Developmental Strategies: A DNA Barcoding Enabled Study

João Lima Advisors: University of Guelph, 2012 Professor TR Gregory Professor RH Hanner Professor JD Shorthouse

A species threshold was used to assign unidentified Hymenoptera into DNA barcode Operational

Taxa (DbOT) for both an assessment of species richness in rose gall communities and as part of a broad scale survey of genome size diversity. The species threshold of 2.2% was calculated from minimum interspecific divergence of DNA barcode (COI, mtDNA) and internal transcribed spacer region 1 (ITS1, rDNA) sequences from both identified and unidentified Hymenoptera associated with rose galls induced by Diplolepis (Cynipidae). Analysis of both DNA barcodes and ITS1 sequences suggested that several described species of Diplolepis (Cynipidae),

Periclistus (Cynipidae), and Torymus () require re-examination to define species boundaries. It was also determined that the total number of DbOTs is higher than previous estimates of species richness of Hymenoptera associated with rose galls induced by Diplolepis.

Additionally, genome size estimations were determined for 51 DbOTs from all eight families of

Hymenoptera associated with rose galls induced by Diplolepis, five of which did not have any previous genome size estimates. A subsequent large-scale survey of Hymenoptera enabled by the use of the DbOT approach produced genome size estimations for 309 DbOTs from 36 families in

13 superfamilies. It was shown that Hymenoptera do not have smaller genome sizes than other holometabolous orders, and that a lifestyle does not appear to constrain genome size.

The suggested positive relationship between genome size and development time was investigated by comparing mean genome size of taxa with known or apparent differences in development rate. It was concluded that statistical comparisons between taxa that are grouped in broad categories would be unlikely to detect significant differences in mean genome size because the range of biological features within such categories is highly variable. However, comparisons between interacting groups with narrowly defined development strategies determined that mean genome size was statistically smaller in taxa that obtained resources within a narrow window of opportunity. This result suggests that rapid development in relation to competitors may be important in species of Hymenoptera with higher mortality risk.

ACKNOWLEDGMENTS

I completed this PhD thesis with the help and support of many people, and I wish to thank everyone that was involved. With more time, paper, and personal reflection, I would include the name of everyone that held a door for me when I was trying to get to a meeting, anyone that shared a piece of paper and pen when I needed to take notes, and every audience member at each conference I presented a portion of the work from this PhD thesis. However, I recognize I cannot recall every interaction beginning from September 2007 up to and including my PhD defence date. I hope I have included names of individuals that I believe were relevant as either negative and/or positive influences on my thesis work. Please forgive any silly mistake if I have not included your name. Let me know about my silly omission error(s), and I will buy you a Coke. My PhD research program began with the generous support provided by the University of Guelph, College of Biological Sciences, Faculty Research Assistance Award to Dr. Ryan Gregory and Dr. Bob Hanner. I am grateful for this opportunity to pursue my doctorate degree, and this funding provided myself with the experience that I had believed would never be realized. From this beginning, the following acknowledgments developed. Thank you to my PhD advisory committee: Dr. Ryan Gregory, Dr. Bob Hanner, Dr. Joe Shorthouse, and Dr. Teri Crease. I appreciate the access to facilities and supplies required for this research. Each member of my committee provided guidance and feedback to a variety of issues during my graduate studies, and I believe I progressed forward despite the challenge of combining several independent and conflicting viewpoints. I was both delighted and inspired with repeated discussions with Dr. Ryan Gregory pertaining to Chapter Three and the final draft of my thesis. In the future, I hope to patiently listen to another person’s jumble of ideas, reflect wisely upon them, brainstorm possible pathways to improve the ideas, and then offer to listen again another day. I was also fortunate to have Dr. Teri Crease graciously accept my late invitation to participate as a committee member. I wish I had interacted with Dr. Teri Crease early in my post-graduate degree, but the honour and pleasure was postponed until my PhD candidacy exam. I believe that every following committee meeting, chapter review, and advisor- student interaction was strengthened by Dr. Teri Crease’s involvement. Thank you. I am grateful for support provided by Ontario Centres of Excellence, Flowers Canada (Ontario), the Government of Canada through Genome Canada, and the Ontario Genomics

iv

Institute to the International Barcode of Life Project. This funding enabled the Canadian Centre for DNA Barcoding (University of Guelph) to carry out the sequence analysis on the specimens. I also thank the Ontario Ministry of Economic Development and Innovation for funding the ongoing development of Barcode of Life Data Systems (BOLD). Thank you to all the staff of the Biodiversity Institute of Ontario that was involved in amplifying the DNA barcode and ITS1 sequences, and I especially appreciate the assistance of Constantine Christopoulos, Liuqiong Lu, Jayme Sones, Janet Topan, and Rick Turner. From the Laurentian University, I am grateful to Dr. Joe Shorthouse for access to specimens from both the reference collection and various collecting trips. Thank you to Anne Kidd for assistance in entering data on specimen data spreadsheets of identified Diplolepis (Cynipidae) that had been selected by Dr. Joe Shorthouse. I am grateful for support provided by an NSERC Discovery Grant and the Laurentian University Research Fund awarded to Dr. Joe Shorthouse. It was a pleasure working with Brandy Smallwood on various tasks during my summer at Laurentian University, and it was enjoyable to sort through emergence jars daily to collect live Hymenoptera exiting rose galls. Thank you to Dr. Mery Martinez for granting me access to the -80ºC freezer in order to store Hymenoptera specimens during the summer. I am grateful for support provided by The Northern Research Fund and Northern Scientific Training Program which allowed me to collect Hymenoptera from Churchill, MB. The excellent staff and facilities available at The Churchill Northern Study Center were crucial to my survival and sanity while conducting my research in the subarctic. Better luck next time, Mama Polar bear! From the University of Guelph, I am grateful to Eugene Wong and Rachel Breese for introducing me to my first piston-driven air displacement pipette, well-plate, primer set, and thermocycler. Heather Braid provided additional technical support with DNA barcoding protocols whenever time permitted. Dr. Brain Husband and Paul Kron rescued my PhD research by providing excellent technical assistance, generous allotment of time, and a working flow cytometer. Working with Paul Kron for a few months was an unexpected soothing experience, and I benefitted from the opportunity to work in an environment that was both academically and technically superb and maintained a friendly atmosphere. Nick Jeffery and Tyler Elliot were helpful in academic and personal matters, and I wish I had not been relocated to a different office so early during my post-graduate studies. Nick Jeffery was very supportive with technical

v assistance in understanding the interface programs of the three different models of flow cytometers that passed through the Gregory laboratory from 2008 to 2011. To my field collecting team members: Tyler Ellitot, Gláucia Lima, and John Wilson, I enjoyed our trips and I am greatful for your time and efforts in collecting the WeirdTinyFliers! Most important to me personally was the support and assistance from Gláucia Lima. Foram imbatíveis! Without Gláucia Lima’s support I would not have recovered from an unexpected medical emergency in sufficient time to begin my PhD graduate studies. Gláucia Lima was able to gather the medical team more rapidly than I would have been able to achieve in Brasil, and her persistence accelerated the appointment for the medical procedure and following treatments. Gláucia Lima’s involvement enabled me to arrive in Canada in the third week of September 2007 instead of forfeiting the position at the University of Guelph. I hope I never have to experience another medical emergency in a foreign country, but if I suffer such a misfortune, I would be lucky if Gláucia Lima would assist me again. Gláucia Lima also provided incredible support during the years of my PhD research. She provided additional security on field trips north of Cochrane, ON. Better luck next time, black bears! Gláucia Lima repeatedly collected on her own time and brought home bushels of leaf rolls, baskets of oak galls, and ziploc bags of WTFs. Most of them were Hymenoptera to boot! She is the most savvy civil engineer I personally know. She assisted me with sorting of live insects and complied with my strange requests to return any unnecessary insect back to the wild unharmed. She happily photographed hundreds of specimens despite their peculiar and unattractive characteristics. Thank you for correcting the grammar and spelling of my Portuguese. She also provided me with financial and personal support that was kind and generous throughout this post-graduate experience. I am indebted to you Gláucia Lima, and you should be aware that your involvement with me before and during this doctorate degree foi bom pra caramba! Thank you.

P.S. Gláucia Lima, eu te amo!

vi

DEDICATION Para todos que nasceram sozinhos.

Terceira ilha, Terceiro filho, Terceira vez!

Conversa sobre a minha pesquisa Anônimo: Quem é seu orientador? Eu: Na verdade eu tenho três orientadores. Anônimo: Três? Nossa, parece você tem três esposas! Eu: Infelizemante, parace mais que eu tenho três sogras.

Oração de São Francisco de Assis Senhor, fazei-me instrumento de vossa paz Onde houver ódio, que eu leve o amor Onde houver ofensa, que eu leve o perdão Onde houver discórdia, que eu leve a união Onde houver dúvida, que eu leve a fé Onde houver erro, que eu leve a verdade Onde houver desespero, que eu leve a esperança Onde houver tristeza, que eu leve a alegria Onde houver trevas, que eu leve a luz

Ó Mestre, fazei que eu procure mais Consolar, que ser consolado Compreender, que ser compreendido Amar, que ser amado Pois, é dando que se recebe É perdoando que se é perdoado E é morrendo que se vive para a vida eterna

vii

TABLE OF CONTENTS

List of Tables ...... xii

List of Figures ...... xiii

List of Appendices ...... xv

CHAPTER ONE

General introduction to lifestyles of Hymenoptera, DNA barcoding, and genome size ... 1

1.1 Lifestyles of Hymenoptera ...... 2

1.2 DNA barcoding and Hymenoptera ...... 5

1.3 Identification without species names ...... 7

1.4 Insects: development and genome size ...... 9

1.5 Hymenoptera: genome size estimates ...... 12

1.6 Common genome size estimation methods ...... 12

1.7 Thesis objectives ...... 15

CHAPTER TWO

Assessing species richness of gall inducers of the genus Diplolepis (Hymenoptera:

Cynipidae), inquilines of the genus Periclistus (Hymenoptera: Cynipidae), and

(Hymenoptera, Chalcidoidea and Hymenoptera, ) associated with rose gall communities found in Canada ...... 21

ABSTRACT ...... 22

INTRODUCTION ...... 23

2.1 Cynipid component communities ...... 23

2.2 Cynipid galls ...... 24

2.3 Rose gall inducers: Diplolepis ...... 25 viii

2.4 Rose gall inquilines: Periclistus ...... 26

2.5 Rose gall parasitoids ...... 28

2.6 Molecular identification tool: DNA barcoding...... 29

2.7 Objectives ...... 32

MATERIALS AND METHODS ...... 33

2.8 Specimen collection and deposition...... 33

2.9 DNA extraction and PCR amplification...... 35

2.10 Sequence Analyses ...... 36

RESULTS ...... 37

2.11 Diplolepis: COI and ITS1 ...... 38

2.12 Periclistus: COI and ITS1 ...... 39

2.13 Torymus: COI and ITS1 ...... 41

2.14 Calculated species threshold ...... 42

2.15 Rose gall community species composition ...... 45

DISCUSSION ...... 46

2.16 Cynipidae morphology and DNA barcodes ...... 48

2.17 Gall morphology and inducer identification ...... 55

2.18 Parasitoids of rose galls and DNA barcodes ...... 58

2.19 Cryptic, synonymous, new, and unsampled species ...... 60

CONCLUSION...... 63

ix

CHAPTER THREE

Patterns of genome size diversity in Hymenoptera and a test of possible development constraints: a large-scale study enabled by DNA barcoding ...... 84

ABSTRACT ...... 85

INTRODUCTION ...... 86

3.1 Hymenoptera feeding ...... 86

3.2 Definitions of larval feeding modes ...... 86

3.3 Genome size and Hymenoptera ...... 90

3.4 Objectives ...... 92

MATERIALS AND METHODS ...... 94

3.5 Specimen collection and deposition ...... 94

3.6 DNA extraction, PCR amplification, and sequence analyses ...... 96

3.7 Genome size estimation ...... 96

3.8 Other published data: Genome size estimations ...... 98

3.9 Data Analysis ...... 98

RESULTS ...... 98

3.10 Range of Hymenoptera genome sizes ...... 98

3.11 Genome size: dichotomous hypothesis ...... 101

3.12 Genome size: cleptoparasites and hosts ...... 101

3.13 Genome size: inquilines and inducers ...... 102

DISCUSSION ...... 103

3.14 Range of Hymenoptera genome size ...... 103

3.15 Genome size: dichotomous hypothesis ...... 106

x

3.16 Genome size: cleptoparasites and hosts ...... 109

3.17 Genome size: inducers and inquilines ...... 110

3.18 Genome size and biologically relevant comparisons ...... 111

CONCLUSION...... 112

CHAPTER FOUR

General discussion and conclusion ...... 122

4.1 Identification challenges within this thesis ...... 123

4.2 Conclusions and synthesis ...... 127

REFERENCES ...... 134

xi

LIST OF TABLES

CHAPTER ONE

Table 1.1. Families of Hymenoptera known from Canada ...... 18

Table 1.2. Species of Hymenoptera available for genome size estimates ...... 19

CHAPTER TWO

Table 2.1. Species of Diplolepis (Cynipidae) worldwide ...... 64

Table 2.2. Species of Periclistus (Cynipidae) in North America ...... 65

Table 2.3. Species of parasitoid associated with rose galls induced by Diplolepis ..... 66

Table 2.4. Species of Torymus (Torymidae) associated with rose galls induced by

Diplolepis ...... 67

Table 2.5. Species of Diplolepis (Cynipidae) selected for DNA barcoding ...... 68

Table 2.6. Species of Periclistus (Cynipidae) selected for DNA barcoding ...... 69

Table 2.7. Species of Torymus (Torymidae) selected for DNA barcoding ...... 70

Table 2.8. Unidentified Hymenoptera exiting rose galls selected for DNA barcoding 71

Table 2.9. Periclistus (Cynipidae) associations with rose galls induced by Diplolepis 72

Table 2.10. Torymus (Torymidae) associations with rose galls induced by Diplolepis 73

Table 2.11. Species richness of Hymenoptera associated with rose galls induced by

Diplolepis ...... 74

CHAPTER THREE

Table 3.1. Studies of genome size estimates of Hymenoptera by flow cytometry ...... 113

Table 3.2. Total number of genome size estimates of Hymenoptera ...... 114

Table 3.3. Egg development time of oak and rose gall ...... 115

CHAPTER FOUR

Table 4.1. Total number of genome size estimates of Insecta ...... 132

xii

LIST OF FIGURES

CHAPTER ONE

Figure 1.1. Genome size diversity of superfamilies within Hymenoptera as determined in

previous studies ...... 20

CHAPTER TWO

Figure 2.1. Amplification success of DNA barcodes from adults and larvae of Diplolepis

(Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae) ...... 75

Figure 2.2. NJ dendrogram of reference vouchers of Diplolepis (Cynipidae) ...... 76

Figure 2.3. NJ dendrogram of reference vouchers of Periclistus (Cynipidae) ...... 77

Figure 2.4. NJ dendrogram of reference vouchers of Torymus (Torymidae) ...... 78

Figure 2.5. NJ dendrogram of both reference and unidentified adult and larva specimens

of Diplolepis (Cynipidae) ...... 79

Figure 2.6. NJ dendrogram of both reference and unidentified adult and larva specimens

of Periclistus (Cynipidae) ...... 80

Figure 2.7. NJ dendrogram of both reference and unidentified adult and larva specimens

of Torymus (Torymidae) ...... 81

Figure 2.8. NJ dendrogram of unidentified adult and larva specimens of parasitoids

(except Torymidae) associated with rose galls induced by Diplolepis ...... 82

Figure 2.9. Schematic representation of post-DNA barcoding work protocol for species

identification of DbOTs ...... 83

xiii

CHAPTER THREE

Figure 3.1. Genome size diversity of superfamilies within Hymenoptera ...... 116

Figure 3.2. Genome size diversity of subfamilies within ...... 117

Figure 3.3. Genome size diversity of subfamilies within ...... 118

Figure 3.4. Genome size diversity of cleptoparasites and reported hosts ...... 119

Figure 3.5. Genome size diversity of inquilines and inducers ...... 120

Figure 3.6. Genome size diversity of orders within class Insecta ...... 121

CHAPTER FOUR

Figure 4.1. New genome size estimates within Hymenoptera ...... 133

xiv

LIST OF APPENDICES

Appendix 1. Taxa included in DNA barcoding of rose gall inhabitants, together with identification and collection information ……………….………...... 160

Appendix 2. Genome size estimation of Hymenoptera with information on specimen

Identification …………………….………………..……………...... 195

Appendix 3. Genome size estimation of Hymenoptera with information on specimen collection and biology…………….…………………..…………...... 220

Appendix 4. Published studies of genome size estimation of Hymenoptera with information on biology……………………….…………………...... 238

xv

CHAPTER ONE

General introduction to lifestyles of Hymenoptera, DNA barcoding, and genome size

1

SUMMARY

The current number of genome size estimates of Hymenoptera is limited in part by the difficulty in identifying described species and the large number of species that lack formal names. This is particularly significant in efforts to study genome size diversity in Hymenoptera with varying life histories, such as among different types of parasitoids. This chapter provides an overview of Hymenoptera biology as it relates to questions about genome size evolution in the order, reviews the state of knowledge of genome size diversity in these insects and the major questions that remain unresolved in this area, and summarizes the potential utility of DNA barcoding for enabling large-scale studies of Hymnoptera genome size diversity.

1.1 Lifestyles of Hymenoptera

The order Hymenoptera is the sister lineage of all other holometabolous insects (Ishiwata et al. 2011) — i.e., insects that develop from an egg, through several larval instars, to a pupa stage, and finally emerge as an adult (Gauld and Bolton 1988). The order Hymenoptera contains over 115, 000 described species worldwide, and it is among the four most diverse groups of insects along with the orders Coleoptera (beetles), Diptera (flies), and Lepidoptera (butterflies and moths) (Sharkey 2007). The Hymenoptera are major constituents of terrestrial habitats because of their numerous interactions with other organisms via a diverse array of ecological lifestyles (Austin and Dowton 2000). They are important as , parasitoids, pollinators, predators, and scavengers (Sharkey 2007, Huber 2009). The type of food resource provided to larvae by the ovipositing female has been an important biological trait throughout the evolution of Hymenoptera and has resulted in a large variety of life histories (Gauld and Bolton 1988).

Ancestral Hymenoptera fed on plant tissues, and the transition from phytophagy to forms of

2

carnivory (parasitoids and predators) has led to the greatest species diversity of the order

(Sharkey 2007, Heraty et al. 2011) The predominant lifestyle in modern Hymenoptera is that of parasitoids where larvae directly obtain nourishment from a single host individual to complete their development, and in which death of the host always results (Gauld and Bolton 1988,

Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997). Approximately half the species of

Hymenoptera are parasitoids (Gauld and Bolton 1988, Eggleton and Belshaw 1992, Godfray

1994, Quicke 1997, Grisssell 1999, Huber 2009).

Although the term parasitoid is generally recognized by ecologists as a single trophic level, it actually encompasses a number of highly variable behaviours and strategies(Pennacchio and Strand 2006). In particular, parasitoids are functionally diverse in their interactions with hosts, and development of parasitoid progeny can be within the host (endoparasitoid) or externally on the surface of the host (ectoparasitoid). Different species attack a specific host life stage and their resulting progeny then leave the host at a specific life stage (Mills 1992, Godfray

1994, Quicke 1997). For example, some species of parasitoid will attack insect eggs and their progeny will exit from this host egg while other species of egg parasitoid have progeny which delay development until the larva stage of the host. The former parasitoid represents an

“idiobiont” which paralyzes their host at the beginning of the association or prevents the host from moulting to the next stage whereas the latter parasitoid is a “koinobiont” which allows the host to continue development after the parasitoid begins feeding (Askew and Shaw 1986). This dichotomous grouping of parasitoids into idiobionts or koinobionts was initially proposed to allow comparative tests of host specificity (Askew and Shaw 1986), and it is also believed to organize differences in several life history traits between the two groups (Blackburn 1991,

Godfray 1994, Quicke 1997, Mayhew and Blackburn 1999).

3

Size and development time are considered two of the most important fitness related life history traits that are generally in conflict with each other because limitations in aspects such as metabolism and resources do not allow an organism to grow both rapidly and large (Mackauer and Sequeira 1993, Harvey and Strand 2002, Harvey 2005). Size has been most often used in studies of intraspecific fitness because of its ease of measurement and its strong correlation with other fitness related measures such as fecundity and longevity (Godfray 1994, Quicke 1997).

However, analysis of one of the best datasets of life history traits and ecological variables of parasitoids, which included 474 species from seven superfamilies and 25 families (Blackburn

1990), determined that body size did not correlate with either fecundity or longevity across parasitoid taxa (Mayhew and Blackburn 1999). It is possible that higher mortality of early host stages (young larvae) has selected for small egg size and higher fecundity in parasitoids, especially koinobionts, that attack these stages (Blackburn 1991), and small hosts generally produce small parasitoids (Godfray 1994, Quicke 1997). Development time has received less attention than size in studies of parasitoid fitness related life history traits, but it is important because of the trade-off between development time and adult size (Mackauer and Sequeira 1993,

Harvey and Strand 2002, Harvey 2005). Rapid development may be advantageous to

Hymenoptera that have high mortality risks; for example, Ichneumonoidea (Braconidae and

Ichneumonidae) that attack exposed hosts (external foliage feeders) favour rapid development over size as compared to Ichneumonoidea that attack concealed hosts (fruit, seeds, stems)

(Harvey and Strand 2002). Idiobionts generally attack concealed hosts because an exposed paralysed host, and the parasitoid consuming it, would be susceptible to general predation

(Godfray 1994, Quicke 1997). Therefore, the protected habitat of idiobionts should favour longer development, but the Blackburn dataset determined that development time was shorter in

4

idiobionts as compared to koinobionts across a wide survey of parasitoids (Mayhew and

Blackburn 1999).

Knowledge about and biology of species of Hymenoptera is hampered by the challenge of their identification because of both intraspecific morphological plasticity and small body size (Godfray and Shimada 1999, Gariepy et al. 2007, Grissell 1999, Stone et al. 2008,

Huber 2009). Studies of life history traits of Hymenoptera, such as development time, are generally limited either by biology (parasitoid: Mayhew and Blackburn 1999) and/or taxonomy

(Ichneumonoidea: Braconidae and Ichneumonidae: Harvey and Strand 2002) to facilitate the search for possible patterns. To support broad scale comparisons of development time between interacting species of Hymenoptera with different lifestyles and habitats, a simple and efficient tool is required for rapid species identification.

1.2 DNA barcoding and Hymenoptera

It was proposed that DNA barcodes could be used to confidently link field collected organisms with a reference sequence of a previously identified species (Hebert et al. 2003). The selected DNA barcode region corresponds to nucleotide positions 1490-2198 of the Drosophila yakuba mitochondrial genome sequence, which is ~700 nucleotides of the 5’ end of the cytochrome c oxidase subunit 1 gene (Clary and Wolstenholme 1985). One of four nucleotides is located at each position along a single strand of DNA and this provides enormous variation in which to search for characters to identify species (Hebert et al. 2003). Coupled with a 2% rate of substitution per million years in mitochondrial DNA (Brown et al. 1979), separate species potentially acquire enough differences in nucleotides such that sequences are more different between species as compared to within species (Hebert et al. 2003). A query DNA barcode of an

5

unknown specimen can be compared to DNA barcodes of vouchered specimens on the Barcode of Life Database website (BoLD, www.barcodinglife.org). Confirmation of species identification is then assessed by user preference of criteria such as, but not limited to, closest match similarity or Neighbour-joining tree based methods. An advantage of the BoLD database is that reference

DNA barcodes are accompanied with information on taxonomy and collection details of the vouchered specimen.

Using DNA barcoding for identification of all metazoan taxa is ambitious (Hebert et al.

2003), and its application is useful in discriminating members of highly diverse taxa, such as insects, which are challenging to identify and are of ecological, economic and medical importance (Scudder 2009). The importance of species identification by DNA barcodes has been suggested for biosurveillance of released biological control agents (Hanner et al. 2009), detection of pests in globally traded plant materials (Floyd et al. 2010), and biomonitoring of pest Lepidoptera (deWaard et al. 2010). In fact, the utility of DNA barcoding as a rapid and accurate molecular tool for identification of Hymenoptera is accepted and recognized by several prominent researchers whose work includes both classical and molecular taxonomy (Smith et al.

2008, Sheffield et al. 2009, Ács et al. 2010, Boring et al. 2011, Santos et al. 2011). Additionally,

DNA barcoding has been successfully used to distinguish closely related species of parasitoids

(Monti et al. 2005), to quantify level of parasitism in the field (Gariepy et al. 2007, 2008), to discover cryptic species of parasitoids (Sha et al. 2006, Lotfalizadeh et al. 2007), and to assess host-parasitoid associations (Rougerie et al. 2010, Hrcek et al. 2011).

The simplest and least contentious goal of DNA barcoding is to guide a non-specialist to species determination as would the role of an identification key or published description

(DeSalle et al. 2005, Packer et al. 2009, Teletchea 2010). DNA barcoding has been widely

6

accepted by the scientific community as a valuable molecular identification tool that contributes data in the support of taxonomy and other biological sciences (i.e. ecology, forensics) (DeSalle et al. 2005, Waugh 2007, DeWalt 2011). The success of species identification by DNA barcoding requires an established library of DNA barcoding sequences of species from a reference collection (Casiraghi et al. 2010, Yassin et al. 2010).Unfortunately, the BoLD website does not contain a coverage of DNA barcodes that allows a query sequence of an unidentified individual to be confidently assigned to species or genera for most families of Hymenoptera (Santos et al.

2011). However, a sequence divergence threshold could be used as a surrogate approach for identification of Hymenoptera without the requirement of species names (Smith et al. 2005a,

Smith et al. 2009, Santos et al. 2011).

1.3 Identification without species names

Collection, sample preparation, and identification of a wide range of insect taxa to species level requires considerable costs, taxonomic expertise, and time that may be beyond the resources available for many research projects (Krell 2004, Derraik 2010, DeWalt 2011, Santos et al. 2011). Grouping specimens into morphological categories, such as Recognizable

Taxonomic Units (RTUs), is a substitute for species identification when the primary objective of a study is to organize data by biology (i.e. idiobiont) or ecology (i.e. shared hosts) rather than to formally describe and name taxa (Oliver and Beattie 1993). Unfortunately, it has been repeatedly stated that morphological surrogate systems of species identification seek to exclude taxonomic experts or trivialize the importance of species identification (Goldstein 1997, Krell 2004).

Collaboration with taxonomic experts is preferred and actively searched for during rapid biological assessments (Beattie and Oliver 1999), but expertise is often lacking due to constraints

7

of time or funding (Beattie and Oliver 1994). The usefulness of any morphological surrogate approach is increased when both taxonomic experts are involved to verify the categorized taxa and specimen data is made available on an information database (Beattie and Oliver 1994).

However, when morphological characters are absent from specimens, molecular sequences may be analyzed to group specimens into categories of identification.

Similarly to criticisms of the use of RTUs as morphological surrogate systems of species identification, DNA barcoding has been repeatedly criticized as a molecular method that excludes taxonomic experts or trivializes the importance of species identification (Will et al.

2005, Rubinoff 2006, Ebach and de Carvalho 2010). Despite repeated criticism of using a species threshold in biodiversity inventories, estimates of taxon richness among a species threshold and morphology were not significantly different for in Antsiranana, Madagascar

(Smith et al. 2005a), or for parasitoids in Manitoba, Canada (Smith et al. 2009). The use of a species threshold does not suggest that alternative methods for species delimitation are not available and superior, but an integrative taxonomic method requires well sampled populations for which the morphology, geography, ecology, and behaviour of taxa are well known (DeSalle et al. 2005, Padial et al. 2010, Yassin et al. 2010). A species threshold has an important role in providing a rapid and inexpensive method of separating species of Hymenoptera when the majority collected will be of small sample size (i.e. singletons), be from undescribed species, and be from a large number of families within a narrow geographic area.

The simplest method to increase the number of broad scale comparisons of development time between interacting species of Hymenoptera with different lifestyles and habitats would be to obtain live individuals of described species from cultures. However, the list of approved parasitoids that are sold within Canada only includes 39 species in two superfamilies from seven

8

families (Table 1.2, CFIA 2011). Additionally, the Hymenoptera listed within the programs of annual meetings of the Entomological Society of Canada (ESC) from 2007-2011 cover only eight superfamilies from 16 families (Table 1.2, ESC 2011), all of which are either pinned or preserved in ethanol. An optimistic estimate of the total number of live and identified

Hymenoptera available for a comparative study of development time is 25 species in 2 superfamilies from 6 families (Table 1.2).

Given the limitations of obtaining live Hymenoptera from a wide range of families with a variety of lifestyles from available cultures, field collections of Hymenoptera are necessary. The

Canadian Hymenoptera include species from 21 superfamilies and 66 families (Table 1.1), but several families are rare (n ≤ 5 species) and not represented in each province or territory.

Hymenoptera is estimated to include the greatest number of species of any insect order in

Canada, and is also considered to have the greatest proportion of undescribed species (Masner et al. 1979). Because field collected Hymenoptera will most likely be both undescribed (Masner et al. 1979) and not available on the BoLD website (Santos et al. 2011), a species threshold is required to separate individuals into separate DbOTs when the genetic divergence between them is greater than a predetermined value. I will explore the use of a species threshold to categorize collected Hymenoptera into DbOTs to circumvent the limited number of live described species available for comparative studies of development time.

1.4 Insects: development and genome size

Organismal growth is dependent upon size and division of cells and the amount of differentiation of cells, tissues, and organs (Hafen and Stocker 2003). Development in insects can be grossly divided into components of time and complexity where the former is the duration of components of the life cycle and the latter is the amount of morphological changes in a life 9

cycle (Gregory 2002). The amount of DNA contained in the haploid set of chromosomes of an organism, defined as C-value or genome size (Greilhuber et al. 2005), positively correlates with both cell size and cell division time because a large amount of DNA cannot physically fit into a small cell and a larger genome takes more time to replicate, respectively (Gregory 2002).

Genome size is measured by weight or by number of base pairs, and the two measurements may be interconverted using the following formula (Doležel et al. 2003):

[i.] Genome Size (Mbp)† = 0.978 109  mass

Mbp or, [ii.] Genome Size (pg)‡ = 0.978 109 where, † Mbp is equal to 106 nucleotide base pairs

‡ mass is measured in picograms (10-12 g)

The direct influence of genome size on the cellular properties of size and division time may influence organism level traits such as cell size, body part size, development time, developmental complexity, and ecological interactions (Gregory 2005). Genome size is positively correlated with sperm dimensions, such as sperm area of leaf beetles (Coleoptera: Chrysomelidae)

(Petitpierre et al.1993) and sperm length of fruit flies (Diptera: Drosophilidae) (Gregory and

Johnston 2008). Positive correlations of genome size and size of specific body parts have been reported using the wings of mosquitoes (Diptera: Culicidae) (Ferrari and Rai 1989) and fruit flies

(Diptera: Drosophilidae) (Craddock et al. 2000), body length of aphids (Hemiptera: Aphididae)

(Finston et al. 1995), and thorax length of fruit flies (Diptera: Drosophilidae) (Gregory and

Johnston 2008). However, no significant correlation was found between genome size and head

10

width of ants (Hymenoptera: Formicidae) (Tsutsui et al. 2008) and genome size and intertegular span of (Hymenoptera: ) (Tavares et al. 2010a). Size of any phenotypic trait is a combination of both number and size of cells (Hafen and Stocker 2003), and so positive correlations with genome size are not universal in all body parts and all insect taxa (Gregory

2005).

Holometabolous insects have a pupa stage during their development which is absent from ametabolous and hemimetabolous insects, and the developmental complexity has led to the evolution of rapid life cycles (Truman and Riddiford 1999, 2002). Holometabolous insects have genome size below 2 pg (Gregory 2002), and it has been suggested that this threshold may be due to the extent of modifications occurring during the transformation of the pupa to the adult

(Gregory 2002). Moreover, imaginal discs of holometabolous insects differentiate and develop during larval instars thereby reducing the time required for adult structures to form and support rapid life cycles (Truman and Riddiford 1999, 2002). Genome size is negatively correlated with total development time of mosquitoes (Diptera: Culicidae) (Ferrari and Rai 1989) and fruit flies

(Diptera: Drosophilidae) (Gregory and Johnston 2008), and pupa development time of ladybird beetles (Coleoptera: Coccinellidae) (Gregory et al. 2003). An association of genome size and development time has not been investigated in previous studies with Hymenoptera (Gadau et al.

2001, Johnston et al. 2004, Honeybee Genome Sequencing Consortium (2006), Barcenas et al.

2008, Tsutsui et al. 2008, Lopes et al. 2009, Ardila-Garcia et al. 2010, Tavares et al. 2010a,

Tavares et al. 2010b, Gokhman et al. 2011, Hanrahan and Johnston 2011).

11

1.5 Hymenoptera: genome size estimates

Genome size has been estimated by several methods in 162 species of Hymenoptera, and these estimates include six superfamilies and 16 families (Figure 1.1, Gregory 2011). Species coverage is composed of 39.5 % ants (Formicidae), 24.1 % bees (Apidae), 19.8 % parasitoids

(, Braconidae, , , , Ichneumonidae, ,

Pteromalidae, , and ), 0.6 % (), and 16.0 % wasps

(, , and ) (Appendix 4, Gregory 2011). Since approximately 50 % of the species of Hymenoptera are parasitoids (Gauld and Bolton 1988, Eggleton and Belshaw

1992, Godfray 1994, Quicke 1997, Grisssell 1999, Huber 2009), this lifestyle is under represented in the current genome size estimates of Hymenoptera. Average number of genera per family with genome size estimates by all methods is 5.7 ± 9.02, but the average number of genera per family drops to 2.9 ± 2.11 when social Hymenoptera, such as ants and bees, are not included. In terms of coverage by number of families, genera, or species, Hymenoptera currently has the least number of genome size estimates in comparison to the other diverse holometabolous orders Coleoptera (beetles), Diptera (flies) and Lepidoptera (butterflies and moths) (Gregory

2011).

1.6 Common genome size estimation methods

Whole genome sequencing is expensive and intensive both in terms of number of people and time required (Bennett and Leitch 2005, Gregory 2005), so it is not feasible as a routine method for determining genome size of most species. Currently, most genome size estimations are undertaken either by Feulgen densitometry or flow cytometry, which are complementary techniques with their own advantages and disadvantages (Bennett and Leitch

2005, Gregory 2005).

12

Feulgen stain reaction is a specific stain that stoichimetrically binds to DNA thus providing a measurement of the amount of DNA when compared to a standard with known genome size (Bennett and Leitch 2005, Gregory 2005). Cells are fixed to microscope slides, treated to the Feulgen stain reaction, and then the amount of light absorbed by the stained nuclei is calculated (Bennett and Leitch 2005, Gregory 2005). Haemocytes, muscles, and spermatozoa are preferred cell types of Hymenoptera prepared for the feulgen reaction (Gregory 2011). A major advantage of using Feulgen densitometry is that once cells are fixed on slides, these preparations can be re-examined at different times and locations making field work in remote areas possible and allowing collaboration with researchers in laboratories elsewhere. A major disadvantage is that the Feulgen stain reaction is time consuming and hinders analysis of a large number of taxa both intraspecifically and interspecifically (Gregory 2005).

Flow cytometry uses a nucleus-staining fluorochrome that emits light when excited by a laser, and peak of fluorescence is measured and compared to peak of fluorescence of a standard with known genome size (Bennett and Leitch 2005, Gregory 2005). Thousands of cells from a specimen are suspended in a buffer solution and analyzed with a flow cytometer in less than five minutes. Muscles and neural ganglia are preferred cell types of Hymenoptera prepared for flow cytometry (Gadau et al. 2001, Johnston et al. 2004, Barcenas et al. 2008, Tsutsui et al. 2008,

Lopes et al. 2009, Ardila-Garcia et al. 2010, Tavares et al. 2010a, Tavares et al. 2010b,

Gokhman et al. 2011, Hanrahan and Johnston 2011). A major advantage to using flow cytometry is that many samples can be analyzed quickly allowing for larger replication of intraspecific genome size estimates and interspecific comparisons (Gregory 2005). A major disadvantage is that live or flash frozen cells are required which hinders analysis and

13

collaboration because the transport of live insects is strongly regulated and specimens may not arrive in a timely manner to permit analysis.

Parasitoid and social Hymenoptera predominantly have female biased sex ratios (Godfray

1994, Quicke 1997), and so the probability of collecting live males from the field is low. Hence, obtaining spermatozoa from a wide range of families from many superfamilies for genome size estimation by Feulgen densitometry would not be practical. In contrast, muscles and neural ganglia required for flow cytometry would permit genome size estimation regardless of sex of the sample. It is necessary that the head or entire body of recently euthanized specimen is removed and damaged during genome size estimation in the flow cytometer, and so the specimen cannot be identified after processing for flow cytometry. The likelihood that field collected

Hymenoptera can be identified to species while alive and then transported to the laboratory for processing for genome size estimation while still alive is low. Though female biased sex ratios are the norm for most species of Hymenoptera (Godfray 1994, Quicke 1997), males will be encountered periodically, and another complicating factor of identification is linking male and female specimens of the same species. For example, males of Ichneumonidae are generally smaller than females and their small size coupled with character-reduction and intraspecific variation makes them difficult to study (Aguiar and Santos 2010). This diverse order of insects contains identification characteristics that are peculiar to specific taxonomic levels (family, genus, species) and particular identification challenges are not equally shared among all taxa, but the challenge of species identification is nearly impossible if the specimen must remain alive or the entire head or body is missing. To successfully process species of Hymenoptera for genome size estimation, data independent of morphology is required for grouping individuals as species

14

without limitations of gender, lifestage (egg, larva, pupa, adult), or taxonomically relevant characters (antennae, head, thorax).

1.7 Thesis objectives

The research theme of this thesis is to compare genome size of interacting species of

Hymenoptera with different development strategies. To achieve this, it was necessary to collect live Hymenoptera from the field, and subsequently remove the legs and head from these unidentified individuals for DNA barcoding and flow cytomety protocols, respectively. In order to organize these unidentified individuals into species groups, molecular sequences of COI and

ITS1 amplified from vouchered museum specimens were used to calculate a species threshold.

Though Chapter Two and Chapter Three can be read as distinct independent studies, all sampled genera within the families of Hymenoptera involved the use of both DNA barcoding and flow cytometry. In order to limit redundancy in this thesis, the resultant molecular sequence and genome size data generated from these Hymenoptera were partitioned into either Chapter Two or

Chapter Three, respectively. Thus, the chapters were written so as to emphasize distinct results during the development of a species threshold and the comparative analysis of genome size estimates, respectively. Each chapter examines a distinct aspect of the overall theme, but they both contribute to the same theme. The primary objectives of the thesis are divided as follows:

Chapter Two

A species threshold is calculated by using the test case of Hymenoptera associated with rose galls induced by Diplolepis (Cynipidae). The calculated species threshold will be critical to group unidentified Hymenoptera into species groups (DbOTs) in both Chapter Two and Chapter

15

Three. Using this species threshold, specimens are enumerated to examine whether or not the number of recognized species of Hymenoptera associated with rose galls induced by Diplolepis

(Cynipidae) would increase, reduce or remain the same. This system was selected because it includes Hymenoptera of three superfamilies from eight families, and many of the species of

Canadian Diplolepis (Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae) have been morphologically identified to species by JD Shorthouse and his graduate students. In order to calculate a species threshold, vouchered museum specimens from the JD Shorthouse reference collection at Laurentian University were selected for DNA barcoding, and in select cases ITS1 sequences were also amplified. In addition, genome size estimations were gathered from several species in each family for use in Chapter Three.

Chapter Three

Live Hymenoptera from 36 families were collected in order to analyse genome size diversity across a larger sample of superfamilies, families, and species than is currently available in the genome size dataset. Identification of field collected Hymenoptera into DbOTs was based on the species threshold calculated from the test case in Chapter Two. Coincidently, several

DbOTs from all families within Chapter Two had genome size estimated. There is currently insufficient representation of different lifestyles, superfamilies and families among genome size estimates of Hymenoptera. Moreover, parasitoids are underrepresented in the data, which does not allow for a test of differences in mean genome size between the important dichotomy of parasitoid lifestyles, idiobionts and koinobionts. The idea that parasitoid lifestyles constrain genome size is put to the test by comparing genome size of lineages without a parasitoid ancestor to lineages that are derived from a parasitoid ancestor. Differences in mean genome size between

16

groups of Hymenoptera with different lifestyles are examined. Specific comparisons are made between idiobiont and koinobiont species within both Braconidae and Ichneumonidae, and between interacting species with suspected differences in development time and mortality risk.

17

Table 1.1 Familiesδ of Hymenoptera known from Canada†. no. species† no. species† known known + + Superfamily Family estimated Superfamily Family estimated

Apoidea: ‡ Ichneumonoidea: Braconidae 4030 : Apidae§ 977 Ichneumonoidea: Ichneumonidae 7000 Apoidea: Crabronidae‡ : 1 Apoidea: Sphecidae 403 Orussoidea: 4 : Cephidae 18 : 53 : 135 : ∆ 550 Ceraphronoidea: 135 : 2 Chalcidoidea: Aphelinidae 50 Proctotrupoidea: Pelecinidae 1 Chalcidoidea: 37 Proctotrupoidea: 66 Chalcidoidea: Encyrtidae 130 Proctotrupoidea: 2 Chalcidoidea: 25 Proctotrupoidea: 1 Chalcidoidea: Eulophidae 317 : # Chalcidoidea: 54 Siricoidea: Siricidae 14 Chalcidoidea: * Stephanoidea: 2 Chalcidoidea: 1 : 17 Chalcidoidea: Mymaridae 65 Tenthredinoidea: 4 Chalcidoidea: 45 Tenthredinoidea: 30 Chalcidoidea: 21 Tenthredinoidea: 10 Chalcidoidea: 410 Tenthredinoidea: 400 Chalcidoidea: 8 Trigonaloidea: 5 Chalcidoidea: 5 : # Chalcidoidea: Torymidae 82 Vespoidea: Formicidae 186 Chalcidoidea: Trichogrammatidae 41 Vespoidea: Mutillidae 36 : 42 Vespoidea: Pompilidae 165 Chrysidoidea: Chrysididae 34 Vespoidea: 2 Chrysidoidea: 60 Vespoidea: 6 Chrysidoidea: 3 Vespoidea: Scoliidae 2 : Cynipidae 310 Vespoidea: 1 Cynipoidea: Figitidae¶ 136 Vespoidea: 29 Cynipoidea: 4 Vespoidea: Vespidae 125 Diaprioidea: 300 Xiphydrioidea 8 : 20 Xyeloidea 16 Evanioidea: 4 Evanioidea: 12 δ The order Hymenoptera includes 83 families divided among22 superfamilies worldwide according to the website “Hymenoptera – Assembling the Tree of Life Website (http://www.hymatol.org/)” and sources listed below‡§¶∆. † Masner et al. (1979). ‡ Not listed as a family in Masner et al. (1979) because formerly considered part of Sphecidae (Pulawski 2011). § Melo and Gonçalves (2005) consider the following former families of Apoidea as subfamilies of Apidae: , , , , and . * Family is not listed in Masner et al. (1979), but species in this family are found in Canada. ¶ Liu et al. (2007) consider the following former families of Cynipoidea as a tribe or subfamily of Figitidae: Alloxystidae and Eucoilidae. ∆ Platygastridae includes the former family Scelionidae (Sharkey 2007). # Family is not listed in Masner et al. (1979), and is rare in Canada (Goulet and Hubert 1993). 18

Table 1.2 Species of Hymenoptera available for genome size (GS) estimates.

Number of species with GS estimates † § Superfamily: Family previous studies CFIA‡ ESC Apoidea: Apidae 39 0 Apoidea: Crabronidae 5 0 0 Apoidea: Sphecidae 5 0 0 Cephoidea: Cephidae 1 0 0 Chalcidoidea: Aphelinidae 4 6 (4) Chalcidoidea: Chalcididae 0 0 Chalcidoidea: Encyrtidae 2 4 (1) Chalcidoidea: Eucharitidae 0 0 0 Chalcidoidea: Eulophidae 1 2 (1) Chalcidoidea: Eupelmidae 0 0 Chalcidoidea: Eurytomidae 0 0 Chalcidoidea: Mymaridae 0 2 0 Chalcidoidea: Pteromalidae 2 9 (1) Chalcidoidea: Trichogrammatidae 3 6 (3) Cynipoidea: Cynipidae 0 0 Cynipoidea: Figitidae 4 0 0 Diaprioidea: Diapriidae 0 0 Ichneumonoidea: Braconidae 10 10 (4) Ichneumonoidea: Ichneumonidae 1 0 Platygastroidea: Platygastridae 0 0 Siricoidea: Siricidae 0 0 Vespoidea: Formicidae 64 0 Vespoidea: Mutillidae 4 0 0 Vespoidea: Scoliidae 1 0 0 Vespoidea: Vespidae 16 0 0 162 39 (14) † Species listed in Appendix 2, Appendix 3, Appendix 4, and www.genomesize.com. ‡ Number in parentheses provide the number of species whose genome size was estimated in previous studies. CFIA = Canadian Food Inspection Agency, www.inspection.gc.ca/english/plaveg/protect/dir/biocontrole.shtml. § Species names are not listed in all abstracts of programs of the Entomological Society of Canada (ESC) from 2007-2011, so instead families are indicated, www.esc-sec.ca/ annmeet.html. The number of species is not explicitly mentioned in several abstracts within the programs of annual meetings of the Entomological Society of Canada; therfore, an exact number of species cannot be tallied. Many of the insects are pinned or preserved in ethanol and cannot have their genome size estimated by flow cytometry.

19

Herbivore Ectoparasitoid Idiobiont Endoparasitoid Koinobiont Equivocal (Ecto/Endo) Equivocal (Idio/Koino)

Hymenoptera Genome size (pg)

Superfamily

0.00 0.50 1.00 1.50 2.00 Xyleoidea Pamphiliodea Tenthredinoidea Cephoidea n = 1 Siricoidea Xiphydrioidea Orussoidea Stephanoidea

Ceraphronoidea

Megalyroidea Trigonalyoidea

Evanoidea

Chrysidoidea

Vespoidea‡ n = 85 paraphyletic Apoidea‡ n = 49

Ichneumonoidea† n = 11

Platygastroidea

Cynipoidea† n = 4

Proctotrupoidea

Diaprioidea

Chalcidoidea† n = 12

Mymarommatoidea

Figure 1.1. Genome size diversity of superfamilies of Hymenoptera as determined in previous studies (n = 162 species, Appendix 4). Development syndrome of parasitoids is mapped onto the tree from Sharkey et al. (2011). Some superfamilies include several larval feeding modes: † Inducers or inquilines, ‡ cleptoparasite, § predator. Height of genome size bar represents number of species.

20

CHAPTER TWO

Using DNA barcoding to estimate species richness of gall inducers of the genus Diplolepis

(Hymenoptera: Cynipidae), inquilines of the genus Periclistus (Hymenoptera: Cynipidae),

and

parasitoids (Hymenoptera, Chalcidoidea and Hymenoptera, Ichneumonoidea)

associated with rose gall communities found in Canada

21

ABSTRACT

Based on the combined results of sequencing both the DNA barcode region of cytochrome c oxidase I (COI) and the internal transcribed spacer region 1 (ITS1), a species threshold was calculated to estimate species richness of inducers, inquilines, and parasitoids associated with rose galls induced by cynipids of the genus Diplolepis. Both identified and unidentified individuals were assigned to a DNA barcode Operational Taxon (DbOT) using pairwise genetic distance and Neighbour-joining tree based methods. Specimens were categorized into separate DbOTs when a group of DNA barcodes had a mean intercluster sequence divergence from its nearest neighbour of 2.2%. A total of 18 species of Diplolepis, 7 species of Periclistus, and 6 species of Torymus were identified using morphological features of the adults, but DNA barcodes grouped specimens of Diplolepis, Periclistus, and Torymus into

24, 12, and 12 DbOTs, respectively. Representatives from six other families of Hymenoptera associated with rose galls induced by Diplolepis were also DNA barcoded, and the total number of DbOTs increased the previous estimate of species richness. Sequencing of two molecular markers, mtDNA and rDNA, revealed the need for taxonomic revision of several taxa, and the categorization of these DbOTs can guide future taxonomic investigations.

22

INTRODUCTION

2.1 Cynipid component communities

The majority of the 1300 described species of gall wasps (Hymenoptera: Cynipidae) induce galls on leaves, stems, or roots of oaks (Quercus) and roses (Rosa) (Rokas et al. 2003,

Ronquist and Liljeblad 2001, Harper et al. 2004). Galls are highly visible structures which attract several species of Hymenoptera with different feeding ecologies. For example, some species are phytophagous and feed only on gall tissues while other species are parasitoids and feed on larvae within the gall (Askew et al. 2006). Parasitoids are important members of component communities because they contribute to most of the species richness and inflict high levels of mortality (Hayward and Stone 2005). The assemblage of all inhabitants associated with a population of galls induced by the same gall species is referred to as a component community, and populations of galls induced by each species of is thought to support a unique gall community (Shorthouse 1993, Shorthouse 2010). Interactions among and between cynipid species and parasitoid species are complex (Hayward and Stone 2005), and construction of qualitative or quantitative food webs to understand these interactions are challenging

(Kaartinen et al. 2010).

Many gall component communities are known to contain a few morphologically indistinguishable species of both cynipids and parasitoids (Abrahamson et al. 1998, Pujade-

Villar and Plantard 2002, Hayward and Stone 2005, Lotfalizadeh et al. 2007, Güçlü et al. 2008,

Liljeblad et al. 2009, Pénzes et al. 2009, Ács et al. 2010, Kaartinen et al. 2010). Addition of molecular identification tools to aid in both the species determination and the discovery of new species has recently been viewed as necessary to increase resolution in food web studies

23

associated with cynipid galls (Kaartinen et al. 2010) and external foliar feeding lepidoptera

(Hrcek et al. 2011, Smith et al. 2011).

The major aim of this study was to assess species richness in the communities associated with rose galls induced by Diplolepis by using a species threshold. Morphologically identified species of Cynipidae (Genera: Diplolepis and Periclistus) and Torymidae (Genera: Torymus) had both COI and ITS1 sequences amplified in order to calculate a species threshold. Afterwards, unidentified adult and larval specimens of Diplolepis, Periclistus, Torymus, and parasitoids from six families were either matched to DNA barcodes of morphologically identified species or were were assigned to unknown species based on the calculated species threshold. This approach was then adapted for use in the broader study of Hymenoptera genome size diversity reported in

Chapter Three.

2.2 Cynipid galls

Plant galls are structures induced by another organism by which shelter, nourishment, and protection is provided to the gall inducer (Stone and Schönrogge 2003). Inducers manipulate undifferentiated plant cells to develop into structures which include the formation of novel plant cells that do not exist elsewhere in the plant (Weis et al. 1988, Harper et al. 2004, Shorthouse et al. 2005). Gall induction is a form of herbivory because the gall wasp larvae continually stimulate the production of new plant cells to supply nutrients directly to themselves until they pupate (Shorthouse 1993). Host plant selection by inducers is critical to guarantee proper initiation, growth and maturation of the gall. Most genera of gall inducers are typically restricted to closely related congeneric plant species, usually within the same plant genus (Abrahamson et al. 1998, Ronquist and Liljeblad 2001). Gall development is influenced by both the species of

24

inducer and the plant, but overall gall morphology is controlled by the inducer (Shorthouse 1993,

Ronquist and Liljeblad 2001, Stone and Schönrogge 2003). Gall morphology is treated as an extended phenotype of each species of inducer (Stone and Cook 1998) and because the number of host plant associations are limited, several genera of cynipid wasps have been described based on gall-associated characters rather than on the phenotype of the inducer themselves (Melika and

Abrahamson 2000, Melika and Bechtold 2001, Liljeblad et al. 2008).

2.3 Rose gall inducers: Diplolepis

Gall wasps in the genus Diplolepis are restricted to inducing galls on Rosa with each species of plant hosting at least one species of Diplolepis (Shorthouse 1993, Shorthouse 2010).

Worldwide, the estimated number of described species of Diplolepis is 43 (Table 2.1), but most of their diversity is found within North America and over one third of species of Diplolepis are found within Canada (Shorthouse 1993, Shorthouse 2010). Examination of adults from museum vouchers, species descriptions and gall descriptions from the literature have identified 16 species of Diplolepis within Canada (Brooks and Shorthouse 1998, Shorthouse 2010). Additional undescribed species of Diplolepis have been collected within Canada (Ritchie 1984, Shorthouse and Ritchie 1984, Shorthouse 1988), but little is known about the identification, biology, or gall morphology of these rarer species (Table 2.1).

Species identification based on adult morphology is challenging throughout Cynipidae, and current identification morphological features for the delineation and separation of species and genera require revision (Melika and Abrahamson 2000, Ács et al. 2007). Some species of

Diplolepis are difficult to distinguish because few have been described in sufficient detail and an identification key is lacking (Shorthouse 1993, Shorthouse 2010). Phylogenetic relationships of

25

several species of Diplolepis have been investigated using characters from adult morphology, gall morphology, and molecular sequences from two mitochondrial gene regions, cytochrome b and 12S rRNA (Plantard et al. 1998). The results of that study could not reject the hypothesis that several species might be synonyms, such as between D. nebulosa, D. ignota, and D. variabilis, and between D. centifoliae and D. nervosa (Plantard et al. 1998). Gall inducer identification within some genera has been complicated by reliance on gall morphology (Melika and Abrahamson 2000, Melika and Bechtold 2001, Liljeblad et al. 2008). Galls induced by different species can be very similar such as the stem galls of D. inconspicuis and D. nodulosa

(Brooks and Shorthouse 1997). In addition, gall morphology can be variable within an inducer species, such as the single-chambered or multi-chambered galls of D. verna, the shiny or smooth galls of D. dichlocera, and the three gall forms of D. triforma (Shorthouse and Ritchie 1984).

Investigating species boundaries of Diplolepis independent of morphology is warranted because adult identification is challenging.

2.4 Rose gall inquilines: Periclistus

Inquilines have lost the ability to induce their own galls (Ronquist 1994), and are obligatorily dependent on completing their development within galls of inducers (Brooks and

Shorthouse 1998, Shorthouse 1998). Inquilines do not feed on the bodies of the inducers and thus are not considered as either parasitoids or predators, yet the inducer is killed directly by the ovipositor of the female adult (Shorthouse 1998). The genus Periclistus (Hymenoptera:

Cynipidae) includes 17 described species worldwide, and all members of the genus are restricted to galls induced by Diplolepis to complete their larval development (Ritchie 1984, Ronquist and

Liljeblad 2001, Shorthouse 1973, 1998). Galls induced by Diplolepis are host to at least one

26

species of inquiline (Ritchie 1984, Table 2.2), but it is difficult to identify several species of

Periclistus and several host records are probably invalid (Ritchie 1984). For example, P. pirata was considered to be associated with galls induced by D. polita in Alberta (Shorthouse 1973,

Shorthouse 1980), but it was later determined that the inquiline in question was an undescribed species (Ritchie 1984). Furthermore, after morphological examination of Periclistus from galls induced by species of Diplolepis within Canada and from several reference collections of North

America, it was concluded that the species of Periclistus designations were valid (Shorthouse

1975). However, a revision of Nearctic Periclistus demonstrated that three of the seven species of Periclsitus were invalid based on morphological evidence, and a total of six new species were recognized increasing the current number of North American species of Periclistus to 12

(Ritchie 1984, Table 2.2). New species descriptions of Periclistus by Ritchie (1984) were not published and so those specific names are considered nomina nuda (nom. nud.). However, for ease of comparison, the same species names that appeared in the PhD dissertation of Ritchie

(1984) will be used in this study, but those species names are written within quotation marks followed by (nom. nud.). One of the newly identified species, “P. weldi (nom. nud.)” has been frequently identified as P. pirata, and the highly variable morphology of “P. weldi (nom. nud.)” suggests the presence of even more cryptic species (Ritchie 1984). By definition, cryptic species are two or more species that cannot be distinguished using morphological characters, and thus individuals are all classified under one species name (Bickford et al. 2007). The genus

Periclistus is another example within Cynipidae that would benefit from a re-examination of species boundaries independent of morphology.

27

2.5 Rose gall parasitoids

Parasitoids are an important source of mortality for Diplolepis, Periclistus, and other

Hymenoptera inhabiting rose galls (Shorthouse et al. 2005, Shorthouse 2010). Parasitoid diversity is intermediate within gall communities as compared to communities of hosts feeding externally on leaves or which bore into plant tissue, and this is potentially due to the visibility of galls and the relatively immobile hosts contained within (Hawkins 1994). Considering cynipid communities only, parasitoid diversity of galls induced by Diplolepis appears to be intermediate relative to the cynipid tribes and Aylacini of the Palearctic (Askew et al. 2006).

Parasitoids from seven families and 18 genera exit from a population of galls induced by the same species of Diplolepis (Table 2.3). The majority of parasitoids associated with rose galls are from the superfamily Chalcidoidea, and most are ectoparasitic idiobionts which prevent further host development as they feed on the host from outside its body (Stone et al. 2002). The few species of Eulophidae (Chalcidoidea) and Ichneumonidae (Ichneumonoidea) associated with rose galls are endoparasitic koinobionts which allow the host to continue development as they consume the host from inside its body. Studies of cynipid gall communities and food webs require accurate identifications, which is done by rearing insects within galls to adulthood and/or dissecting galls to search for eggs and larvae. Identification of adult parasitoids of gall communities is generally more challenging compared to cynipids, and identification of immature stages to species-level is nearly impossible (Kaartinen et al. 2010). A preliminary examination of species richness of Hymenoptera exiting galls induced by species of Diplolepis is possible if specimens could be grouped independent of morphology.

Members of the family Torymidae are proportionally the most abundant parasitoid family to exit galls induced by Diplolepis in the Palearctic region (Askew et al. 2006), and Torymidae

28

has the second largest number of described species associated with galls induced by Diplolepis

(Table 2.3). The genus Torymus includes 323 species worldwide (Grissell 1995), with 11 species associated with galls induced by Diplolepis in North America (Table 2.4). Identification of

Torymidae based on adult morphology is challenging, and the genus Torymus is especially difficult due to morphological uniformity of several species (Gómez et al. 2008). For example, identification keys to the species of Torymus are predominantly restricted to adult females, and two species associated with galls induced by Diplolepis, T. bedeguaris and T. solitarius, are difficult to distinguish and are only separated in the last couplet of an identification key based on number of setae and trichomal sensillae in females (Grissell 1995, Rempel 2002). Identification of species of Torymus, especially males, appears to be challenging; for example, undescribed

Canadian species collected in a previous study (Shorthouse and Brooks 1998) were not included in the most recent list of species of Torymus associated with galls induced by Diplolepis (Rempel

2002). The genus Torymus is an example of a well-recognized parasitoid glineage within rose gall communities that would benefit from a re-examination of species boundaries independent of morphology.

2.6 Molecular identification tool: DNA barcoding

Studies utilizing a 658 base pair region of the mitochondrial gene cytochrome c oxidase subunit I (COI) have demonstrated the ability of that marker to confidently link field collected organisms with a reference sequence of a previously identified species (Hebert et al. 2003). The barcode region of COI corresponds to nucleotide positions 1490-2198 of the Drosophila yakuba mitochondrial genome (Clary and Wolstenholme 1985). Immature life stages (egg, larva, pupa) or fragmentary insect parts (host remains) can also be confidently associated using a DNA

29

barcode reference sequence (Miller et al. 2005, Caterino et al. 2006). Some advantages of sequencing loci within mitochondrial DNA (mtDNA) for Hymenoptera specimens are that mtDNA lacks introns, rarely recombines, has few indels, and there are several robust primers available to allow amplification across several taxa (Hebert et al. 2003). These advantages have allowed for wide scale adoption of DNA barcoding as an identification tool for a variety of around the world (www.barcodinglife.org).

Species and lifestages which are challenging to separate morphologically should include additional data independent of both morphology and mitochondrial DNA to support species identification by DNA barcodes (DeSalle et al. 2005). To supplement grouping of specimens via

DNA barcodes, nuclear loci such as the internal transcribed spacer regions (ITS1 and ITS2) between the 5.8S, 18S, and 28S rRNA genes in ribosomal DNA (rDNA) can also be sequenced.

The rapid rate of evolution of ITS1 and ITS2 facilitates the hypothesized separation of closely related taxa (Rokas et al. 2002, Ji et al. 2003). However, some hypervariable regions of ITS1 and

ITS2 make accurate alignment difficult, and manual assembly of sequences is quite challenging unless limited to conserved regions.

Molecular Operational Taxonomic Units (MOTU) can be defined for specimens with molecular sequences amplified in order to aid identification (Floyd et al. 2002). Sequences generated from nuclear or mitochondrial genomes are selected based on researcher preference and so MOTUs are not readily comparable between laboratories. However, the DNA barcode is defined as a specific number of basepairs in a particular region of COI in the mitochondrial genome (Clary and Wolstenholme 1985, Hebert et al. 2003), such that specimens with DNA barcodes amplified are considered as unique from other molecular studies. Therefore, using the simple nucleotide sequence analysis of Neighbor-joining (NJ) tree building with Kimura two-

30

parameter (K2P) genetic distances, DNA barcodes of specimens that cluster together below a selected species threshold can be defined as DNA barcode Operational Taxa (DbOT). Such clusters may not actually represent different species, but unique DbOTs can be submitted to further taxonomic hypothesis testing using additional data obtained from morphological, genetic

(i.e. nuclear genes, genome size), and/or behavioural studies of well-sampled populations collected from locations throughout their geographic distributions.

A species threshold based approach has been used for initial estimates of richness in bioinventory studies of ants (Formicidae) (Smith et al. 2005a) and parasitoids (Braconidae,

Cynipidae, Diapriidae, Ichneumonidae) (Smith et al. 2009, Santos et al. 2011). Those studies either applied the species threshold of 3% proposed by Hebert et al. (2003) based on Lepidoptera species or applied more than one species threshold (1.6% and 2%) loosely based on the species threshold of 1.9% (Smith et al. 2005b). Thus far, a species threshold for Hymenoptera has not been calculated using species of parasitoid or Cynipidae.

Species boundaries of Diplolepis, Periclistus, and Torymus associated with rose galls induced by Diplolepis have been based exclusively on morphological evidence, but species identification is challenging in these genera (Ritchie 1984, Shorthouse 1993, Rempel 2002,

Gómez et al. 2008, Shorthouse 2010) and some species are suspected to be synonyms (Ritchie

1984, Plantard et al. 1998). By initially accepting the priori morphological identifications, both

DNA barcodes and ITS1 sequences can be used to calculate a species threshold which would provide initial evidence to corroborate the splitting or lumping of described species. Afterwards, the species threshold could be used to provide an inital estimate of richness of other

Hymenoptera associated with rose galls induced by Diplolepis.

31

2.7 Objectives

The uncertainty of species designation based only on adult morphology of Hymenoptera hampers the study of diversity of Hymenoptera associated with rose galls induced by cynipids of the genus Diplolepis. The ability to perform detailed investigations into the biology, ecology, or systematics of any species is impeded without accurate identifications. Hymenoptera include some of the most difficult insects to identify (Godfray and Shimada 1999, Gariepy et al. 2007,

Stone et al. 2008), and thus gall inducers, inquilines, and parasitoids would benefit from DNA barcoding to assist species identification and estimation of species richness.

Objective 2.A.: To determine whether or not morphology and DNA barcoding identify the same species of Diplolepis, Periclistus, and Torymus.

Average sequence divergence will be calculated among well-supported sister clusters to calculate a species threshold in order to count the number of DbOTs using DNA barcodes of both identified and unidentified specimens. Both COI and ITS1 regions will be sequenced from morphologically identified reference species of Diplolepis, Periclistus, and Torymus to assess the number of DbOTs. It is expected that DNA barcodes will corroborate the identity of reference species of Diplolepis, Periclistus, and Torymus, and DNA barcodes will match specimens that have not been morphologically examined to the reference species.

Objective 2.B.: To employ a species threshold to catalogue richness of Hymenoptera associated with rose galls induced by Diplolepis

Using the species threshold caluclated in Objective 2.A., richness will be estimated for eight families of Hymenoptera associated with rose galls induced by Diplolepis. It is expected

32

that total richness of Hymenoptera associated with rose galls induced by Diplolepis within

Canada would be lower than richness of Hymenoptera associated with galls induced by

Diplolepis collected across the continent of North America, north of Mexico. The threshold developed as part of this study also played an integral role in enabling the genome size survey of other Hymenoptera presented in Chapter Three.

Materials and Methods

2.8 Specimen collection and deposition

The JD Shorthouse reference collection at Laurentian University in Sudbury, ON, includes rose gall inhabitants collected over the past 42 years. The accumulation of specimens within this reference collection was due to the efforts of JD Shorthouse and his students. They removed mature rose galls induced by species of Diplolepis from Rosa (leaves, stems, or roots) and collectively placed within Whirl-Pak® bags according to structural distinctiveness of each rose gall type. Each group collection of a rose gall type from a sampling site was assigned a collection number, and relevant field data such as collection date and geographic site were recorded. Hence, each unique collection contained from one to hundreds of rose galls induced by a species of Diplolepis. If mature galls had been collected in the fall, then they were subjected to cold temperature (4°C) for four months to break diapause of gall inhabitants. If mature galls had remained outside during the winter until the following spring, then they were subjected to room temperature (~ 20°C) to break diapause of gall inhabitants. This reference collection covers a wide geographical area across Canada, and contains specimens from locations in the United

States and outside North America (Appendix 1).

33

Curators, contributors and volunteers of this reference collection obtained adult insects as they exited galls and initially preserved them in 70% ethanol. At a later time, specimens of

Diplolepis, Periclistus, and Torymus were mounted and morphologically identified to species by

JD Shorthouse, AJ Ritchie (1984), and SJ Rempel (2002), respectively. Morphologically identified species of Diplolepis (n = 532, Table 2.5), Periclistus (n = 131, Table 2.6), and

Torymus (n = 99, Table 2.7) were selected for DNA barcoding. All morphologically identified species of Diplolepis, Periclistus, and Torymus are deposited in the JD Shorthouse reference collection.

Unidentified adult specimens of Diplolepis (n = 32) (n = 80), Periclistus (n = 444),

Torymus (n = 252), and adult parasitoids (n = 45), other than Torymidae, associated with rose galls induced by Diplolepis were also selected for DNA barcoding. In addition, mature galls were collected and brought to the nearest laboratory (University of Guelph, Laurentian

University) to break diapause, as described above. As adult insects exited galls, they were individually placed alive into microcentrifuge tubes and stored at -80°C at the University of

Guelph until processed for DNA barcoding (Appendix 1).

Unidentified specimens from the reference collection (n = 853) and collected from the field (n = 468) were identified to family (Table 2.8) using morphological keys of Gauld and

Bolton (1988) and Gibson et al. (1997). Further information about specimens and collection details are available on the Barcode of Life Data Systems (www.barcodinglife.org) under the projects DIPNA (Diplolepis exiting rose galls of North America), PERNA (Periclistus exiting

Diplolepis galls of North America), ROSE (Community members exiting Diplolepis galls of

North America), and TORNA (Torymus exiting Diplolepis galls of North America).

34

2.9 DNA extraction and PCR amplification

One or two legs were removed from each adult and transferred to an ethanol-filled well of a 96-well microtitre plate and shipped to the Biodiversity Institute of Ontario in Guelph,

Ontario, Canada. Ethanol was allowed to evaporate before 50 μL of a mixture of 5 mL of Insect

Lysis buffer (Ivanova et al. 2006) and 500 μL of Proteinase K (20mg/L) was added to each well.

Afterwards, the 96-well plate was incubated overnight at 55°C. Total genomic DNA was extracted using the Standard Glass-fibre Protocol and a liquid-handling robot. DNA extracts were resuspended in 30 μL of ddH2O before carrying out the PCR reactions (Ivanova et al.

2006).

The DNA barcode region of COI gene was amplified using a pair of the following primers (www.barcodinglife.org):

Lep-F1, 5'-ATTCAACCAATCATAAAGATATTGG-3'

Lep-R1, 5'-TAAACTTCTGGATGTCCAAAAAATCA-3' or

MLep-F1, 5'-GCTTTCCCACGAATAAATAATA-3'

MLep-R1, 5'-CCTGTTCCAGCTCCATTTTC-3'

PCR reactions were carried out in 96-well plates in 12.5 μL volumes containing: 2.5 mM MgCl2,

5 pmol of each primer, 20 mM dNTPs, 10 mM Tris-HCL (pH 8.3), 50 mM of KCl, 10-20 ng (1 to 2 µL) of genomic DNA and 1 unit Taq DNA polymerase (Platinum® Taq DNA polymerase,

Invitrogen). PCR thermocycling profile was: 1 cycle of 60 seconds at 94°C, 5 cycles of 40 seconds at 94°C, 40 seconds at 45°C and 60 seconds at 72°C, followed by 35 cycles of 40 seconds at 94°C, at 51°C and 60 seconds at 72°C, with final extension of 5 minutes at 72°C.

35

PCR products were visualized on a 2% agarose E-gel (Invitrogen), and positive single bands were selected for bi-directional sequencing with the BigDye Terminator Cycle Sequencing Kit on an ABI3730xl DNA Analyzer (Applied Biosystems) at the Biodiversity Institute of Ontario.

The primers Lep-F1 and Lep-R1 amplified a DNA barcode of > 500 bp for most Diplolepis and

Periclistus specimens < 10 years old. However, the primers MLep-F1 and MLep-R1 amplified mini DNA barcodes of < 500 bp for Diplolepis and Periclistus specimens > 10 years old and for most Chalcidoidea regardless of age (Appendix 1).

The ribosomal ITS1 region between 18S and 5.8S genes (position 1843-2805, Ji et al.

2003) was amplified using the following primers (www.barcodinglife.org):

CAS18sF1, 5'-TACACACCGCCCGTCGCTACTA-3'

CAS5p8sB1d, 5'-ATGTGCGTTCRAAATGTCGATGTTCA-3'

PCR reactions and visualization of PCR products were carried out as described above. The ITS1 thermocycling profile was as follows: 1 cycle of 2 minutes at 94°C, 40 cycles of 20 seconds at

94°C, 40 seconds at 57°C and 2 minutes at 72°C, with final extension of 5 minutes at 72°C.

Combination of specimen age and their preliminary storage within 70% ethanol did not allow amplification of the entire ITS1 region (Appendix 1).

2.10 Sequence Analyses

Contigs of COI and ITS1 sequences were assembled using Sequencher v4.5 (Gene

Codes) and aligned using CLUSTALX in MEGA v5.0 (Tamura et al. 2011) and manual adjustments by eye to improve the alignment. All DNA barcode sequences were inspected for indels, stop codons, or length variation to limit inclusion of non-target gene regions. Separate

36

analyses were performed on mtDNA and ITS1 sequences. Intraspecific and interspecific pairwise sequence divergence for mtDNA was calculated using the Kimura-2-parameter (K2P) distance model with pairwise deletion in MEGA v5.0 and visualized as a Neighbour-Joining (NJ) dendrogram with bootstrap analysis of 500 replicates. Intraspecific and interspecific pairwise sequence divergence for conserved regions of ITS1 was calculated using the number of differences method with pairwise deletion in MEGA v5.0 and visualized as a Neighbour-Joining

(NJ) dendrogram with bootstrap analysis of 500 replicates.

To estimate the number of potentially undescribed and cryptic species, a threshold value of species separation was calculated based among sequence divergences found among the morphologically identified species of Diplolepis, Periclistus, and Torymus. Average interspecific sequence divergence was calculated among species of the three genera from the reference collection. The minimum average sequence divergence between nearest neighbour species was then used as a threshold value for species separation for both identified and unidentified individuals of Hymenoptera associated with rose galls induced by Diplolepis.

RESULTS

The barcode region was successfully sequenced for 1168 individuals representing both identified and unidentified individuals of Diplolepis, Periclistus, Torymus, and other parasitoids associated with rose galls induced by Diplolepis (Figure 2.1). This represents a cumulative success of 56.1 % in amplification of DNA barcodes of specimens collected from the year 1915 to 2010 (n = 2083). Amplification success of DNA barcodes increased from 15.5 % for species of Diplolepis collected before the year 1998 (n = 277) to 77.4 % for specimens collected afterwards (n = 464, Figure 2.1). There was also an increase in amplification success of DNA

37

barcodes for species of Periclistus from 19.8 % (n = 131) to 55.1 % (n = 499) for specimens collected before the year 1998 and afterwards, respectively (Figure 2.1). Increase in amplification success of DNA barcodes for species of Torymus was from 66.7 % (n = 48) to 69.2

% (n = 354) for specimens collected before the year 1998 and afterwards, respectively (Figure

2.1).

2.11 Diplolepis: COI and ITS1

A DNA barcode was amplified from 255 of 532 morphologically identified individuals of

Diplolepis, and coverage included 13 common Canadian species, two exotic species found within Canada (D. eglanteriae, D. rosae), and two species found outside of Canada (D. californica, D. fructuum). Eleven described species of Diplolepis had one unique cluster of sequences each allowing for their identification by DNA barcodes (Figure 2.2). Four described species of Diplolepis had more than one cluster (Figure 2.2), and three leaf gall inducers shared

DNA barcodes (Figure 2.2). One example of misidentification was detected when a specimen of

D. nebulosa (DNE-AB1, Rose 432) appeared to share a DNA barcode with D. gracilis.

However, re-examination of the mesopleuron determined that the specimen was actually D. gracilis.

An ITS1 sequence between 385–394 bp was amplified from specimens of D. bicolor (n

= 3), D. eglanteriae (n = 1), D. fructuum (n = 1), D. ignota (n = 3), D. nebulosa (n = 2), D. rosaefolii (n = 2), and an unidentified individual whose DNA barcode grouped within the D. ignota/D. nebulosa/D. variabilis cluster (n = 1) (Figure 2.2, Appendix 1). Sequencing results suggest the separation of D. bicolor into two species and also the separation of D. rosaefolii into two species. Mean number of differences of ITS1 sequences between individuals of D. bicolor

38

and between individuals of D. rosaefolii was four and six, respectively (Figure 2.2). However, mean number of differences of ITS1 sequences between individuals of D. ignota/D. nebulosa/D. variabilis/D. sp. was one. This low number of differences along with the identical DNA barcodes suggests a taxonomic synonymy of D. ignota, D. nebulosa, and D. variabilis (Figure 2.2).

Considering morphologically identified species of Diplolepis with both DNA barcodes and ITS1 sequences, maximum intraspecific divergences were as follows: D. bicolor (3.1%), D. eglanteriae (0.0%), D. fructuum (0.0%), D. rosaefolii (4.1%), and the D. ignota/D. nebulosa/D. variabilis group (1.3%) (Figure 2.2). Because of the challenges of morphological identification of Diplolepis, average interspecific sequence divergence was calculated between sister clusters supported by both DNA barcodes and ITS1 sequences instead of among morphologically identified species. Average interspecific sequence divergence between sister clusters of D. bicolor and sister clusters of D. rosaefolii was 3.0% and 4.1%, respectively (Figure 2.2).

2.12 Periclistus: COI and ITS1

A DNA barcode was amplified from 26 of 131 morphologically identified individuals of

Periclistus, and coverage included 7 of 9 species associated with rose galls induced by

Diplolepis. Unfortunately, no DNA barcode was amplified from reference specimens of “P. gracilicolus (nom. nud.)” and of “P. vancouverensis (nom. nud)”. Four described species of

Periclistus had one unique cluster of sequences each allowing for their identification by DNA barcodes (Figure 2.4). One described species of Periclistus had more than one cluster (Figure

2.4), and two species shared DNA barcodes (Figure 2.3).

An ITS1 sequence could not be amplified from the identified specimens of Periclistus from the reference collection (Figure 2.3). Instead, recently collected specimens of Periclistus (n

39

= 28) which were not identified to species by morphology but were identified by matching their

DNA barcodes to reference specimens of Periclistus were sampled for ITS1 amplification

(Figure 2.3). An ITS1 sequence between 698–706 bp was amplified for the following groups: “P. ashmeadi (nom. nud.)”/“P. cataractans (nom. nud.)”/P. sp. (n = 7), “P. fusicolus (nom. nud.)”/P. sp. (n = 3), P. pirata/P. sp. (n = 6), “P. weldi (nom. nud.)”/P. sp. (n = 5), and seven unidentitified individuals (P. sp.) (Appendix 1, Figure 2.3). Sequencing results support the separation of “P. fusicolus (nom. nud.)”/P. sp. into two species and also the separation of P. pirata/P. sp. into two species (Figure 2.3). Mean number of differences of ITS1 sequences between individuals of “P. fusicolus (nom. nud.)”/P. sp. and between individuals of P. pirata/P. sp. were 12 and three, respectively (Figure 2.3). However, mean number of differences of ITS1 sequences between individuals of “P. ashmeadi (nom. nud.)”/“P. cataractans (nom. nud.)”/P. sp. was zero. This low number of differences along with the identical DNA barcodes supports a taxonomic synonymy of “P. ashmeadi (nom. nud.)” and “P. cataractans (nom. nud.)” (Figure 2.3).

Considering unidentified individuals of Periclistus which had both DNA barcodes and

ITS1 sequences amplified and grouped with morphologically identified species of Periclistus, maximum intraspecific divergences were as follows: “P. ashmeadi (nom. nud.)”/“P. cataractans

(nom. nud.)”/P. sp. (1.1%), “P. fusicolus (nom. nud.)”/P. sp. (3.4%), P. pirata/P. sp. (2.8%), and

“P. weldi (nom. nud.)”/P. sp. (0.0%). Because of the challenges of morphological identification of Periclistus, average interspecific sequence divergence was calculated between sister clusters supported by both DNA barcodes and ITS1 sequences instead of among morphologically identified species. Average interspecific sequence divergence between sister clusters of P. pirata/P. sp. and sister clusters of “P. fusicolus (nom. nud.)”/P. sp. was 3.1% and 2.9%, respectively (Figure 2.3). The smallest average interspecific sequence divergence was 2.3%

40

between sister clusters of “P. ashmeadi (nom. nud.)”/“P. cataractans (nom. nud.)”/P. sp. and “P. fusicolus (nom. nud.)” /P. sp. (Figure 2.3).

2.13 Torymus: COI and ITS1

A DNA barcode was amplified from 63 of 99 morphologically identified individuals of

Torymus, and coverage included all 6 species associated with induced by Diplolepis in Canada.

Three described species of Torymus had one unique cluster of sequences each allowing for their identification by DNA barcodes (Figure 2.4).Two described species of Torymus had more than one cluster (Figure 2.4), and two species shared DNA barcodes (Figure 2.4).

An ITS1 sequence could not be amplified from the identified specimens of Torymus from the reference collection (Figure 2.4). Instead, recently collected specimens of Torymus (n = 8) which were not identified to species by morphology but were identified by matching their DNA barcodes to reference specimens of Torymus were sampled for ITS1 amplification (Figure 2.4).

An ITS1 sequence between 377–450 bp was amplified for the following groups: T. bedeguaris/T. sp. (n = 1), T. bedeguaris/T. solitarius/T. sp. (n = 3), T. chrysochlorus/T. sp. (n = 2), and two unidentitified individuals (T. sp.) (Appendix 1, Figure 2.4). Sequencing results support the separation of T. chrysochlorus/T. sp. into two species and also the separation of T. bedeguaris/T. sp. into two species (Figure 2.4). Mean number of differences of ITS1 sequences between individuals of T. chrysochlorus/T. sp. and between individuals of T. bedeguaris/T. sp. were 5 and

14, respectively (Figure 2.4). However, mean number of differences of ITS1 sequences between individuals of T. bedeguaris/T. solitarius/T. sp. was zero. This low number of differences along with the identical DNA barcodes supports a taxonomic synonymy of T. bedeguaris and T. solitarius (Figure 2.3). Unfortunately, ITS1 sequences were not generated for individuals within

41

several COI clusters of T. bedeguaris, T. bicoloratus, T. chrysochlorus, and T. solitarius, and so there is no additional support from molecular sequences of taxonomic splitting of these species.

Considering unidentified individuals of Torymus which had both DNA barcodes and

ITS1 sequences amplified and grouped with morphologically identified species of Torymus, maximum intraspecific divergences were as follows: T. bedeguaris/T. sp. (13.8%), T. chrysochlorus/T. sp. (13.3%), and T. bedeguaris/T. solitarius/T. sp. (3.2%). Because of the challenges of morphological identification of Torymus, average interspecific sequence divergence was calculated between sister clusters supported by both DNA barcodes and ITS1 sequences instead of among morphologically identified species. Average interspecific sequence divergence between sister clusters of T. chrysochlorus/T. sp. and of T. bedeguaris/T. sp. was

10.3% (Figure 2.4).

2.14 Calculated species threshold

Based on average interspecific sequence divergence between sister clusters of Diplolepis,

Periclistus, and Torymus, the minimum species threshold calculated was 2.3% (Figure 2.2, 2.3,

2.4). Based on this result, the total number of morphologically identified species of Diplolepis,

Periclistus, and Torymus was counted by separating clusters of DNA barcodes of into DbOTs when their genetic divergence from a nearest neighbour was ≥ 2.2%. Assignment of DbOTs with the species threshold was not influenced by any prior morphological identification. For example, all morphologically identified individuals of D. fusiformans (n = 9), three morphologically identified individuals of D. nebulosa, and four unidentified individuals of Diplolepis were combined into DbOT14 (Figure 2.5, Appendix 1). In addition, assignment of DbOTs with the species threshold was not influenced by maximum value of intraspecific genetic variation. For

42

example, DbOT20 of D. spinosa has a maximum genetic divergence of 3.3%, and the DNA barcodes of DbOT20 (n = 39) were not subdivided because there were no distinct groups with a genetic divergence of 2.2% between them. Application of the species threshold of 2.2% did not lead to further splitting of any morphologically identified species group which had both DNA barcodes and ITS1 sequences to support their synonymy (Figure 2.2, 2.3, 2.4). For example, the species groups of D. ignota/D. nebulosa/D. variabilis/D. sp., “P. ashmeadi (nom. nud.)”/“P. cataractans (nom. nud.)”/P. sp., and T. bedeguaris/T. solitarius/T. sp. remained as one DbOT each (Figure 2.2, 2.3, 2.4).

Using the species threshold, total species richness of both identified and unidentified individuals of Diplolepis, Periclistus, and Torymus was evaluated by separating all clusters of

DNA barcodes into DbOTs when their genetic divergence from a nearest neighbour was 2.2%

(Figure 2.5, 2.6, 2.7). A DNA barcode was amplified from 153 of 209 unidentified adult and larval specimens of Diplolepis, and most specimens grouped with the reference species allowing for their identification (Figure 2.5, Appendix 1). In total, 143 unidentified adult and larval specimens of Diplolepis were tentatively identified to species based on external gall morphology by JD Shorthouse while 10 unidentified adults of Diplolepis which were examined morphologically by JD Shorthouse were not identified to species (Appendix 1). Unidentified specimens possibly included another exotic species found within Canada (“D. mayri” = DbOT10) and a second DbOT for “D. triforma” (Figure 2.5). However, adults of DbOT10 and adults and larvae of DbOT19 were not morphologically examined, and their tentative identity is based on matching DNA barcodes and external gall morphology and not based on adult morphology.

Seven described species of Diplolepis (D. bassetti, D. bicolor, D.polita, D. radicum, D. rosaefolii, D. spinosa, D. triforma) were split into two DbOTs each while morphologically

43

identified D. nebulosa shared DNA barcodes with D. fusiformans, D. gracilis, and the D. ignota/D.variabilis group (Figure 2.5). The total number of DbOTs of Diplolepis delimited with both identified and unidentified specimens was 24 (Figure 2.5).

A DNA barcode was amplified from 275 of 499 unidentified adult and larval specimens of Periclistus, and most specimens grouped with described species allowing for their identification (Figure 2.6, Appendix 1). Two described species of Periclistus (“P. fusicolus (nom. nud.)”, P. pirata) were split into two DbOTs while two described species of Periclistus

(“P.ashmeadi (nom. nud.)”, “P. cataractans (nom. nud.)”) were clumped into one DbOT (Figure

2.6). The total number of DbOTs of Periclistus delimited with both identified and unidentified specimens was 12 (Figure 2.6).

Species of Periclistus have a mean association of 3.2 ± 1.72 galls of Diplolepis, and the mean number of species of Periclistus per species of Diplolepis is 2.7 ± 0.95 (Table 2.9).

Species of Periclistus do not appear to be gall specific by species of Diplolepis or gall location, and species of Periclistus are able to attack and successfully develop from either leaf or stem galls (Table 2.9). The apparent gall specificity of DbOT 28, DbOT29, and DbOT31 may be explained by having sequenced less than six specimens from one collection site (Figure 2.6,

Appendix 1).

A DNA barcode was amplified from 214 of 303 unidentified adult and larval specimens of Torymus, and most specimens grouped with described species allowing for their identification

(Figure 2.7, Appendix 1). Torymus chrysochlorus and T. bicoloratus were split into four and two

DbOTs, respectively (Figure 2.7). Many individuals identified as T. bedeguaris and T. solitarius were clumped together into one DbOT (Figure 2.7). The total number of DbOTs of Torymus delimited with both identified and unidentified specimens was 12 (Figure 2.7).

44

Species of Torymus had a mean association of 2.7 ± 1.50 galls of Diplolepis, and the mean number of species of Torymus per species of Diplolepis is 2.7 ± 2.81 (Table 2.10). Species of Torymus do not appear to be gall specific by species of Diplolepis or gall location, and species of Torymus are able to attack inhabitants from either leaf or stem galls. The apparent gall specificity of DbOT37, DbOT38, DbOT39, DbOT42, DbOT46, DbOT47, and DbOT48 may be explained by having sequenced less than six specimens each (Figure 2.7, Appendix 1). However,

Torymus DbOT41 appear to specifically attack inhabitants of stem galls (Table 2.10), and

Torymus DbOT43 appears to specifically attack inhabitants of leaf galls (Table 2.10).

2.15 Rose gall community species composition

Species identifications of several Hymenoptera associated with rose galls induced by

Diplolepis were not available from the reference collection so richness was counted by separating clusters of DNA barcodes of adult and larval stages from unidentified parasitoids into

DbOTs when their genetic divergence from a nearest neighbour was 2.2%. A DNA barcode was amplified from 188 of 310 individuals from the families Eulophidae, Eupelmidae, Eurytomidae,

Ichneumonidae, Ormyridae, and Pteromalidae associated with rose galls induced by Diplolepis.

The number of DbOTs of parasitoids counted using the species threshold was 24 (Figure 2.8).

Based on morphological identifications from several studies (Barron 1977, Ritchie 1984, Rempel

2002, Universal Chalcidoid Database), the total number of species of inquiline and parasitoid potentially exiting from rose galls induced by Diplolepis was 41 (Table 2.11). Using DNA barcoding, the total number of inquiline and parasitoid DbOTs was 46 (Table 2.11). The total number of species of Periclistus and Torymus increased by 22%, and 50%, respectively (Table

2.11). Noteworthy is that the morphology-based tally of species of inquiline and parasitoid

45

encompasses more than 100 years of collections spanning the continent of North America, north of Mexico (Table 2.11), while the DNA barcoding based tally is mostly restricted to collections within Canada within the last 10 years (Table 2.11). The molecular results represent the minimum number of DNA barcodes that could be generated due to readily available primer pairs and limits of specimen age, so the total number of species of inquiline and parasitoid is probably much larger. In fact, the total number of species within each family associated with rose galls induced by Diplolepis was usually equal or larger for the molecular based tally, with the exception of Eurytomidae (Table 2.11). Fewer specimens of Eurytomidae were selected in this study because a separate graduate study focussing on DNA barcoding of Eurytomidae was recently undertaken (Shorthouse pers. comm.). Since the molecular based tally usually increased the total number of species of inquiline and parasitoid (Table 2.11), then it is likely that the total number of species of inducer is probably higher than previously expected (Figure 2.5, Table 2.5).

DISCUSSION

DNA barcoding is a molecular identification tool that can assist in grouping similar specimens of any life stage or gender based on the premise that each species has a unique cluster of COI sequences that are distinguishable from COI sequences of other species (Hebert et al.

2003, Miller et al. 2005, Caterino et al. 2006). Any criteria assigned to assign clusters of COI sequences to DbOTs is open to debate, and the applicability of a species threshold in one specific study system does not imply that all studies require the same criteria. In other words, the delimitation of DbOTs within this study was suitable for these Hymenoptera specimens associated with rose galls induced by Diplolepis because the species threshold was supported by both COI and ITS1 sequences (Figure 2.2, 2.3, 2.4). Previous studies of biodiversity inventories of unidentified Hymenoptera have suggested using a species threshold ranging from 1.6-3% 46

(Smith et al. 2005a, 2005b, 2009, Santos et al. 2011). Including data of this study, a species threshold between 1.6-3% for Hymenoptera collected within a narrow geographic area has the support of both molecular and morphological data from three families in three superfamilies

(Chalcidoidea: Torymidae, Cynipoidea: Cynipidae, Vespoidea: Formicidae). This suggests that the species threshold of 2.2% used in this study is appropriate as a preliminary estimate of richness within a narrow geographic area.

At this time, it is not possible to definitively compare the accuracy of species identifications of Diplolepis, Periclistus, and Torymus between morphology and DNA barcodes because the membership of several species is unstable (Ritchie 1984, Plantard et al. 1998, Schick et al. 2010) or researchers stated that identification of individuals was questionable (Ritchie

1984, Rempel 2002). An important perspective of the findings of this study is that some morphologically identified species of Diplolepis sharing DNA barcodes (D. ignota, D. nebulosa, and D. variabilis) (Figure 2.2) were hypothesized to be one species in other studies

(Beutenmüller 1908, Kinsey 1922, Olson 1964, Shorthouse 1975, Plantard et al. 1998), and the splitting of morphologically identified D. polita (Figure 2.2) was also previously hypothesized

(Schick et al. 2010). However, several morphologically identified individuals, such as D. nebulosa (Figure 2.2, 2.5), that shared DNA barcodes with many different species may indicate misidentification rather than synonymy. Without solid taxonomic support to evaluate species identifications a posteriori, the differences in species identification between morphology and molecules in this study merely highlight taxa that require reassessment.

The species coverage of Diplolepis, Periclistus, and Torymus that were DNA barcoded in this study was fundamental to calculate a species threshold that is typical among closely related species with restricted sampling. Despite that the entire collection of Hymenoptera associated

47

with rose galls induced by Diplolepis were sampled over a wide geographic area (Appendix 1), most morphologically identified species and unidentified specimens were either collected from a narrow geographic area or had a small sample size (Figure 2.5, 2.6, 2.7, 2.8, Appendix 1).

Interspecific sequence divergence is expected to decrease with thorough sampling of a taxon over its geographic range (Meyer and Paulay 2005), but the restricted collection in this study means that it would be unlikely that specimens sampled would significantly reduce interspecific divergences. Most importantly, the purpose of the species threshold applied in this study is to count species richness by separating the small samples of regionally collected Hymenoptera associated with rose galls induced by Diplolepis into DbOTs. This threshold should not be applied universally to any community of Diplolepis throughout the world as a means of species discovery without a test based on identified species collected in the same areas. Therefore, any application of this species threshold to systems involving expanded sampling of Hymenoptera or different higher taxa, such as Coleoptera, Diptera, and Lepidoptera, is not recommended without review and potential adjustment.

2.16 Cynipidae morphology and DNA barcodes

Hymenoptera are among the most difficult insects to identify (Godfray and Shimada

1999, Gariepy et al. 2007), and specimens from the families examined in this study are recognized as challenging. Gallwasp (Hymenoptera: Cynipidae) identification has been impeded by substantial intraspecific variation in morphological characters, and the well studied oak gallwasps (Cynipini) highlight some of the difficulties encountered with cynipid identification

(Melika and Abrahamson 2000, Melika and Abrahamson 2007). Several keys of cynipids lack adequate species descriptions, confuse the identity of several species, and do not contain

48

adequate diagnostic characters (Shorthouse 1993, Rokas et al. 2003, Ács et al. 2007, Melika and

Abrahamson 2000, 2007). Prior to the 1960s, morphological terminology was inconsistent; hence, several species descriptions require re-examination and need to be updated with current terminology (Melika and Abrahamson 2000). In addition, completeness of notauli, number of antennal flagellomeres, pubescence of thorax and terga, and the shape of scutellar foveae and terga are morphological characters that are currently recognized to vary intraspecifically and thus insufficient to separate many cynipid taxa (Melika and Abrahamson 2000). Oak gallwasps are cyclically parthenogenetic and the two generations differ in gall location and the morphological traits of both the adult insect and the gall are different (Rokas et al. 2003, Liljeblad et al. 2008).

The boundaries of species of Cynipidae based solely on host plant choice, gall morphology, or adult morphology has caused extensive taxonomic difficulties, but it is most severe in species in the Nearctic (Rokas et al. 2003).

Identification of species of Diplolepis and Periclistus has been difficult due to the selected distinguishing morphological characters between taxa and the unexpected intraspecific morphological variation found. The type species for the genus, Diplolepis rosae, was originally placed within Cynips (Rohwer and Fagan 1917), and confusion between Diplolepis specimens and several other genera has been considerable. At least four species of Diplolepis have been originally described as type-species for other genera within Cynipidae (Dalla Torre and Kieffer

1910, Weld 1952), and several other species of Diplolepis have been described as new species within the genera , Antron, Atrusca, Aylax, Ceroptres, Disholcaspis, Dros, Dryocosmus,

Periclistus, Plagiotrochus, and Sphaeroteras (Dalla Torre and Kieffer 1910, Weld 1952, Burks

1979, Ritchie 1984, Alonso-Zarazaga and Pujade-Villar 2006). Transfers between genera have

49

also occurred with described species of Periclistus within the genera Aylax, Ceroptres, Cynips,

Diplolepis, and Eumayria (Dalla Torre and Kieffer 1910, Weld 1952, Burks 1979, Ritchie 1984).

Variation related to both morphology and body colouration has been reported within

Cynipidae, and the absence of data independent of morphology has led to potentially several cryptic species being lumped together during a formal description of one species (Ritchie 1984,

Nieves-Aldrey and Medianero 2011). Morphological variation within Diplolepis has been reported for the thoracic sutures of both D. rosae (Ritchie and Peters 1981) and D. radicum

(Kinsey 1922, Shorthouse 1988), and the flanged hind femur of D. radicum (Shorthouse and

Ritchie 1984, Shorthouse 1988). Similarly, morphological variation within Periclistus has been reported for the median line of the mesoscutum of “P. fusicolus (nom. nud.)” and the sculpturing of the pronotal bridge of “P. weldi (nom. nud.)” (Ritchie 1984). In addition, distinct abdominal and leg colour variants of several species of Diplolepis from various populations have been reported. For example, D. polita from the United States are entirely black (Dalla Torre and

Kieffer 1910), but those from Alberta to Ontario, Canada have reddish-brown abdomen and legs

(Shorthouse 1973). Similar abdominal and leg colour variants have also been reported for specimens of D. radicum collected from different regions within Canada (Shorthouse 1988). The pigmented radial wing area (cloud) of D. variabilis is only present sometimes (Bassett 1890). It is important to emphasize that cynipid identification by morphology is difficult due to either few diagnostic morphological characters or high variability in available characters. Recently, molecular identification tools, such as DNA barcoding, have been accepted by several cynipid taxonomists as a useful tool in species identification of inducers and inquilines (Stone et al.

2008, Liljeblad et al. 2008, Pénzes et al. 2009, Ács et al. 2010, Kaartinen et al. 2010, Nieves-

50

Aldrey and Medianero 2011). By including molecular data in species identification, intraspecific variation of morphological charaters can be more easily recognized.

Of the 17 morphologically identified species of Diplolepis used in this study, only eight species were composed of one DbOT (Figure 2.5). Three species of Diplolepis (D. ignota, D. nebulosa, and D. variabilis) had identical DNA barcodes, and this was not surprising given they were previously suspected to be conspecific based on adult morphology (Beutenmüller 1908,

Kinsey 1922, Olson 1964), gall morphology (Shorthouse 1975), and sequences from two mitochondrial genes (cytochrome B, 12S) (Plantard et al. 1998). Possible synonymy between D. centifoliae and D. nervosa, and between D. nebulosa, D. ignota, and D. variabilis had been suggested in an earlier study with mtDNA sequences (Plantard et al. 1998). More recent molecular and morphological data supported the hypothesis that D. centifoliae, D. kiefferi and D. rosarum are junior synonyms of D. nervosa (Pujade-Villar and Plantard 2002). Unfortunately, additional molecular and morphological data has not been collected for D. nebulosa, D. ignota, and D. variabilis so definitive nomenclatural decisions will have to await a generic revision.

After DNA barcoding unidentified specimens of Diplolepis, the number of DbOTs increased to

24 which suggests there are more Canadian species of Diplolepis to discover (Figure 2.5).

Of the seven morphologically identified species of Periclistus used in this study, only three species had one DbOT (Figure 2.6). Two species of Periclistus (“P. ashmeadi (nom. nud.)” and “P. cataractans (nom. nud.)”) had identical DNA barcodes, and this was unexpected since they were considered to be distinct species (Ritchie 1984). Possible synonymy of species of

Periclistus had only been suggested between “P. cataractans (nom. nud.)” and “P. gracilicolus

(nom. nud.)” (Ritchie 1984), but this study could not amplify DNA barcodes from reference specimens of “P. gracilicolus (nom. nud.)” so it is not known whether they would group as one

51

DbOT (Figure 2.6). Few specimens of “P. gracilicolus (nom. nud.)” were examined morphologically by Ritchie (1984) due to their rarity, and this limited examination of morphological variation from several populations to determine if the specimens exiting from D. gracilis galls were the same species (Ritchie 1984). The limited number of specimens of “P. gracilicolus (nom. nud.)” examined, their small size, and the fact that they were collected in

1972, did not support successful amplification with the primer pairs used in this study. Based on

DNA barcodes from this study, it has been determined that two species of Periclistus attack galls induced by D. gracilis (Table 2.9) as opposed to the previous determination that only one species of Periclistus exits from these galls (Ritchie 1984). However, it is unknown if either DbOT33 or

DbOT36 is “P. gracilicolus (nom. nud.)”, and these unidentified DNA barcoded specimens would have to be morphologically compared to the species in the revision of Periclistus (Ritchie

1984).

The morphologically variable “P. fusicolus (nom. nud.)” and P. pirata both had two

DbOTs each while the morphologically variable “P. weldi (nom. nud.)” had only one DbOT

(Figure 2.6, Table 2.9). Ritchie (1984) preferred to lump together specimens such as “P. fusicolus (nom. nud.)” so as to limit further inflation of the number of species names within

Periclistus. The current study found that DbOT34 of “P. fusicolus (nom. nud.)” is associated with galls of D. bassetti, D. bicolor, D. nodulosa, and D. triforma (Table 2.9) while DbOT35 is associated with D. bassetti and D. fusiformans (Table 2.9). The first species description of D. triforma stated that inquilines from this gall are rare (Shorthouse and Ritchie 1984), but since then, several studies have reported that inquilines do not attack any D. triforma galls (Wiebes-

Rijks and Shorthouse 1992, Lalonde and Shorthouse 2000, Shorthouse et al. 2005, Leggo and

Shorthouse 2006a, 2006b). Despite the limits imposed by specimen age and the primers used in

52

this study, it has been determined that both Periclistus DbOT26 and DbOT34 do attack galls of D. triforma (Table 2.9). The two DbOTs of P. pirata (DbOT26 and DbOT27, Figure 2.6, Table 2.9) were expected because identification of this species is difficult (Ritchie 1984). Though “P. weldi

(nom. nud.)” was stated as being morphologically variable, it was nonetheless considered one species (Ritchie 1984), and this decision is supported by the presence of one DbOT. This study determined that “P. weldi (nom. nud.)” attacks the leaf galls induced by D. bassetti, D. bicolor, and D. polita, and also stem galls induced by D. spinosa (Table 2.9). The mean diameter of the single-chambered galls of D. bassetti, D. bicolor, and D. polita is approximately 4.5 mm, 9 mm, and 4 mm, respectively, and the multi-chambered gall of D. spinosa is approximately 23 mm total with an average of 16.5 chambers per gall (Shorthouse 2010). It is likely that range of chamber size and host gall location affects the variability of morphology of Periclistus.

Seven species of North American Periclistus have been described and each was known to attack galls of only one species of Diplolepis (Shorthouse 1975). According to Ritchie (1984), only four of these species are valid, with one species placed in synonymy with P. pirata, two species transferred to other genera (Diplolepis and Eumayria), and six new species recognized.

Accordingly, a total of ten species of Periclistus are known from North America. In this study, seven species of Periclistus were DNA barcoded (Figure 2.6), and data suggests that three species are valid, two species are potential synonyms, and two species should be split into more than one species. In addition, DNA barcoding of unidentified specimens of Periclistus increased the number of DbOTs from 7 to 12, suggesting that more species of Periclsitus are likely to occur within Canada (Figure 2.3, Figure 2.6). None of the DNA barcoded species of Periclistus were determined to be monophagous when organized by species of Diplolepis or gall location (Table

2.9). Species of Periclistus are associated with 2.7 ± 0.95 species of Diplolepis, and each species

53

of Diplolepis has an average of 3.2 ± 1.72 species of Periclistus associated with their galls. All these results are similar to other studies that focussed on inquilines of oak galls such that recognized species have been suggested to require splitting apart or lumping together, and new species were discovered despite the large accumulation of expert knowledge of cynipid taxonomy in those gall systems (Stone et al. 2008, Liljeblad et al. 2009, Pénzes et al. 2009, Ács et al. 2010, Kaartinen et al. 2010).

A further complication with accurate cynipid identification is the unofficial synonymization of species without a published revision of the genus. Weld (1952) described D. lens as a new species that produces lens-shaped galls on Rosa leaves throughout western USA.

The most recent catalogue of Diplolepis species in America north of Mexico also considered D. lens to be distinct from D. rosaefolii which induces similar galls but is distributed in the eastern

USA and throughout Canada (Burks 1979). However, based only on adult morphology, it had been suggested that D. lens is a junior synonym of D. rosaefolii rather than a separate species

(Shorthouse and Brooks 1998). Considering morphologically identified D. rosaefolii of this study, they had a maximum intraspecific divergence of 4.1 % (Figure 2.2). Thus, the two DbOTs of D. rosaefolii either support the previous taxonomic view that D. lens and D. rosaefolii are separate species with western and eastern distributions, respectively (Weld 1952, Burks 1979), or another lens-shaped gall inducer is present in Canada. Unofficial synonymy has also been suggested between, but not limited to, the root gall inducers D. radicum and D. ostensackeni, the root gall inducers D. semipiceus and D. fulgens, and between the stem gall inducers D. spinosa and D. tuberculatrix (Shorthouse 1988). Noteworthy is that both morphologically identified D. radicum and D. spinosa of this study had maximum intraspecific divergence > 3% (Figure 2.2), and each species was separated into two DbOTs (Figure 2.5). Once again, it is undetermined if

54

the separate DbOTs support the traditional taxonomic view that D. ostensackeni and D. tuberculatrix are separate species from D. radicum and D. spinosa, respectively (Weld 1952,

Burks 1979), or if another root gall inducer and stem gall inducer, respectively, are present within Canada. Unfortunately, the root gall inducers D. semipiceus and D. fulgens were not examined in this study, and thus tests of species boundaries for them remain open to future examination.

2.17 Gall morphology and inducer identification

It has been unequivocally demonstrated that gall development is controlled by the inducer

(Shorthouse 1993, Ronquist and Liljeblad 2001, Stone and Schönrogge 2003), and the diversity of gall morphology found on the same plant has attracted the attention of ecologists for hundreds of years. Consequently, the hypothesis that each inducer produces a species specific and unique gall has been reported in several cynipid reviews and studies (Shorthouse 1993, Ronquist and

Liljeblad 2001, Schönrogge et al. 2002, Stone and Schönrogge 2003, Harper et al. 2004,

Shorthouse et al. 2005). However, within a cynipid species that has both asexual and sexual generations, induced galls differ in morphology, plant organ attacked, and plant species attacked

(Stone and Cook 1998, Stone and Schönrogge 2003, Stone et al. 2008). Gall morphology of an asexual generation within cynipid species is structurally more complex than the sexual generation, and as a result, galls from sexual generations lack many distinguishing characters that allow distinction between inducer species (Schönrogge et al. 2002, Stone et al. 2008).

Interestingly, species of Diplolepis are univoltine and do not exhibit alternation of generations, hence, gall morphology is the result of a sexual generation although parthenogenesis is widespread due to Wolbachia infection (Plantard et al. 1998, Plantard and Solignac 1998).

55

Within a specific generation, gall morphology is more variable between species than within species (Stone and Schönrogge 2003), but speciation within a genus of Cynipidae does not automatically result in distinct gall morphology (Stone and Cook 1998).

Like any biological character, gall morphology can be variable within an inducer species

(Shorthouse and Ritchie 1984, Plantard et al. 1998, Shorthouse 2003), such as the single- chambered or multi-chambered galls of D. verna, the shiny or smooth galls of D. dichlocera, the spiny or spineless galls of D. nervosa, D. mayri and D. spinosa, and the three gall forms of D. triforma. In a few cases, gall morphology is indistinguishable between species (Dailey and

Campbell 1973, Brooks and Shorthouse 1997, Shorthouse 2003), such as comparing galls of D. inconspicuis with those of D. nodulosa, galls of D. eglanteriae with those of D. nervosa, and galls of D. bassetti with the rare hairy gall forms of D. polita (Shorthouse pers. comm). Several species of Diplolepis reported to have indistinguishable galls between species or variable gall forms within species also had multiple DbOTs, such as D. bassetti, D. polita, D. spinosa, and D. triforma (Figure 2.5). Furthermore, if gall morphology is a reliable proxy for inducer identification, then gall characters would have distinguished D. mayri from D. fructuum (Güçlü et al. 2008) and would have suggested the synonymy of D. centifoliae, D. kiefferi, and D. rosarum with the valid species, D. nervosa (Pujade-Villar and Plantard 2002). As opposed to using external gall morphology as a surrogate for inducer identification, studies of internal gall morphology may offer a new set of characters. For example, histological examination of galls of

D. lens (Shorthouse 1975) and galls of D. rosaefolii (LeBlanc and Lacroix 2001) have shown that the galls differ in number of sclerenchymal layers and location of vascular tissue. This example also suggests that D. lens is a distinct species from D. rosaefolii, and it also highlights the potential of internal gall morphology characters to complement data from adult morphology

56

and molecular sequences in order to identify species. Perhaps examination of gall morphology via histological techniques instead of examination of external gall characters would aid with inducer identification, but no studies have developed a key based on histological gall characters.

Galls can be readily collected in large quantities during a single collection period, and such mass collections can easily overlook the necessary separation of different galls unless sufficient care is taken to individually inspect every gall (Kinsey 1920). Considering D. nebulosa in this study, DNA barcoding identified one specimen as a leaf gall inducer (D. gracilis) and three specimens as an undescribed species. These four specimens were re-examined morphologically post-DNA barcoding, and it was confirmed that they were not D. nebulosa. It is plausible that galls from different species of inducer were accidentally included in a collection sample of leaf galls of D. nebulosa, thereby confusing the identity of these specimens. Therefore, adult specimens must be examined morphologically or molecularly to identify a specimen to species because collective samples of galls thought to be of one species may be contaminated with other galls.

Gall morphology can be affected by factors independent of species of inducer such as plant species (Weis et al. 1988, Stone and Schönrogge 2003, Shorthouse 1988, Shorthouse

2010), stage of plant tissue development (Shorthouse and Ritchie 1984), and other gall inhabitants (Brooks and Shorthouse 1998, Shorthouse 1998, Leggo and Shorthouse 2006b). Stem galls of D. spinosa are weakly spined to smooth when R. woodsii is attacked, but the stem galls have many thick spines when R. blanda is attacked (Shorthouse 1988, Shorthouse 2010).

Depending on the amount of leaf unfolding near a stem bud, one of three alternate gall types will be induced by D. triforma (Shorthouse and Ritchie 1984). Morevoer, both inquilines

(Periclistus) and parasitoids within the families Eurytomidae and Torymidae are able to modify

57

gall morphology (Brooks and Shorthouse 1998, Shorthouse 1998, Leggo and Shorthouse 2006b).

Though identification of inducers is narrowed by using external gall morphology, especially when species are not closely related, the practice of identifying inducers based on gall morphology has been repeatedly criticized (Shorthouse 1993, Abrahamson et al. 1998, Drown and Brown 1998, Liljeblad et al. 2008).

2.18 Parasitoids of rose galls and DNA barcodes

In addition to inducers and inquilines (Hymenoptera: Cynipidae), inhabitants of rose galls induced by Diplolepis include Hymenoptera from six families within Chalcidoidea (Eulophidae,

Eupelmidae, Eurytomidae, Ormyridae, Pteromalidae, Torymidae,) and one family within

Ichneumonoidea (Ichneumonidae) (Table 2.3). The proportion of each family depends on the gall system under consideration (Askew et al. 2006). Currently, identification of most parasitoids of rose gall communities is less resolved than for species of Diplolepis and Periclistus, and this study used a species threshold to provide an estimate of species richness. The total number of

DbOTs of parasitoid was larger than total number of species of parasitoid reported from literature in four of seven families despite limited sampling (Figure 2.8, Table 2.3, Table 2.11).

Synonymous and cryptic species of parasitoids have been found in other molecular studies of oak gall (Abrahamson et al. 1998, Hayward and Stone 2005, Liljeblad et al. 2008, Pénzes et al. 2009,

Ács et al. 2010, Kaartinen et al. 2010) and rose gall communities (Pujade-Villar and Plantard

2002, Lotfalizadeh et al. 2007, Güçlü et al. 2008), and the larger number of DbOTs found in this study is not unexpected. Further molecular and morphological studies of parasitoids associated with rose galls induced by Diplolepis are required to determine the validity of DbOTs as species and to begin formal taxonomic descriptions.

58

Of the six morphologically identified species of Torymus analyzed in this study, four have species-specific DNA barcodes, but only two species had one DbOT (Figure 2.7). Initially, it would appear that since T. flavicoxa and T. magnificus have one DbOT each, their identity by morphology and DNA barcoding are congruent. However, the sample size of these two species of Torymus was small (Figure 2.7, Table 2.7), and it is likely that further sampling will reveal additional DbOTs. By DNA barcoding unidentified specimens of Torymus, the number of DbOTs increased from 7 to 12 suggesting that additional species of Torymus will be discovered within

Canada (Figure 2.4, Figure 2.7). Rempel (2002) reported that many specimens of T. bedeguaris are difficult to distinguish from those of T. solitarius using available taxonomic keys. This was clearly reflected by the DNA barcoding results of those specimens (Figure 2.4). In addition, T. bedeguaris exiting from galls induced by exotic Diplolepis sampled from Canada (D. mayri, D. rosae) were reported to be morphologically distinct from T. bedeguaris exiting from galls induced by native Diplolepis (Rempel 2002). Morphologically identified T. bedeguaris exiting from exotic Diplolepis galls were not available for DNA barcoding, so this study cannot add molecular data to support that observation.

Eleven species of Torymus associated with rose galls induced by Diplolepis are considered valid (Table 2.4), yet only six species were identified from 30 years of rose gall collections within Canada (Rempel 2002). This is unusual because unidentified species of

Torymus have been recorded exiting Canadian D. rosaefolii galls during the same time period

(Brooks and Shorthouse 1998). Adult identification of species within Torymidae is difficult because of morphological uniformity, the incompleteness of identification keys, and nomenclatural problems (Graham et al. 1998, Grissell 2004, Gómez et al. 2008). Molecular studies of described species of Torymidae associated with cynipid galls have found evidence of

59

cryptic species in Torymus (Kaartinen et al. 2010) and Megastigmus (Aebi et al. 2007). One of the species of Torymus species suggested to be composed of two cryptic species, T. flavipes, is a parasitoid of oak cynipids and also associated with galls of D. eglanteriae, D. mayri, D. rosae, and D. spinosa (Table 2.4, Kaartinen et al. 2010). The DNA barcoding results for Diplolepis and

Periclistus in this study and similar findings in other studies of Cynipidae and/or Torymidae

(Aebi et al. 2007, Kaartinen et al. 2010) indicate that future taxonomic studies of Torymus associated with Canadian rose galls induced by Diplolepis will undoubetedly result in the discovery of new species.

2.19 Cryptic, synonymous, new, and unsampled species

Any identification key (molecular or morphological) is a preliminary guide to a species name, but the final determination of species identity may require additional evidence that is beyond the scope of the key. Generation of DNA barcodes for reference specimens cannot confirm species identification if the species status of the reference specimen is unstable. The utility of any identification key (morphological or molecular) is dependent upon correct species delimitation. At the moment, post-inspection of adult morphology or external gall morphology will not unambiguously identify several specimens because of inconsistent morphological terminology and use of inadequate diagnostic characters for species descriptions (Shorthouse

1993, Melika and Abrahamson 2000, Rokas et al. 2003, Ács et al. 2007, Melika and

Abrahamson 2007).

Cryptic species are two or more species that cannot be distinguished using currently defined morphological characters defined, and thus individuals are all classified under one species name (Bickford et al. 2007). If more than one DbOT is generated from one

60

morphologically identified species (Figure 2.9a), then it still must be determined which DbOT belongs to the type specimen of the described species and which DbOT is the new species.

Synonymous species are actually different species names incorrectly applied to individuals that are actually one species. If one DbOT is generated from more than one morphologically identified species (Figure 2.9b), it is considered preliminary evidence of synonymy. The next step is to re-examine individuals with new morphological characters, new molecular regions, or new biological data (i.e. behaviour, ecology, etc.). When a new DNA barcode is not found within the current reference database, it cannot be immediately confirmed whether the new DbOT is a new species or an unsampled species (Figure 2.9c). These two species categories are similar in that individuals from a new DbOT have not had their DNA barcode previously uploaded to the database, but the species categories are distinct in that the one of the unsampled species is named while the new species has never been named. As a solution, congeneric specimens that have not been included in the DNA barcode database should be examined morphologically and also have their DNA barcodes amplified and added to the reference database. A DNA barcoding library could be created for all described species of Diplolepis, and this is feasible because the estimated number of described species is 43 (Table 2.1). Even though many vouchers of species would be

> 10 years old, the extra cost of developing internal primer pairs for a small number of degraded specimens would be low. While awaiting the collection of DNA samples from holotypes, other priority species can be sampled within Canada such as D. arefacta, D. fulgens, and D. semipiceus because they are suspected to be synonyms of other species or because they induce very similar galls to other Diplolepis species (Ritchie and Shorthouse 1984, Shorthouse 1988). A more comprehensive DNA barcoding library could be similarly constructed for all described species of

Periclistus and Torymus associated with rose galls. Increasing the DNA barcode reference

61

database of inducers, inquilines, and parasitoid specimens from regions outside of Canada is necessary to determine which exotic species have entered Canada. In the 1950s, D. rosae was introduced into North America along with several exotic parasitoid species of Orthopelma

(Ichneumonidae), Pteromalus (Pteromalidae), and Torymus (Torymidae) (Csóka et al. 2004).

Since that time, both D. eglanteriae and D. mayri have also been introduced into North America

(Table 2.1), but it is not known which exotic inquilines and parasitoids have also been introduced

(Table 2.2, Table 2.4).

Though there are no standard criteria to identify all insects with molecular data (Cognato

2006), there are also no standard criteria to identify all insects with morphological data.

Molecular keys allow researchers the freedom to select preferred DbOT thresholds to group taxa

(Cognato and Sun 2007), and the selected thresholds are easily understood and open to review by the scientific community. However, the use of morphological keys does not allow the scientific community the ability to track the decisions made at every couplet by the user. A simple species threshold was calculated to identify taxa within this study, and it is concluded that several morphologically identified taxa require re-examination. Possible misidentification of a few individuals of D. nebulosa, T. bedeguaris, and T. solitarius suggest that larger sample sizes should be collected from the same areas and examined with additional morphological and molecular data. It cannot be definitively concluded at this time whether or not any of the recognized species of Diplolepis, Periclistus, and Torymus are synonyms or require splitting into two or more species. The individuals within each DbOT (Appendix 1) require expert examination to distinguish misidentifications and mislabeling, and to possibly match individuals with reference specimens. Species descriptions should be updated with current terminology and appropriate characters, and include images from scanning electron microscopy, and include

62

molecular sequence data, such as a DNA barcode. Future studies that include DNA barcoding as an identification tool can foster interest in future taxonomic study and revision of challenging genera such as the Hymenoptera associated with rose galls induced by Diplolepis.

CONCLUSION

The necessity of a molecular identification tool, such as DNA barcoding, is supported by several researchers that require identification of a wide variety of species of Hymenoptera. The identification of Cynipidae, which is often based on early species descriptions, morphological keys, or gall morphology, is recognized as an area in which additional methods could be of signficiant benefit. The challenge of identification is even greater for parasitoids associated with cynipid galls. Identification based on morphological characters of adult insects or galls is not rejected by the results of this study, but the organization of new character sets requires guidance from molecular identification tools, such as DNA barcoding. This study shows that a molecular identification tool, such as DNA barcoding, is quick and effective for grouping taxa as DbOTs that may require new data to confirm species identification. This current study counted 72

DbOTs of morphologically identified species of Diplolepis, Periclistus, Torymus, and several unidentified Hymenoiptera. Using DNA barcoding, species richness of all rose gall communities of Diplolepis could be examined with unprecedented resolution. In addition, the use of DNA data provided a threshold for the operational assignment of unidentified (or, indeed, unnamed) species that enables large-scale surveys of other traits, such as genome size (Chapter Three).

63

Table 2.1. Species of Diplolepis (Cynipidae) worldwide.

Species of Diplolepis† Gall location Gall collected within Canada

D. arefacta stem (rare) D. ashmeadi stem D. bassetti leaf D. bicolor leaf D. brunneipes n/a D. californica stem D. dichlocera stem D. eglanteriae leaf (exotic) D. fructuum fruit D. fulgens root (rare) D. fusiformans stem D. gracilis leaf D. ignota leaf D. inconspicuis stem D. japonica leaf D. lens leaf (rare) D. mayri leaf (exotic) D. nebulosa leaf D. neglecta stem D. nervosa leaf D. nigriceps n/a D. nitidus n/a D. nodulosa stem D. oregonensis stem D. ostensackeni root D. polita leaf D. pustulatoides leaf D. radicum root D. radoszkowskii n/a D. rosae leaf (exotic) D. rosaefolii leaf D. semipiceus root (rare) D. similis stem D. spinosa stem D. spinosissimae leaf D. terrigena root D. triforma stem D. tuberculatrix stem D. tumida stem D. variabilis leaf D. variegatus n/a D. verna stem D. weldi leaf † As listed by Dailey and Campbell (1973), Burks (1979), Ritchie (1984), Shorthouse and Ritchie (1984), and Askew et al. (2006).

64

Table 2.2. Species of Periclistus (Cynipidae) in North America.

Periclistus species† Rose gall associations‡ P. arefactus D. inconspicuis D. neglecta

“P. ashmeadi (nom. nud.)” D. ignota D. nebulosa D. variabilis

P. brandtii D. mayri (exotic) D. rosae (exotic)

P. californicus D. californica D. neglecta D. polita

P. caninae D. eglanteriae (exotic)

“P. cataractans (nom. nud.)” D. lens D. rosaefolii

“P. fusicolus (nom. nud.)” D. fusiformans D. nodulosa D. triforma

“P. gracilicolus (nom. nud.)” D. gracilis

P. piceus D. polita

P. pirata D. bassetti D. neglecta D. spinosa D. bicolor D. nodulosa D. triforma D. dichlocera D. polita D. tuberculatrix D. ignota D. radicum D. tumida D. nebulosa D. rosae

“P. vancouverensis (nom. nud.)” D. inconspicuis D. neglecta

“P. weldi (nom. nud.)” D. bassetti D. nebulosa D. polita D. bicolor D. nodulosa D. spinosa D. ignota † Identified by Ritchie (1984). Species descriptions of Periclistus by Ritchie (1984) were not published and so those specific names are considered nomina nuda. However, for ease of comparison, the same species names that appeared in his PhD dissertation (Ritchie 1984) will be used in this study, but those species names are written within quotation marks and include (nom. nud.). ‡ As listed by Ritchie (1984).

65

Table 2.3. Species of parasitoid associated with rose galls induced by Diplolepis. Superfamily Family species† Chalcidoidea Eulophidae Aprostocetus hesperius Baryscapus evonymellae Chrysocharis pentheus Minotetrastichus frontalis A. rosae A. zosimus Eupelmidae Eupelmus dryorhizoxeni E. urozonus E. vesicularis Eurytomidae Eurytoma acuta Sycophila wiltzae Tenuipetiolus ruber E. calcarea E. discordans E. flavicrurensa E. hebes E. hecale E. imminuta E. incerta E. iniquus E. longavena E. obtusilobae E. spongiosa E. terrea Ormyridae nitidulus

O. rosae Pteromalidae Cyrtogaster vulgaris Mesopolobus fasciiventris Pteromalus bedeguaris Spaniopus dissimilis P. rosae Torymidae Glyphomerus stigma Monodontomerus aereus Torymus bedeguaris T. bicoloratus T. chrysochlorus T. flavicoxa T. flavipes T. magnificus T. osborni T. rhoditidis T. solitarius T. tubicola T. varians Ichneumonoidea Ichneumonidae Exeristes roborator Orthopelma califomicum O. occidentale O. mediator † As listed by Barron (1977), Rempel (2002), and the Universal Chalcidoid Database (www.nhm.ac.uk/researchcuration/research/projects/chalcidoids/).

66

Table 2.4. Species of Torymus (Torymidae) associated with rose galls induced by Diplolepis. Torymus species† Rose gall associations‡ T. bedeguaris† D. bicolor D. nebulosa D. rosaefolii D. eglanteriae (exotic) D. nodulosa D. spinosa D. gracilis D. polita D. triforma D. ignota D. radicum D. variabilis D. mayri (exotic) D. rosae (exotic) T. bicoloratus† D. bicolor D. nodulosa D. triforma D. gracilis D. polita D. variabilis D. nebulosa D. spinosa T. chrysochlorus† D. arefacta D. gracilis D. rosae (exotic) D. bassetti D. ignota D. rosaefolii D. bicolor D. lens D. spinosa D. californica D. nebulosa D. triforma D. dichlocera D. polita D. variabilis D. fusiformans D. radicum

T. flavicoxa† D. radicum D. spinosa D. terrigena

T. flavipes D. eglanteriae (exotic) D. rosae (exotic) D. spinosa D. mayri (exotic) T. magnificus† D. radicum

T. osborni D. sp.

T. rhoditidis D. sp.

T. solitarius† D. bicolor D. polita D. triforma D. nebulosa D. radicum D. variabilis D. nodulosa D. spinosa

T. tubicola D. polita

T. varians D. sp.

† Identified by Rempel (2002). ‡ As listed by Rempel (2002) and the Universal Chalcidoid Database (www.nhm.ac.uk/researchcuration/research/projects/chalcidoids/).

67

Table 2.5. Species of Diplolepis (Cynipidae) selected for DNA barcoding.

Diplolepis species† individuals processed for DNA barcoding (n)

D. bassetti 27 D. bicolor 20 D. californica 24 D. eglanteriae 6 D. fructuum 20 D. fusiformans 33 D. gracilis 20 D. ignota 20 D. lens 1 D. mayri 10 D. multispinosa 2 D. nebulosa 30 D. nodulosa 23 D. oregonensis 2 D. ostensakeni 2 D. polita 45 D. radicum 40 D. rosae 15 D. rosaefolii 60 D. spinosa 70 D. triforma 40 D. tubercularis 1 D. variabilis 21 Total 532 † Identified by JD Shorthouse.

68

Table 2.6. Species of Periclistus (Cynipidae) selected for DNA barcoding.

Periclistus species† individuals processed for DNA barcoding (n)

P. arefactus 12 “P. ashmeadi (nom. nud.)” 17 “P. cataractans (nom. nud.)” 9 “P. fusicolus (nom. nud.)” 17 “P. gracilicolus (nom. nud.)” 12 P. piceus 12 P. pirata 20 “P. vancouverensis (nom. nud.)” 12 “P. weldi (nom. nud.)” 20 Total 131 † Identified by Ritchie (1984). New species descriptions of Periclistus by Ritchie (1984) were not published and so those specific names are considered nomina nuda. However, for ease of comparison, the same species names that appeared in his PhD dissertation (Ritchie 1984) will be used in this study, but those species names are written within quotation marks and include (nom. nud.).

69

Table 2.7. Species of Torymus (Torymidae) selected for DNA barcoding.

Torymus species† individuals processed for DNA barcoding (n)

T. bedeguaris 44 T. bicoloratus 7 T. chrysochlorus 23 T. flavicoxa 7 T. magnificus 4 T. solitarius 14 Total 99 † Identified by Rempel (2002).

70

Table 2.8. Unidentified Hymenoptera exiting rose galls selected for DNA barcoding.

individuals processed for DNA barcoding (n)

Unidentified† taxa Adult Larva

Diplolepis (Cynipidae) 199 10 Periclistus (Cynipidae) 496 3 Torymus (Torymidae) 302 1 Parasitoids (excluding Torymidae) 290 20 Total 1287 34 † Specimens were not identified to species.

71

Table 2.9. Periclistus (Cynipidae) associations with rose galls induced by Diplolepis.

‡ §

Species of Periclistus or DbOT

)”

nom. nud.nom.

(

)”

)”

cataractans

nom.nud.

/

(

nom. nud.

(

weldi ashmeadi fusicolus

pirata sp. piceus sp. sp. sp.

. . . .

......

P P P

P P P “ P “ P “ P

6 7 8 0 1 2 3 4 5 6

2 29

Diplolepis Gall T

OT OT2 OT2 O OT3 OT3 OT3 OT3 OT3 OT3 OT3

b b b b b b b b b b

species† location b

D D D D D D D D D D D D. bassetti leaf

D. bicolor leaf

D. fusiformans stem

D. gracilis leaf

D. ignota leaf

D. nebulosa leaf

D. nodulosa stem

D. polita leaf

D. radicum root

D. rosaefolii leaf

D. spinosa stem

D. triforma stem

D. variabilis leaf

† Identified by JD Shorthouse. Most identifications were based on adults, but some were based on external gall morphology. ‡ Identified by Ritchie (1984). § Figure 2.3 and Figure 2.6. Richness of species of Periclistus based on intercluster threshold of 2.2%.

72

Table 2.10. Torymus (Torymidae) associations with rose galls induced by Diplolepis. ‡ §

Species of Torymus or DbOT

solitarius

/

s

flavicoxa sp. magnificu chrysochlorus bedeguaris bedeguaris bicoloratus

...... sp. .

.

T T T T T T T T

7 8 7

3 3 39 40 41 42 43 44 45 46 4 48

Diplolepis Gall

OT OT OT OT OT OT OT OT OT OT OT OT

b b b b b b b b b b b

species† location b

D D D D D D D D D D D D

D. bicolor leaf

D. gracilis leaf

D. ignota leaf

D. mayri (exotic) leaf

D. nebulosa leaf

D. nodulosa stem

D. polita leaf

D. radicum root

D. rosaefolii leaf

D. spinosa stem

D. triforma stem

D. variabilis leaf † Identified by JD Shorthouse. Most identifications were based on adults, but some were based on external gall morphology. ‡ Identified by Rempel (2002). § Figure 2.4 and Figure 2.7. Richness of species of Torymus based on intercluster threshold of 2.2%.

73

Table 2.11. Species richness of Hymenoptera associated with rose galls induced by Diplolepis. Number of species identified within Family (n) ‡ §

Morphological identification Molecular identification (DbOT)

) )

) )

e

Torymus Torymus

Periclistus Periclistus

Diplolepis

species†

Cynipidae ( Cynipidae Eulophidae Eupelmidae Eurytomidae Ichneumonida Ormyridae Pteromalidae ( Torymidae richness Species ( Cynipidae Eulophidae Eupelmidae Eurytomidae Ichneumonidae Ormyridae Pteromalidae ( Torymidae richness Species D. bassetti 1 1 4 4 D. bicolor 2 2 4 8 3 2 1 3 9 D. fusiformans 1 1 2 1 1 6 2 1 1 4 D. gracilis 1 1 3 5 2 1 1 3 7 D. ignota 3 2 1 2 1 1 2 12 2 1 1 1 1 6 D. nebulosa 3 4 7 2 2 4 D. nodulosa 3 1 1 1 3 9 2 1 1 4 D. polita 4 4 5 13 4 1 2 1 1 1 2 12 D. radicum 1 2 1 5 9 2 1 1 4 8 D. rosaefolii 1 1 1 2 2 7 4 1 1 1 1 2 2 12 D. spinosa 1 1 2 6 10 4 1 2 1 2 6 16 D. triforma 1 4 5 2 1 1 2 2 1 4 13 D. variabilis 1 4 3 4 12 2 1 1 3 7 Total unique 9 4 2 13 3 1 1 8 11 7 1 5 3 2 5 12 species (n) Total species 41 46 richness (n) † Identified by JD Shorthouse. Most identifications were based on adults, but some were based on external gall morphology. ‡ As listed by Barron (1977), Ritchie (1984), Rempel (2002), and the Universal Chalcidoid Database (www.nhm.ac.uk/researchcuration/research/projects/chalcidoids/). § Figure 2.6, Figure 2.7, and Figure 2.8. Species richness is based on intercluster threshold of 2.2%.

74

failure success 200

150

Diplolepis 100 specimens

50 Number of of Number

0 200

150

Periclistus 100 specimens

50 Number of of Number

0 200

150 Torymus

100 specimens

50 Number of of Number

0

1980 2000 1910 1920 1930 1940 1950 1960 1970 1990 2010 Year Figure 2.1. Amplification success of DNA barcodes from adults and larvae of Diplolepis (Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae). The DNA barcodes were amplified with either a standard LEP primer set or a mini-barcode LEP primer set. A failure was considered as either no amplification of a DNA barcode sequence or amplification of contaminant DNA.

75

DNA barcode mtDNA Identification† ITS1 rDNA‡ 2 % (n = 5) D. eglanteriae 2 100 (n = 2) (n = 19) D. bicolor 100 (n = 1) 99

100 (n = 24) D. bassetti

97 (n = 17) D. polita 100 (n = 20) D. fructuum (n = 1) 100

100 (n = 15) D. rosae 100 (n = 1) 100 (n = 18) D. rosaefolii (n = 1) 91 100 100 (n = 9) D. fusiformans 99 (n = 3) D. nebulosa 100

(n = 18) D. ignota (n = 3) (n = 26) D. nebulosa (n = 2) 100 (n = 9) D. variabilis 99 (n = 1) D. sp.‡ (n = 1)

99 (n = 8) D. gracilis 100 (n = 1) D. nebulosa

(n = 1) D. nodulosa

(n = 5) D. triforma 95 100

(n = 43) D. spinosa 99 99 (n = 8) D. californica 100 (n = 5) 100 D. radicum (n = 1)

Figure 2.2. NJ dendrogram of reference vouchers of Diplolepis (Cynipidae). Clusters of DNA barcodes were generated using Kimura-2-parameter distance while clusters of ITS1 sequences were generated using number of differences. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. Red branches indicate species of Diplolepis with more than one ITS1 cluster within a species or shared DNA barcodes and ITS1 sequences between species. † Identified by JD Shorthouse (see Table 2.5). ‡ With the exception of one unidentified individual (D. sp.), all ITS1 sequences were amplified from morphologically identified individuals who were also DNA barcoded.

76

DNA barcode mtDNA Identification† ITS1 rDNA‡ 2 2 %

100 (n = 2) P. arefactus

(n = 2) (n = 3) P. pirata 91 ‡ 100 (n = 6) P. sp. (n = 4)

97

(n = 6) P. sp.‡ (n = 6) 91 100

(n = 5) P. piceus 100

100 (n = 4) “P. weldi (nom. nud.)” ‡ (n = 5) 100 (n = 5) P. sp. 100

(n = 2) “P. ashmeadi (nom. nud.)” (n = 1) “P. cataractans (nom. nud.)” (n = 7) 100 (n = 7) P. sp.‡

(n = 1)

(n = 9) “P. fusicolus (nom. nud.)” 100 (n = 3) P. sp.‡ (n = 2) 100

(n = 1) P. sp.‡ (n = 1)

Figure 2.3. NJ dendrogram of reference vouchers of Periclistus (Cynipidae). Clusters of DNA barcodes were generated using Kimura-2-parameter distance while clusters of ITS1 sequences were generated using number of differences. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. Red branches indicate species of Periclistus with more than one ITS1 cluster within a species or shared DNA barcodes and ITS1 sequences between species. † Identified by Ritchie (1984) (see Table 2.6). ). ‡ All ITS1 sequences were amplified from unidentified individuals who were DNA barcoded and matched to reference specimens. Species descriptions of Periclistus by Ritchie (1984) were not published and so those specific names are considered nomina nuda.

77

DNA barcode mtDNA Identification† ITS1 rDNA‡ 2 2 %

(n = 2) T. flavicoxa 100 (n = 2) T. sp.‡ (n = 2) 100 99

(n = 2) T. magnificus 100

(n = 1)

(n = 18) T. chrysochlorus (n = 2) T. sp.‡

(n = 1) 100

(n = 25) T. bedeguaris ‡ (n = 1) 100 (n = 1) T. sp.

(n = 5) T. bedeguaris (n = 6) T. solitarius (n = 3) 100 (n = 3) T. sp.‡

(n = 5) T. bicoloratus 100

Figure 2.4. NJ dendrogram of reference vouchers of Torymus (Torymidae). Clusters of DNA barcodes were generated using Kimura-2-parameter distance while clusters of ITS1 sequences were generated using number of differences.. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. Red branches indicate species of Torymus with more than one ITS1 cluster within a species or shared DNA barcodes and ITS1 sequences between species. † Identified by Rempel (2002) (see Table 2.7). ‡ All ITS1 sequences were amplified from unidentified individuals who were DNA barcoded and matched to reference specimens.

78

DNA barcode mtDNA Identification† Interspecific threshold ≥ 2.2%‡ 2 % D. eglanteriae D OT01 (n = 9) 99 b 99 99 D. sp. DbOT02 (n = 2)

99 DbOT03 (n = 14) 99 D. bicolor 99 DbOT04 (n = 6) D OT05 (n = 13) 99 D. bassetti b 99 99 DbOT06 (n = 12)

DbOT07 (n = 12) 97 D. polita DbOT08 (n = 7) 99 99 D. fructuum DbOT09 (n = 20) 99 99 D. sp. DbOT10 (n = 2)

98 D. rosae DbOT11 (n = 21) D OT12 (n = 13) 99 D. rosaefolii b DbOT13 (n = 17) 98 D. fusiformans 99 D OT14 (n = 16) D. nebulosa b

D. ignota

D. nebulosa DbOT15 (n = 104) 99 D. variabilis

99 D. gracilis D OT16 (n = 10) 99 D. nebulosa b

99 D. nodulosa DbOT17 (n = 11) D OT18 (n = 27) 97 D. triforma b 98 DbOT19 (n = 4) 99 DbOT20 (n = 39) 95 94 D. spinosa

99 DbOT21 (n = 16) 99 D. californica DbOT22 (n = 8) 99 99 DbOT23 (n = 12) 99 D. radicum 99 DbOT24 (n = 7) Figure 2.5. NJ dendrogram of both reference and unidentified adult and larva specimens of Diplolepis (Cynipidae) based on species threshold of 2.2%.Clusters of DNA barcodes were generated using Kimura-2-parameter distance. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. † Morphologically identified by JD Shorthouse (see Table 2.5 and Table 2.8). ‡ Species threshold calculated from minimum intercluster divergence supported by DNA barcodes and ITS1 sequences (Figure 2.2, 2.3, 2.4).

79

DNA barcode mtDNA Identification† Interspecific threshold ≥ 2.2%‡ P. arefactus D OT25 (n = 2) 2 % 100 b

DbOT26 (n = 29) 95 100 P. pirata

99 98 DbOT27 (n = 48)

P. sp. DbOT28 (n = 3) 96 P. piceus D OT29 (n = 5) 99 b

100

P. weldi (nom. nud.) D OT30 (n = 80) 99 b

99 P. sp. DbOT31 (n = 3)

“P. ashmeadi (nom. nud.)” D OT32 (n = 64) “P. cataractans (nom. nud.)” b

P. sp. DbOT33 (n = 14) 100

DbOT34 (n = 14) “P. fusicolus (nom. nud.)”

99 DbOT35 (n = 14)

100 P. sp. DbOT36 (n = 25)

Figure 2.6. NJ dendrogram of both reference and unidentified adult and larva specimens of Periclistus (Cynipidae) based on species threshold of 2.2%. Clusters of DNA barcodes were generated using Kimura-2-parameter distance. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. † Morphologically identified by Ritchie (1984) (see Table 2.6 and Table 2.8). Species descriptions of Periclistus by Ritchie (1984) were not published and so those specific names are considered nomina nuda. ‡ Species threshold calculated from minimum intercluster divergence supported by DNA barcodes and ITS1 sequences (Figure 2.2, 2.3, 2.4).

80

DNA barcode mtDNA Identification† Interspecific threshold ≥ 2.2%‡ 2 % T. flavicoxa D OT37 (n = 2) 100 b T. sp. D OT38 (n = 6) 100 b T. magnificus D OT39 (n = 2) 100 b

DbOT40 (n = 24) 99

DbOT41 (n = 12) T. chrysochlorus 100 DbOT42 (n = 4) 100 D OT43 (n = 15) 100 b

100 T. bedeguaris DbOT44 (n = 161)

T. bedeguaris D OT45 (n = 41) 100 T. solitarius b

T. sp. D OT46 (n = 5) 100 b 100 D OT47 (n = 3) T. bicoloratus b 100 D OT48 (n = 2) 100 b Figure 2.7. NJ dendrogram of both reference and unidentified adult and larva specimens of Torymus (Torymidae) based on species threshold of 2.2%. Clusters of DNA barcodes were generated using Kimura-2-parameter distance. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. † Morphologically identified by Rempel (2002) (see Table 2.7 and Table 2.8). Species threshold calculated from minimum intercluster divergence supported by DNA barcodes and ITS1 sequences (Figure 2.2, 2.3, 2.4).

81

DNA barcode mtDNA Identification† Interspecific threshold ≥ 2.2%‡ 2 % Eupelmidae D OT49 (n = 3) 100 b

DbOT50 (n = 41) 100

91 D OT51 (n = 16) 99 Eurytomidae b

100 DbOT52 (n = 9)

DbOT53 (n = 1) D OT54 (n = 4) 100 b

DbOT55 (n = 1) 100 DbOT56 (n = 1)

100 DbOT57 (n = 2) D OT58 (n = 2) 98 100 Eulophidae b 100 DbOT59 (n = 1) D OT60 (n = 3) 100 b 96 D OT61 (n = 13) 100 b

DbOT62 (n = 1)

91 DbOT63 (n = 1) 100 Pteromalidae DbOT64 (n = 1)

100 DbOT65 (n = 5)

100 DbOT66 (n = 9)

100 DbOT67 (n = 3) 100 Ormyridae 100 DbOT68 (n = 18)

100 DbOT69 (n = 10) 100 100 DbOT70 (n = 2) 100 DbOT71 (n = 3) 100 Ichneumonidae 100 DbOT72 (n = 38) 100

Figure 2.8. NJ dendrogram of unidentified adult and larva specimens of parasitoids (except Torymidae) associated with rose galls induced by Diplolepis. Clusters of DNA barcodes were generated using Kimura-2-parameter distance. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. † Individuals morphologically identified to family level. ‡ Species threshold calculated from minimum intercluster divergence supported by DNA barcodes and ITS1 sequences (Figure 2.2, 2.3, 2.4).

82

a) Cryptic species Two species Indistinguishable by currently Define types, original & cryptic. defined morphological characters. Redescribe both species.

preliminary evidence:

two DbOTs

b) Synonymous species One species Distinguishable by currently Define type, remove synonymy. defined morphological characters. Redescribe species.

preliminary evidence:

one DbOT

c) New Unsampled or species species One species Unnamed. Named. Determine status: Not described. Described. If unnamed, then define new species. Neither have been DNA barcoded. preliminary If named, then unsampled species. evidence:

new DbOT

Distinguishable by currently Add to DNA barcode database defined morphological characters.

Figure 2.9. Schematic representation of post-DNA barcoding work protocol for species identification of DbOTs. Species identification of a) cryptic species, b) synonymous species, c) new species or unsampled species requires a preliminary comparison of morphology and DNA barcodes to congenerics. After DNA barcodes are generated, new data of behaviour, ecology, new morphological characters, or sequences from other gene regions need to be analyzed between congenerics and DbOTs in order to support species status.

83

CHAPTER THREE

Patterns of genome size diversity in Hymenoptera

and a test of possible development constraints:

a large-scale study enabled by DNA barcoding

84

ABSTRACT

New genome size estimates are reported for 309 species of Hymenoptera from 20 families in 7 superfamilies (identified operationally using the DNA barcoding threshold established in Chapter Two), bringing the total number of available genome size estimates for this order to 471 species divided among 36 families and 13 superfamilies. Across this combined dataset, genome size estimates ranged 20-fold, from 0.10 pg to 1.97 pg. Contrary to some earlier hypotheses, the order Hymenoptera possess similar genome sizes to other holometabolous orders, and a parasitic or parasitoid lifestyle does not appear to constrain genome size to a smaller genome size than non-parasitic and non-parasitoid taxa. Examination of idiobiont and koinobiont species within both Braconidae and Ichneumonidae did not reveal significant difference in mean genome size. However, mean genome size of cleptoparasites and inquilines was significantly smaller than their hosts and gall inducers, respectively. Though development time was not measured, the present results support the hypothesis that rapid development time relative to competitors is important in species of Hymenoptera that obtain resources within a narrow window of opportunity.

85

INTRODUCTION

3.1 Hymenoptera feeding

The rich taxonomic diversity of Hymenoptera encompasses a wide variety of larval feeding modes including herbivory, predation, and parasitism (Gauld and Bolton 1988). It is hypothesized that ancestral Hymenoptera fed externally on plant tissues, and from these lineages emerged the ability to feed within plant tissues (borers, miners, gall inducers) in some derived lineages (Gauld and Bolton 1988). Another important transition in Hymenoptera evolution may have occurred when an egg was placed in close proximity to another immature Hymenoptera feeding within woody tissue, and consequently, a newly hatched larva would feed on another hymenopteran instead of on plant tissue (Gauld and Bolton 1988). This transition from phytophagy to carnivory occurred once in an early lineage of Hymenoptera, and approximately half of the extant families of Hymenoptera are carnivorous (Godfray 1994, Quicke 1997,

Sharkey 2007, Heraty et al. 2011, Sharkey et al. 2011). From the carnivorous state, there have been some reversals to phytophagy, such as the leaf, nectar, and pollen collecting members of the superfamilies Apoidea (bees) and Vespoidea (wasps and ants), the mutualistic fig pollinators (fig wasps) and seed predators of the superfamily Chalcidoidea, and the gall inducers of the superfamilies Chalcidoidea, Cynipoidea, and Ichneumonoidea (Sharkey 2007). However, the predominant feeding mode of Hymenoptera remains that of specialised carnivores known as parasitoids (Godfray 1994, Quicke 1997, Sharkey 2007, Heraty et al. 2011, Sharkey et al. 2011).

3.2 Definitions of larval feeding modes

The partitioning of insect biology into discrete categories is, in many cases, illustrative of pragmatic grouping together of functionally similar individuals. Many definitions are restricted

86

by taxonomic boundaries and researcher preference rather than strictly by biology; for example, the term “parasitoid” is usually restricted to Hymenoptera and Diptera although a few members of other insect orders, crustaceans, nematodes, fungi, and other invertebrate taxa adequately fit the parasitoid lifestyle based on their biology (Eggleton and Gaston 1990). Recognizing the limitation of defining the continuum of biological traits into discrete units is not necessarily problematic because definitions serve the practical purpose of organizing distinguishable groups for study. However, it does necessitate a clear exposition of how specific terms are being used in a given context. The following definitions used in this study are based primarily on the biology of larval stages within the order Hymenoptera. For clarification, the action of the ovipositing female has been included in some definitions.

Parasitoid: Larvae obtain nourishment directly from one host in order to complete their development, resulting in death of the host (Gauld and Bolton 1988, Eggleton and Belshaw

1992, Godfray 1994, Quicke 1997). Species of parasitoids either oviposit on or near the external surface of the host (ectoparasitoid), or they oviposit within the host (endoparasitoid) (Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997). Parasitoids usually attack a specific host life stage, such as the egg, larva, pupa, or adult, and their resulting progeny then leave the host at a specific host life stage (Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997).

Approximately half of all hymenopteran are parasitoids, and it has been estimated that 10-20 % of all insects are parasitoids (LaSalle and Gauld 1991, Godfray 1994, Quicke 1997, Sharkey

2007, Heraty et al. 2011, Sharkey et al. 2011).

If the host cannot moult after an attack, the parasitoid is defined as an idiobiont, but if the host continues to develop and moults beyond the stage attacked, the parasitoid is defined as a koinobiont (Askew and Shaw 1986). This dichotomous grouping of parasitoids into idiobionts

87

or koinobionts was initially proposed to allow comparative tests of host specificity (Askew and

Shaw 1986). Idiobionts tend to have a larger host range than koinobionts because there is minimal interaction with the immune response of a paralyzed or dead host (Askew and Shaw

1986, Pennacchio and Strand 2006). Prolonged association with a responsive host’s immune system (haemocytes), physiology (hormones), and development (moulting) has been suggested to favour greater specialization and therefore a smaller host range in koinobionts (Askew and

Shaw 1986, Pennacchio and Strand 2006). Additional differences in parasitoid life history traits have been broadly categorized between idiobionts and koinobionts (Godfray 1994, Quicke

1997), and the first test of the dichotomous hypothesis found support for idiobionts having shorter development time than koinobionts (Blackburn 1991, Mayhew and Blackburn 1999).

Forestry rearing records of the families Braconidae and Ichneumonidae have provided the most comprehensive host use data for any family of Hymenoptera (Askew and Shaw 1986,

Sheehan and Hawkins 1991, Bennett 2008). Classification at the subfamily level characterizes the general biology of species within that taxon. For example, species in the subfamilies

Brachistinae and Helconinae (Bracondiae) are characterized by such features as koinobiont endoparasitism of Coleoptera (Gauld and Bolton 1988). Thus, the two largest families of

Hymenoptera allow comparisons of biological traits of interest without species level identifications.

Cleptoparasite: The adult female cleptoparasite enters the host nest, oviposits into a nest cell, exits the host nest, and does not return (Eggleton and Gaston 1990, Michener 2000).

Cleptoparasite larvae feed from a single host and food provisions (nectar, pollen) that were deposited into the nest cell by the adult female host species. The cleptoparasitic lifestyle occurs in members of four superfamilies of Hymenoptera (Apoidea, Chrysidoidea,

88

Evanoidea,Vespoidea), and the usual hosts are solitary and social nest-building Hymenoptera

(Apoidea, Vespoidea) (Gauld and Bolton 1988). Cleptoparasitism is common since approximately 28% of species of Apidae are cleptoparasites (Cardinal et al. 2010).

The host is commonly killed by the first instar of a cleptoparasite which is actively mobile, possesses long and heavily sclerotized mandibles and enlarged sensory structures (Rozen

Jr 2001). These structures are gradually lost as the cleptoparasite moults because the probablity of mortality is greatly reduced when the host larva or other cleptoparasites are killed and after the nest cell is sealed by the host female (Rozen Jr and Kamel 2009). Cleptoparasites must eliminate competitors (host and other cleptoparasites) relatively quickly to survive and usurp the limited food provisions. Minimizing the duration from oviposition to egg hatch therefore provides a survival advantage to cleptoparasites.

Inducer: The adult female wasp oviposits into a specific plant organ (bud, leaf, stem, root) and the feeding larva induces an atypical growth known as galls which provides shelter, nourishment, and protection to the inducer (Stone and Schönrogge 2003). Gall induction is a highly specialized form of herbivory such that gall wasp larvae continually stimulate the production of new plant cells to supply nutrients directly to them until they pupate (Shorthouse

1993). Approximately 1400 gall wasps (Hymenoptera: Cynipidae) worldwide induce galls on oak trees, shrubs, and grasses (Askew 1975, Godfray 1994, Liljeblad and Ronquist 1998).

Inquiline: The adult female inquiline locates a gall induced by another cynipid and oviposits into the gall chamber. Though larvae of inquilines are specialised herbivores that do not feed on insect tissues, mortality of the inducer occurs from probing by the inquiline ovipositor (Shorthouse 1998) or from crushing by developing inquiline gall chambers (Csóka et al. 2005). Inquilines have lost the ability to initiate their own galls de novo (Ronquist 1994), and

89

are dependent on completing their development within the galls of inducers (Shorthouse 1998).

Inquilinism is restricted to members of the tribe Synergini (family Cynipidae), and the usual host galls are induced by species within the tribes Cynipini (oak gall wasps), Diplolepidini (rose gall wasps), and Aylacini (herb gall wasps) (Csóka et al. 2005, Ács et al. 2010). Only approximately

10% of gall wasps (family Cynipinae) are inquilines, but they are important agents of inducer mortality (Csóka et al. 2005).

Inducers require meristematic tissue within a narrow range of development for successful gall initiation (Pires and Price 2000, Stone et al. 2002), and it is probable that inquilines also have a narrow, if not more limited, window of gall vulnerability that allows them to usurp control of gall development. Rapid development from oviposition to egg hatch would be advantageous for the survival of inquilines.

3.3 Genome size and Hymenoptera

Genome size is positively correlated with cell size and negatively correlated with cell division rate in a variety of cell types in a wide range of organisms (Gregory 2005). The direct influence of genome size on cellular properties may influence organism level traits such as development, metabolism, and ecological interactions (Gregory 2005).

Genome size has been estimated by flow cytometry in 124 species of Hymenoptera, and these estimates include representatives from six superfamilies and 14 families (Table 3.1,

Appendix 4). Currently, species coverage is composed of 44.4 % ants (family Formicidae), 26.6

% bees (Apidae), 16.1 % miscellaneous families of parasitoids (Aphelinidae, Braconidae,

Encyrtidae, Eulophidae, Figitidae, Mutillidae, Pteromalidae, and Trichogrammatidae), 0.8 % sawflies (Cephidae), and 12.1 % wasps (Crabronidae, Sphecidae, and Vespidae) (Appendix 4).

90

On average, about five genera per family have been studied using flow cytometry, but the average drops to only about two genera per family when social Hymenoptera, such as ants and bees, are not included (Appendix 4). Current genome size estimates within Hymenoptera therefore remain very limited in light of the diversity of this order, especially with regard to the predominant category of parasitoids (Godfray 1994, Quicke 1997, Sharkey 2007, Heraty et al.

2011, Sharkey et al. 2011).

The maximum reported genome size of Hymenoptera is approximately 2 pg (Gadau et al.

2001, Johnston et al. 2004, Barcenas et al. 2008, Tsutsui et al. 2008, Lopes et al. 2009, Ardila-

Garcia et al. 2010, Tavares et al. 2010a, Tavares et al. 2010b, Gokhman et al. 2011, Hanrahan and Johnston 2011), as has also been found in other holometabolous insect orders (Gregory

2002). Most previous studies have focused on reporting the genome sizes of species of

Hymenoptera from focal taxa regardless of biology. Though it is absolutely necessary to continue to accumulate genome size estimates for all invertebrates (Gregory 2005), observations from fine scale studies at the species level could also be used to generate new hypotheses about the role of genome size on organismal biology at a broader scale. A recent example involved comparisons of mean genome sizes of taxa with different levels of eusociality and parasitoid lifestyles (Ardila-Garcia et al. 2010). It was hypothesized that eusocial taxa would have small genome size because small cells would allow for increased numbers of neurons and higher cognitive functions, and parasitoid taxa would have small genome size to allow for rapid development compared to their hosts (Ardila-Garcia et al. 2010). Mean genome size of eusocial and parasitoid taxa were significantly smaller than solitary non-parasitoid taxa, but it was evident that there was a wide range of genome sizes within eusocial, parasitoid, and solitary non- parasitoid categories and substantial overlap between categories (Ardila-Garcia et al. 2010).

91

However, no significant differences were found between eusocial and solitary species in the same superfamily (Ardila-Garcia et al. 2010). In addition, if the Ardila-Garcia et al. (2010) dataset is reanalyzed with species of Mutillidae and Scoliidae re-categorized as parasitoids instead of solitary non-parasitoid taxa, then mean genome size would not be significantly different in parasitoid and solitary non-parasitoid taxa (p = 0.16). As Ardila-Garcia et al. (2010) suggested, there are no consistent patterns between eusociality and parasitoid lifestyles, and the re-analysis of data from that study suggests that broad categorical comparisons should be interpreted with caution because statistically significant differences may not exist if species are categorized differently.

3.4 Objectives

An overall goal of this study is to expand the genome size database of Hymenoptera by sampling a greater number of parasitoid taxa from a much wider range of families and superfamilies than has been undertaken to date. The inclusion of many non-parasitoid

Hymenoptera from a broad phylogenetic sample also allows the generation of new hypotheses and predictions of possible relationships between genome size and the biology of Hymenoptera.

These data were used to address the following specific research objectives.

Objective 3.A.: To test the hypothetical 2 pg threshold of holometabolous insects, using the order Hymenoptera as a test case.

It has been suggested that holometabolous insects are constrained to have a maximum genome size of approximately 2 pg (Gregory 2002). Current genome size estimates by flow cytometry of 124 species of Hymenoptera do not surpass the 2 pg threshold, but the coverage of

14 families from six superfamilies underrepresents the predominant parasitoid lifestyle (Table 92

3.1, Appendix 4). If Hymenoptera are constrained to have a maximum genome size of 2pg, then all new genome size estimates of species from previously unsampled families and superfamilies are predicted to be less than 2 pg.

Objective 3.B.: To test whether or not genome size is significantly larger in koinobionts than in idiobionts, using the families Braconidae and Ichneumonidae as test cases.

Mean genome sizes of parasitoid taxa are not significantly different than mean genome sizes of non-parasitoid taxa (re-analysis of Ardila-Garcia et al. 2010). However, parasitoids can be further subdivided according to the dichotomous hypothesis (Askew and Shaw 1986).

Idiobionts have shorter mean development time than koinobionts (Blackburn 1991, Mayhew and

Blackburn 1999). If development time is positively correlated with genome size, then idiobionts are predicted to have significantly smaller mean genome sizes than koinobionts. Classification at the subfamily level within the families Braconidae and Ichneumonidae provides the most reliable characterization of taxa as either idiobionts or koinobionts, even without species-level identifications (Gauld and Bolton 1988).Therefore, subfamily classification of the two largest families of Hymenoptera should provide the most reliable test of differences between mean genome size idiobionts and koinobionts.

Objective 3.C.: To test whether or not mean genome sizes of cleptoparasites are smaller than those of their hosts.

Cleptoparasites kill the host larva and any competitors that may be present within the host nest cell. If cleptoparasites have traits that support rapid development of their eggs, then mean genome size of cleptoparasites should not be significantly larger than their hosts. It is predicted

93

that on average, cleptoparasites will have mean genome sizes significantly smaller than their hosts because reduced development time would enhance survival against competitors.

Objective 3.D.: To test whether or not mean genome sizes of inquilines are smaller than those of inducers.

Inquilines of the family Cynipidae must develop within galls induced by another cynipid, and the window of gall vulnerability is probably narrower than that of inducers. If inquilines have traits that support rapid development of their eggs, then mean genome sizes of inquilines should be significantly smaller than those of their inducer hosts.

MATERIALS AND METHODS

3.5 Specimen collection and deposition

The majority of live Hymenoptera used in this study were collected around Guelph, ON

(43.56 N, -80.26 W.), Sudbury, ON (46.5 N, -80.97), and Churchill, MB (58.77 N, -94.17 W) from May to September of 2008, 2009, and 2010. Within these locations, collection sites included city parks, mixed-wood stands, ponds, rivers, and post-disturbance fire stands. I, with the help of volunteers collected most of the Hymenoptera by sweep-netting vagile adults and aspirating microhymenoptera from foliage (Appendix 2, Appendix 3). Hymenoptera were also indirectly collected by me, JD Shorthouse, and volunteers by hand-sampling relatively immobile hosts such as eggs, larvae of exposed and leaf-rolling Lepidoptera, scale insects, and plant galls

(Appendix 2, Appendix 3). These hosts were brought to the laboratory (Churchill Northern

Studies Centre, Laurentian University, or University of Guelph,) closest to the field site(s) and placed into separate plastic containers according to host type (egg, larva, pupa, or gall) and plant

94

type (sugar maple, Acer saccharum; flowering dogwood, Cornus florida; crab apple, Malus sp.; goldenrod, Solidago sp.; oak, Quercus sp.; rose, Rosa sp.; trembling aspen, Populus tremuloides; and willow, Salix sp.). Host larvae were provided fresh foliage every three days from the plant type on which they had been collected until they either completed development to their adult stage or a parasitoid exited from them. Pupae and galls that did not produce adults by September were subjected to cold temperature (4°C) for four months and then subjected to room temperature (~ 20°C) to break diapause.

All live adult Hymenoptera were individually placed into microcentrifuge tubes and stored at -80°C in the J Lima collection (University of Guelph) until processed for genome size estimation and DNA barcoding. All specimens (n = 853) were identified to family by me using the morphological keys of Gauld and Bolton (1988) and Gibson et al. (1997). Identification to superfamily, subfamily, tribe, genus and species-level was completed post-DNA barcoding by me and followed classification according to Michener (2000), Melo and Gonçalves (2005), and

Pulawski (2011) for Apoidea, the Universal Chalcidoidea Database

(www.nhm.ac.uk/jdsml/research-curation/research/projects/chalcidoids/) for Chalcidoidea,

Quicke et al. (2009) and Sharanowski et al. (2011) for Ichneumonoidea, the Ant database

(www.antbase.org/index.htm) for Vespoidea, and the Fauna Europaea project database

(www.faunaeur.org/about_fauna_intro.php) and Sharkey et al. (2011) for the remaining

Hymenoptera. These sources of information were also used to obtain data on life history traits of collected specimens.

95

3.6 DNA extraction, PCR amplification, and sequence analyses

Depending on the size of the specimen (< 10 mm), the hind tibia along with one or two other legs were transferred to an ethanol-filled well of a 96-well microtitre plate and shipped to the Biodiversity Institute of Ontario in Guelph, Ontario, Canada. Total genomic DNA extraction,

PCR reactions, and sequencing procedures were the same as described in Chapter 1 for the DNA barcode region of COI gene (nucleotide positions 1490-2198 of the Drosophila yakuba mitochondrial genome). A cluster of DNA barcodes was defined as a unique DNA barcode operational taxon (DbOT) when the mean intercluster divergence from its nearest neighbour was

2.2% (Chapter Two). Each DbOT was considered to be a species, and their associated DNA barcodes were used in the Barcode of Life Database search engine (www.barcodinglife.org) to confirm previous identifications to the lowest taxonomic level possible.

3.7 Genome size estimation

All dissecting equipment, solutions, and tubes were kept on ice during sample preparation. The frozen head of an adult Hymenoptera and one female of a selected standard (see below) were dissected to obtain neural tissue and placed within a 2 mL Kontes dounce tissue grinder (Gerresheimer Group, Dusseldorf, Germany) with 500 L Galbraith buffer solution (per

1 L dH2O: 8.8 g of Na2C6H5O7, 4.2 g of 3-[N-morpholino]-propane sulphonate, 1.99 g MgCl2,

1.0 mL Triton X-100, 100 mL 10 mg/mL RNase A, adjusted to pH 7.2). The solution containing the heads was then ground gently for 20 strokes with an “A” pestle (Gerresheimer Group,

Dusseldorf, Germany). Afterwards, this sample was filtered through a 30 m mesh

(Spectramesh) into either a microcentrifuge or 12 × 75 mm tube, depending on the flow

96

cytometer used. The sample was stained with 12 L of 5% propidium idodide (50 g/mL) and kept on ice in the dark for a minimum of 30 minutes prior to flow cytometry.

Depending on availability of flow cytometers, samples were analyzed using a 488 nm laser on the Beckman Coulter Cell Lab Quanta SC MPL, Beckman Coulter CyAn ADP,

Beckman Coulter Cytomics FC500, or BD FACSCalibur. A minimum of 1500 nuclei per

Hymenoptera sample was analyzed, and genome size (GS) was estimated by comparing the ratio of fluorescence intensity peaks of unknowns and standards (see formulas [i.] and [ii.]). Most samples were co-prepared with female Drosophila melanogaster (Oregon R strain), but whenever overlapping peaks were produced with this standard, another specimen of the same

DbOT was co-prepared with female Apis mellifera to obtain two distinguishable fluorescence peaks. The formulae for estimating GS are:

PHymenoptera  GSstandard [i.] for female (diploid) Hymenoptera, GSHymenoptera = Pstandard

PHymenoptera  GSstandard or, [ii.] for male (haploid) Hymenoptera, GSHymenoptera =  2 Pstandard

where PHymenoptera = mean fluorescence intensity peak of Hymenoptera specimen

Pstandard = mean fluorescence intensity peak of standard,

either D. melanogaster (Oregon R strain) or A. mellifera.

GSstandard = D. melanogaster, 1C = 0.18 pg, Rasch et al. (1971),

or A. mellifera, 1C = 0.25 pg, Honeybee Genome Sequencing

Consortium (2006)

97

3.8 Other published data: Genome size estimations

Additional genome size estimates of species of Hymenoptera using flow cytometry were gathered from the Animal Genome Size Database (Gregory 2011) and published studies

(Appendix 4).

3.9 Data Analysis

Genome size estimate distribution for categorical groups (cleptoparasites, idiobionts, inducers, inquilines, koinobionts) were examined using the Shapiro-Wilk test of normality prior to statistical comparisons. Mean genome size estimates for categorical groups were compared by one-way ANOVA. Some data were not normally distributed, so a Kruskal-Wallis test was also performed to compare group means. However, the results did not differ qualitatively whether or not group means were compared by parametric or non-parametric methods, so only results of

ANOVA are reported below. All statistical analyses were performed using the R statistical package version 2.10.1 (The R Foundation for Statistical Computing 2009) and Statgraphics Plus version 5.1 (Statistical Graphics Corp. 2001).

RESULTS

3.10 Range of Hymenoptera genome sizes

New genome size estimates for 309 species of Hymenoptera were generated by flow cytometry in this study, and these genome size estimates include the addition of seven superfamilies and 20 families and that had not been previously studied (Figure 3.1, Table 3.2,

Appendix 2, Appendix 3). In combination with other studies, regardless of method of genome size estimation, there are now a total 471 genome size estimates of species of Hymenoptera

98

covering 13 superfamilies and 36 families. Total species coverage is now composed of 15.5 % ants (family Formicidae), 10.2 % bees (family Apidae), 6.3 % inducers and inquilines (family

Cynipidae), 52.9 % parasitoids (families Aphelinidae, Bethylidae, Braconidae, Ceraphronidae,

Chalcididae, Chrysididae, Diapriidae, Dryinidae, Encyrtidae, Eucharitidae, Eulophidae,

Eupelmidae, Eurytomidae, Figitidae, Gasteruptiidae, Ichneumonidae, Megaspilidae, Mutillidae,

Mymaridae, Ormyridae, Perilampidae, Platygastridae, Proctotrupidae, Pteromalidae, Scoliidae,

Torymidae, and Trichogrammatidae), 6.6 % sawflies (families Argidae, Cephidae,

Tenthredinidae), and 8.5 % non-parasitoid wasps (families Crabronidae, Sphecidae, and

Vespidae) (Table 3.2, Gregory 2011). Mean genome size for all Hymenoptera is 0.40 ± 0.238 (n

= 471) (Figure 3.1, Appendix 2, Appendix 3, Gregory 2011). Genome size estimates range 20- fold, from 0.10 pg in the parasitoids Aphidius colemani and Peristenus stygicus (family

Braconidae) to 1.97 pg in the inducer Andricus sp. (family Cynipidae) (Appendix 2, Appendix 3,

Gregory 2011). Lower quartile and median of genome size of Hymenoptera is 0.26 pg and 0.35 pg, respectively. As predicted by the hypothetical threshold for holometabolous insects, no current genome size estimates of Hymenoptera exceed 2 pg (Figure 3.1, Appendix 2, Appendix

3, Gregory 2011).

A nested analysis of variance using all genome size estimates of Hymenoptera performed by flow cytometry (n = 433 species, n = 977 individuals) revealed that 15% of the variation among species occurs at the level of superfamilies within the order Hymenoptera, 13% among families within superfamilies, 71% among species within families, and 1% among individuals within a species. This analysis could not be performed at the level of genus due to lack of confirmed identification to that level, but DNA barcoding allowed for species identification to a reference specimen or a tentative species identification by grouping DbOTs. In

99

any case, most analyses were performed at the level of superfamilies, families, or species because major differences in biology of Hymenoptera are more relevant at these levels than among genera (Gauld and Bolton 1988, Godfray 1994, Quicke 1997).

Hymenoptera are broadly divided into two major groups, the Symphyta, a paraphyletic grouping of extant phytophagous families that arose from an ancestrally phytophagous lineage, and the Vespina, an informal name given to the clade consisting of all extant parasitoid, predatory, and secondarily derived phytophagous families that arose from a parasitoid ancestor

(Figure 3.1, Heraty et al. 2011). Because the Symphyta are not monophyletic, and based on the current sampling in this study, the superfamily Tenthredinoidea was used as an outgroup to the

Vespina while the single species from the superfamily Cephoidea was not included in further analyses. Mean genome size of the Tenthredinoidea (0.30 ± 0.086, n = 30) was significantly smaller than the Vespina (0.42 ± 0.247, n = 402) (F1, 430 = 7.07, p < 0.01). In addition, the superfamily Tenthredinoidea was compared individually to each superfamily within the Vespina with sample sizes as large as that for the Tenthredinoidea (i.e. n  30, superfamilies Apoidea,

Chalcidoidea, Cynipoidea, Ichneumonoidea, Vespoidea). In all cases, mean genome size of the non-parasitoid superfamily Tenthredinoidea was either significantly smaller than or not significantly different from those of other superfamiles (F5, 406 = 26.49, p < 0.01, followed by

Tukey's HSD post hoc test). A similar analysis was conducted at the family level, but this time the analysis used smaller sample sizes to allow for more comparisons (n  20, families Apidae,

Braconidae, Cynipidae, Formicidae, Ichneumonidae, Tenthredinidae, Vespidae). Similar to the outcome of the superfamily comparisons, mean genome size of the non-parasitoid family

Tenthredinidae was either significantly smaller than or not significantly different from mean

100

genome size of each family within the Vespina clade (F6, 309 = 22.16, p < 0.01, followed by

Tukey's HSD post hoc test).

3.11 Genome size: dichotomous hypothesis

This study produced new genome size estimates for 35 species of the family Braconidae and 91 species of the family Ichneumonidae (Table 3.2). Coverage includes 14 and 13 subfamilies of Braconidae and Ichneumonidae, respectively (Figures 3.2, 3.3). Two-way

ANOVA tested for effect of parasitoid family (Braconidae and Ichneumonidae) and development type (idiobiont and koinobiont) on mean genome size. Homogeneity of family means of

Braconidae and Ichneumonidae was rejected (F1, 110 = 39.81, p < 0.01), and mean genome size of

Braconidae (0.21 ± 0.110, n = 39) was significantly smaller than Ichneumonidae (0.34 ± 0.106, n

= 75). Two-way ANOVA did not detect an effect of development syndrome on mean genome size (F1, 110 = 3.51, p = 0.06), and the interaction between family and development type was not significant (F1, 110 = 0.38, p = 0.38). Thus, the hypothesis that idiobionts on average have smaller genome size than koinobionts was not supported.

3.12 Genome size: cleptoparasites and hosts

This study produced the first genome size estimates for cleptoparasite species, and these four estimates included three superfamilies (Apoidea, Chrysidoidea, Evanoidea), two of which did not have genome size estimates for any species prior to this study (Figure 3.4).

Unfortunately, cleptoparasites and hosts were not sampled from within the same hive, but rather were collected by sweep-netting adults from vegetation. Therefore, comparison of mean genome sizes between specific cleptoparasites with their actual hosts was not performed in this study.

101

Instead, mean genome size of all collected cleptoparasites was compared to the mean genome size of all reported hosts cited from other studies (Gauld and Bolton 1988, Smith 1996, Michener

2000). Mean genome size of all cleptoparasites (0.27 ± 0.020, n = 4) was significantly smaller than that of all their reported hosts (0.58 ± 0.234, n = 15) (F1, 17 = 6.74, p < 0.05). This result is robust since the comparative analysis includes representatives from 14 subfamilies in four superfamilies (Figure 3.4, Appendix 2, Appendix 3). Thus, the hypothesis that cleptoparasites have smaller genome size than their hosts, on average, is supported.

3.13 Genome size: inquilines and inducers

This study produced the first genome size estimates for inducer and inquiline species

(family Cynipidae, n = 30, Figure 3.5, Appendix 2, Appendix 3). Inducers and inquilines were collected while exiting from the same host gall (rose or oak) so that specific comparisons of mean genome between inducers and their inquilines could be performed (Figure 3.5). Mean genome size of rose gall inducers (Cynipidae: Diplolepis, 0.59 ± 0.083, n = 14) was significantly larger than their inquilines (Cynipidae: Periclistus, 0.24 ± 0.009, n = 7) (F1, 19 = 118.73, p <

0.01). This pattern was also repeated in the oak gall system where mean genome size of oak gall inducers (1.75 ± 0.286, n = 4) was significantly larger than that of their inquilines (0.34 ± 0.042, n = 5) (F1, 7 = 123.14, p < 0.01). In addition, when all inducers from both rose and oak gall systems were grouped together and compared against all inquilines, mean genome size of all inducers (0.84 ± 0.518, n = 18) was significantly larger than all inquilines (0.28 ± 0.058, n = 12)

(F1, 28 = 14.04, p < 0.01). Thus, the hypothesis that inquilines on average have smaller genome size than inducers, on average, is supported.

102

DISCUSSION

3.14 Range of Hymenoptera genome size

This study added 309 new genome size estimates within Hymenoptera (Table 3.2,

Appendix 2, Appendix 3), and this order now has the largest coverage of genome size estimates of all insects in terms of family richness (n = 36) and species richness (n = 471) (Figure 3.6). The extensive sampling of Hymenoptera in this study did not discover any species with genome size larger than the hypothetical 2 pg threshold for holometabolous orders (Gregory 2002). Values of the 1st, 2nd, and 3rd quartiles of genome size of Hymenoptera were 0.25, 0.35, and 0.50 pg, respectively. It has been reported that Hymenoptera possess small genomes as relative to other holometabolous insect orders (Johnston et al. 2004, Tsutsui et al. 2008, Ardila-Garcia et al.

2010). Corresponding quartiles of Coleoptera and Lepidoptera genome size estimations are larger compared to Hymenoptera, but the 1st and 2nd quartiles of Diptera are smaller (Figure 3.6).

Based on this observation, I predict that the genome size of an unsampled holometabolous species of insect would follow the suggested ranking of genome size: Diptera < Hymenoptera <

Lepidoptera < Coleoptera, but there is considerable overlap among these orders of insects

(Figure 3.6).

At the family level, with n > 20 estimates per family (Apidae, Braconidae, Cynipidae,

Formicidae, Ichneumonidae, Tenthredinidae, Vespidae), only the Braconidae have a mean genome size significantly smaller than the median genome size of Diptera (t = -2.75, df = 38, p <

0.01). However, if the disproportionately sampled family Drosophilidae is removed from the analysis (n = 94, 53 % genome size estimates of Diptera), then the mean genome size of all families of Hymenoptera are significantly smaller than the median genome size of Diptera (one

103

sample t-tests, p < 0.05). Therefore, broad categorical comparisons need to be interpreted with caution because statistically significant differences depend on the taxa selected.

Several reported differences in mean genome size between taxonomic ranks have been qualitative and are not quantitatively supported by statistics (Johnston et al. 2004, Johnston et al.

2007, Gokhman et al. 2011). The standard of choice for insect genome size estimations by flow cytometry is Drosophila melanogaster (0.18 pg), but it should not be used as a standard reference for qualitative statements as to whether or not an insect species has a small or large genome size. For example, the genome size of figitids (Cynipoidea: Figitidae) has been reported as “large” because their genome size is greater than the genome size of their Drosophila hosts

(Gokhman et al. 2011). However, within the superfamily Cynipoidea, mean genome size of this parasitoid family (Cynipoidea: Figitidae) is not significantly different from the mean genome size of their closest sister family, gall wasps (Cynipoidea: Cynipidae) (F1, 39 = 0.30, p = 0.59).

Furthermore, qualitative comparisons of a species genome size should depend on the biology of closely related groups and be calibrated by a descriptive statistical pattern. For example, mean genome size of figitids was reported to be close to many Chalcidoidea, but this was based on comparison of three species of Figitidae with 10 species in five families of the superfamily Chalcidoidea (Gokhman et al. 2011). This qualitative statement would be more informative if Chalcidoidea were the sister superfamily to Cynipoidea (Figure 3.1), or if statistical comparisons were made strictly between superfamilies or between families and not between different taxonomic levels. Considering this, mean genome size of the superfamily

Cynipoidea is significantly larger than their closest sister superfamily Platygastroidea, and mean genome size of Cynipoidea is not significantly different from the more distantly related superfamily Chalcidoidea (F2, 122 = 5.67, p < 0.05, followed by Tukey's HSD post hoc test).

104

However, the mean genome size of the parasitoid family Figitidae (Cynipoidea) is significantly different than the median genome size of 54 % (n = 7/13) of the parasitoid families within the superfamily Chalcidoidea (one sample t-tests, p < 0.05). Mean genome size of families within

Chalcidoidea ranges from 0.21 in Trichogrammatidae to 0.78 in Mymaridae (Appendix 2,

Appendix 3). Therefore, the observation that figitid genome sizes are close to those of many

Chalcidoidea is not supported. Both qualitative and quantitative comparative statements of genome size between taxa need to be directed by knowledge of the range within the same taxonomic level.

This study found substantial overlap between genome size ranges of non-parasitoid and parasitoid groups (Figure 3.1), and this informal observation does not support the hypothesis that parasitic insects have constrained genome sizes (Johnston et al. 2004, Johnston et al. 2007).

Futhermore, both the re-analysis of the Ardila-Garcia et al. (2010) data (n = 91) and the new comparative analyses of this study (n = 433) demonstrate that mean genome sizes of parasitoid families do not differ significantly from mean genome sizes of non-parasitoid families. These comparisons once again demonstrate that selection of comparative groups should be justified a priori because mean genome size of a family of parasitoid may be either significantly smaller

(Platygastridae < Cynipidae), larger (Torymidae > Cynipidae), or not significantly different

(Figitidae = Cynipidae) from genome size in a non-parasitoid family. At least within

Hymenoptera, differences in genome size cannot be attributed to parasitoid biology.

Though both ectoparasitic lice (Phthiraptera) and endoparasitic twisted-winged flies

(Strepsiptera) are among the smallest insect genome sizes reported (Johnston et al. 2004,

Johnston et al. 2007, Gregory 2011), the genome size of ectoparasitic fleas (Siphonaptera) is significantly larger than the median genome size of all holometabolous insects (Figure 3.6, t =

105

3.84, df = 1059, p < 0.0001). Considering the 1st quartile of genome size of insects (Figure 3.6,

0.29 pg), only 31.6 % have parasitic or parasitoid lifestyles (n = 115/364). Thus, a preponderance of insects with small genome size are not parasites or parasitoids, and 55 % of parasitoids (n =

138/250) have a genome size larger than the 1st quartile of all insects. Qualitative and quantitative statements that parasitic or parasitoid insects have small genome sizes (Johnston et al. 2004, Johnston et al. 2007, Gregory 2011) are not supported by available data (Appendix 2,

Appendix 3). The search for additional quantitative evidence of associations between parasitic or parasitoid lifestyles and genome size should continue, but future predictions should not be formulated based on previous unsupported hypotheses about broad guild categorizations (e.g., , parasitoid, predator).

3.15 Genome size: dichotomous hypothesis

Parasitoids have been broadly categorized according to whether or not their attack causes the host to stop developing (idiobionts) or whether or not an infected host continues to develop

(koinobionts) (Askew and Shaw 1986). Idiobionts have shorter development time than koinobionts (Blackburn 1991, Mayhew and Blackburn 1999) and this suggested that idiobionts may have smaller genome size due to the inverse correlation between cell division rate and genome size (Gregory 2005). However, no significant differences were found between genome sizes of idiobionts and koinobionts in either the Braconidae or the Ichneumonidae. However, it should be noted that without species-level development data to compare, there is no evidence that the species categorized as idiobionts and koinobionts in this study had any differences in development time.

106

Immature parasitoid development is affected by ambient environmental conditions such as humidity, temperature, and photoperiod (Vinson and Iwantsch 1980), but development is primarily affected by the internal state of the host because of the intimate and prolonged association between parasitoid and host. Each species of parasitoid attacks one specific life stage

(egg, larva, pupa, adult), and the range of host characteristics such as age, size, and species that a parasitoid encounters has developmental consequences (Lawrence 1990). Early instars of hosts have lower concentrations of lipid and haemolyph protein than later instars, and these qualitative and quantitative differences in lipid and protein availability affect the development time of parasitoids. In general, idiobionts develop more rapidly than koinobionts (Mayhew and

Blackburn 1999), and this may be due to the fact that there is little benefit to delay development in a host that will not improve in quality and quantity. However, idiobionts develop slowly in mature eggs and pupae because the progressive sclerotization of the host decreases the amount of digestible material available to the parasitoid, which inhibits consumption (Harvey 2005).

Idiobiont development is slower in large hosts because more time is required to consume a large food item (Harvey 2005). Different host species also potentially affect the rate of development of idiobionts (Boivin 2010), but separating the effects of host species and mass is not always possible. Idiobiont development can be delayed or slowed down by diapause throughout the winter (Harvey 2005).

Koinobiont development rate is also affected by host age and size, and two common patterns that have emerged are that as host age and size increases: 1) development time decreases or 2) development time is unaffected (Harvey 2005). Koinobionts of exposed hosts have shorter development times than koinobionts of concealed hosts (Harvey and Strand 2002), suggesting that rapid development time reduces mortality risks associated with higher predator encounters

107

and parasitoid load that exposed herbivores, such as leaf chewers, experience compared to herbivores in concealed sites, such as galls (Hawkins 1994). Thus, development time of idiobionts and koinobionts is affected by host factors such as stage, size, species, and ecology, and unless such host factors are kept constant in comparisons, it is not clear if development mode

(idiobiont or koinobiont) alone is responsible for observed differences in development time.

It is therefore rather unrealistic to expect differences in genome size to be positively correlated with differences in development time from egg to adult across any taxonomic level in insects. For example, a positive correlation between genome size and development time was found in a study of 67 species of Drosophila (Diptera: Drosophilidae) (Gregory and Johnston

2008), but another study determined that Psychodidae (Diptera) and Scatopsidae (Diptera) had longer development times than Drosophila melanogaster despite having smaller genome size

(Schmidt-Ott et al. 2009). Once again, Drosophila melanogaster should not be used as a qualitative standard to ascertain whether or not development time, genome size, or another trait is small, average or large in any taxon. Such comparisons should be performed between closely related groups with similar biology, and with phylogeny taken into account whenever possible.

The number of factors that influence development time likely increases as the number of taxonomic levels between comparative groups increases, and so any relationship between genome size and development time will not be easily revealed when distantly related groups are analyzed. Furthermore, though duration of the cell cycle is positively correlated with genome size (Gregory 2001), development rate of an entire organism may not correlate with bulk DNA content because it is composed of populations of cells that grow by the influence of many independent factors and limitations (Cavalier-Smith 1978).

108

3.16 Genome size: cleptoparasites and hosts

Cleptoparasitism is defined as one animal stealing food or nest area from another animal

(Cardinal et al. 2010), but such a broad categorization would not intuitively lead to a prediction of differences in mean genome size between a cleptoparasite and its host. However, when considering cleptoparasites with hospicidal larvae, physiological or genetic traits that support their rapid development to egg hatch would be advantageous in order to eliminate the host and competitors. This study determined that the cleptoparasites Nomada (Apoidea, Apidae), Chrysis and Chrysura (Chrysidoidea, Chrysididae), and Gasteruption (Evanoidea, Gasteruptiidae) have significantly smaller genome sizes than their reported hosts. Unfortunately, this study was not able to compare the development time of cleptoparasites to that of their actual hosts because they were collected as flying adults, and thus conclusions about significant differences in development times between the two groups cannot be supported at this time. In addition, since both cleptoparasites and hosts were not collected from a shared nest, any hosts linked to a cleptoparasite were based on reports to genus level. Nevertheless, the result is considered robust because it encompasses several subfamilies from four superfamilies that are distantly related

(Figure 3.1).

Few studies have tested and reported development time of cleptoparasites and their hosts

(Rozen 2003), but it has been determined that while some species of cleptoparasite develop more rapidly than their host (Alves-dos-Santos et al. 2002, Rozen and Kamel 2007, Rozen and Kamel

2009) others do not (Torchio and Burdick 1988).Though cleptoparasites do not always develop faster than their hosts, rapid development rate may be important to cleptoparasites with hospicidal larvae. When eggs from several cleptoparasites are deposited in the same host cell, the first cleptoparasite to hatch has the advantage of killing other eggs of cleptoparasites (Rozen and

109

Kamel 2009). Embryonic development rate of eggs of cleptoparasites, possible competitors, and actual hosts is required to determine if development time and genome size are correlated within and between these groups.

3.17 Genome size: inducers and inquilines

Egg development time of cynipids has been reported for few individuals per species and there are large time intervals between observations, but this limited data (n = 4) appears to support that inquilines develop faster than inducers (Table 3.3). This study determined that cynipid inquilines of oak and rose gall systems had significantly smaller genome size than cynipid inducers (Figure 3.5), but it cannot be concluded at this time that development time also differed between groups. Finer interval measurement of cynipid egg hatch is required from inducers and inquilines from the same gall system in order to test for differences in development rates. Inquiline larvae do not directly kill inducer larvae (Shorthouse 1998), and there are no reports that they attempt to kill other inquilines. Thus, if rapid development is advantageous to inquilines, it is most likely due to the necessity of usurping the gall development events rather than to eliminate competitors.

The range and maximum value of genome size of inquilines is smaller than the range and maximum value of inducers, and the difference between range and maximum values is greater in oak gall systems (Figure 3.5). It is possible that cynipid inquiline genome size is more constrained than that of cynipid inducers because of a rapid development rate. Moreover, other life-history traits such as small body size may also contribute to inquilines relatively smaller genome size (Gregory and Johnston 2008).

110

3.18 Genome size and biologically relevant comparisons

The negative correlation between genome size and cell division rate is well established for plants and animals (Gregory 2001, Gregory 2005, Bennett and Leitch 2005). Development rate of an entire organism depends on cell division rate and many other factors such as metabolic rate, environmental conditions (i.e. temperature, photoperiod, humidity), and developmental complexity (hemimetaboly, holometaboly), which affect whether or not a correlation with genome size exists. Complex interactions between many factors and genome size require that tests of differences in mean genome size be based on species that are closely related, share similar habitats, or interact with each other ecologically. Considering this, it is not surprising that there was no significant difference between mean genome size of idiobionts and koinobionts within the superfamily Ichneumonoidea because the broad sampling could not obtain large sample sizes of closely related species, with no variation in host stages attacked (eggs, larvae, pupae, adults), and interacting in the same habitat (exposed or concealed). On the other hand, differences in genome size between interacting species of Hymenoptera within the same nests or galls did support predictions based on probable rapid development of cleptoparasites and inquilines, respectively. However, development time data and a statistical test are still required before any support for differences between groups can be obtained.

Finally, this study shows that genome sizes in Hymenoptera are similar to other holometabolous insect orders, and broad categorizations of species into guilds such as herbivore, parasitoid, or predator, should not be used as the basis of making predictions about genome size.

Predictions of genome size correlations, patterns, and trends should be based on established cellular and organismal knowledge (Gregory 2005). Otherwise, genome size of several species of

Hymenoptera could be compared to test for patterns and correlations without justification based

111

on biology, ecology, and phylogeny, and such comparisons could, in theory, also include any insect (Drosophila melanogaster), a mammal (Homo sapiens), and a lungfish (Protopterus aethiopicus).

CONCLUSION

This study is unique in that it brings together new data for genome size estimates by employing the molecular identification tool of DNA barcoding to test new predictions involving

Hymenoptera. The established positive relationship of genome size and development time in many eukaryote taxa was used to test for differences in genome sizes between insect orders and selected groups of Hymenoptera. The range of genome size estimates of Hymenoptera covering

13 superfamilies and 36 families indicated that this order is not constrained to smaller C-values than other holometabolous orders. Categorization of species by guilds is not pragmatic when testing differences in mean genome size because the amount of bulk DNA in a cell is best correlated with cellular and organismal properties that interact with the environment. Species of

Hymenoptera that require resources that are available during a short time period possess small genome sizes, which may favour rapid development to gain a competitive advantage.

112

Table 3.1 Studies of genome size (GS) estimates of Hymenoptera by flow cytometry

Number of species† with Superfamily: Family GS estimates Objective of GS estimate References Gadau Apoidea: Apidae • Report GS 1 et al. 2001 Chalcidoidea: Trichogrammatidae 1 Johnston Vespoidea: Formicidae • Report GS 1 et al. 2004 Vespoidea: Vespidae 1 Honeybee Genome Apoidea: Apidae 1 • Report GS Sequencing Consortium (2006) • Detect diploid males Barcenas Chalcidoidea: Pteromalidae 1 • Report GS et al. 2008 • Correlate GS and head width Tsutsui Vespoidea: Formicidae 41 • Report GS et al. 2008 Lopes Apoidea: Apidae • Report GS 3 et al. 2009 Apoidea: Apidae 12 Apoidea: Crabronidae 3 Apoidea: Sphecidae 2 Chalcidoidea: Aphelinidae 4 • Report GS • Test mean GS of parasitoid and Chalcidoidea: Encyrtidae 1 Ardila-Garcia non-parasitoid taxa et al. 2009 Chalcidoidea: Eulophidae 1 • Test mean GS of eusocial and Chalcidoidea: Trichogrammatidae 3 solitary taxa Ichneumonoidea: Braconidae 3 Vespoidea: Formicidae 18 Vespoidea: Vespidae 8 • Correlate GS and intertegular span • Correlate GS and head width Tavares Apoidea: Apidae • Report GS 17 et al. 2010a • Test mean GS of low and high heterochromatin species • Detect diploid males Tavares Apoidea: Apidae 1 • Report GS et al. 2010b Gokhman Cynipoidea: Figitidae • Report GS 4 et al. 2011 Apoidea: Apidae 2

Cephoidea: Cephidae 1 Hanrahan • Report GS Ichneumonoidea: Braconidae 2 and Johnston Vespoidea: Mutillidae 2 2011

Vespoidea: Vespidae 5

113

Table 3.2 Total number of genome size (GS) estimates of Hymenoptera†.

Number of species‡ with GS estimates Superfamily: Family previous studies this study§ Total Apoidea: Apidae 39 13 (4) 48 Apoidea: Crabronidae 5 2 7 Apoidea: Sphecidae 5 3 (2) 6 Cephoidea: Cephidae 1 0 1 Ceraphronoidea: Ceraphronidae 0 1 1 Ceraphronoidea: Megaspilidae 0 1 1 Chalcidoidea: Aphelinidae 4 2 (2) 4 Chalcidoidea: Chalcididae 0 1 1 Chalcidoidea: Encyrtidae 2 7 (1) 8 Chalcidoidea: Eucharitidae 0 1 1 Chalcidoidea: Eulophidae 1 11 (1) 11 Chalcidoidea: Eupelmidae 0 3 3 Chalcidoidea: Eurytomidae 0 13 13 Chalcidoidea: Mymaridae 0 2 2 Chalcidoidea: Ormyridae 0 5 5 Chalcidoidea: Perilampidae 0 3 3 Chalcidoidea: Pteromalidae 2 11 13 Chalcidoidea: Torymidae 0 9 9 Chalcidoidea: Trichogrammatidae 3 2 (2) 3 Chrysidoidea: Bethylidae 0 1 1 Chrysidoidea: Chrysididae 0 2 2 Chrysidoidea: Dryinidae 0 1 1 Cynipoidea: Cynipidae 0 30 30 Cynipoidea: Figitidae 4 7 11 Diaprioidea: Diapriidae 0 3 3 Evanoidea: Gasteruptiidae 0 1 1 Ichneumonoidea: Braconidae 10 38 (3) 45 Ichneumonoidea: Ichneumonidae 1 91 92 Platygastroidea: Platygastridae 0 9 9 Proctotrupoidea: Proctotrupidae 0 1 1 Tenthredinoidea: Argidae 0 1 1 Tenthredinoidea: Tenthredinidae 0 29 29 Vespoidea: Formicidae 64 9 73 Vespoidea: Mutillidae 4 0 4 Vespoidea: Scoliidae 1 0 1 Vespoidea: Vespidae 16 11 27 162 324 (15) 471 † All genome size estimation methods included: Biochemical Analysis (n = 1), Feulgen Densitometry (n = 3), Feulgen Image Analysis Densitometry (n = 34), and Flow Cytometry (n = 433). ‡ Species listed in Appendix 2, Appendix 3. § Numbers in parentheses represent genome size estimations of species already reported in literature and repeated in this study as a quality check of flow cytometry protocols. Therefore, the number of new genome size estimations is 309.

114

Table 3.3 Egg development time of oak and rose gall wasps. Guild Species Egg hatch (d) Study measurement reported

Inducer Aulacidea hieracii 10 Sliva and Shorthouse (2006)

Inducer† Besbicus mirabilis 10 Evans (1967)

Inquiline† Synergus pacificus 4 Evans (1965)

Inducer Diplolepis fructuum 12-15 Güçlü et al. (2008) 7-10, Inducer Diplolepis japonica Yasumatsu and Taketani (1967) 30-35

Inducer† Diplolepis nodulosa 8-10 Brooks and Shorthouse (1998)

Inquiline† Periclistus pirata 7

Inducer Diplolepis polita 5 Shorthouse (1986)

Inducer Diplolepis rosae 7 Schröder (1967)

4 Shorthouse (1987)

Inducer Diplolepis spinosa 7-10 Shorthouse (1993)

10 Sliva and Shorthouse (2006)

12 Leggo and Shorthouse (2006b) Inducer Diplolepis triforma

14 Shorthouse and Leggo (2002)

Inquiline Synergus sp. 1 3 Ikai and Hijii (2007)

Inquiline Synergus sp. 2 3 Ikai and Hijii (2007) † Inducer and inquiline interact in same gall community.

115

Herbivore Ectoparasitoid Idiobiont Endoparasitoid Koinobiont Equivocal (Ecto/Endo) Equivocal (Idio/Koino)

Hymenoptera Genome size (pg)

Superfamily

0.00 0.50 1.00 1.50 2.00 Xyleoidea Pamphiliodea Tenthredinoidea† n = 30 Cephoidea n = 1 Siricoidea Xiphydrioidea Orussoidea Stephanoidea

Ceraphronoidea n = 2

Megalyroidea Trigonalyoidea

Evanoidea‡ n = 1

Chrysidoidea‡ n = 4

Vespoidea‡ n = 87 paraphyletic Apoidea‡ n = 50

Ichneumonoidea† n = 130

Platygastroidea n = 9

Cynipoidea† n = 41 Proctotrupoidea n = 1

Diaprioidea n = 3

Chalcidoidea† n = 74

Mymarommatoidea

Figure 3.1. Genome size diversity of superfamilies within Hymenoptera. Genome size was analyzed by flow cytometry, and estimates displayed were obtained from this study (n = 309 species, Appendix 2, Appendix 3) and from literature (n = 124 species, Appendix 4). Development syndrome of parasitoids is mapped onto the tree from Sharkey et al. (2011). Some superfamilies include several larval feeding modes: † Inducers or inquilines, ‡ cleptoparasite, § predator. Height of the genome size bar represents number of species.

116

Ectoparasitoid Idiobiont Coleoptera Diptera Endoparasitoid Koinobiont Equivocal (Ecto/Endo) Equivocal (Idio/Koino) Hemiptera Lepidoptera

Braconidae Host Genome size (pg)

subfamily order

0.00 0.20 0.40 0.60 0.80 Acampsohelconinae Brachistinae n = 1 Helconinae n = 1 Macrocentrinae n = 2 Xiphozelinae Amicrocentrinae Charmontinae Microtypinae Homolobinae Orgilinae Meteorinae n = 5 Euphorinae n = 1 Cenocoeliinae Microgastrinae n = 7 Cardiochilinae Miracinae Khoikhoiinae Mendesellinae Cheloninae n = 1 Ichneutinae n = 1 Agathidinae Sigalphinae Meteorideinae Exothecinae Opiinae Alysiinae n = 10 Exothecinae Gnamptodontinae Braconinae n = 1 Doryctinae Rogadinae n = 3 Hormiinae n = 1 Rhysipolinae Pambolinae Rhyssalinae n = 2 Maxfischeriinae Aphidiinae n = 3 Mesostoinae†

Figure 3.2. Genome size diversity of subfamilies within Braconidae. Genome size was analyzed by flow cytometry, and estimates displayed were obtained from this study (n = 35 species, Appendix 2, Appendix 3) and from literature (n = 4, Appendix 4). Development syndrome of parasitoids is mapped onto the tree from Sharanowski et al. (2011). Height of the genome size bar represents number of species.

117

Ectoparasitoid Idiobiont Diptera Hymenoptera Endoparasitoid Koinobiont Equivocal (Ecto/Endo) Equivocal (Idio/Koino) Lepidoptera

Ichneumonidae Host Genome size (pg)

subfamily order

0.00 0.20 0.40 0.60 0.80 Campopleginae n = 14 Nesomesochorinae Cremastinae Ophioninae n = 1 Anomaloninae n = 3 Ctenopelmatinae Metopiinae Mesochorinae n = 1 Tatogastrinae Ctenopelmatinae n = 2 Orthopelmatinae n = 4 Oxytorinae Ctenopelmatinae Banchinae n = 7 Tersilochinae Lycorininae Tryphoninae n = 3 Brachyscleromatinae Stilbopinae Tryphoninae n = 4 Cryptinae n = 17 Adelognathinae Agriotypinae Ichneumoninae n = 5 Alomyinae Brachycyrtinae Pedunculinae Claseinae Pimplinae n = 5 Poemeniinae Rhyssinae Orthocentrinae n = 4 Diplazontinae n = 4 Collyriinae Cylloceriinae Acaenitinae Diacritinae Labeninae Xoridinae Figure 3.3. Genome size diversity of subfamilies within Ichneumonidae. Genome size was analyzed by flow cytometry, and estimates displayed were obtained from this study (n = 75 species, Appendix 2, Appendix 3). Development syndrome of parasitoids is mapped onto the tree from Quicke et al. (2009). Height of the genome size bar represents number of species.

118

Cleptoparasite Host

Genome size (pg)

0.20 0.40 0.60 0.80 1.00 1.20

Apoidea, Apidae: Nomada

Chrysidoidea, Chrysididae: Chrysis

Chrysidoidea, Chrysididae:

Cleptoparasite Cleptoparasite DbOT Chrysura

Evanoidea, Gasteruptiidae: Gasteruption

Figure 3.4. Genome size diversity of cleptoparasites (n = 4 species) and reported hosts (n = 15 species) (Appendix 2, Appendix 3). Genome size was analyzed by flow cytometry, and estimates displayed were obtained from this study. Several species of host are used by more than one species of cleptoparasite. Height of host genome size bar represents the number of species utilized by the cleptoparasite.

119

Inquiline Inducer

Genome size (pg)

0.40 1.40 0.20 0.60 0.80 1.00 1.20 1.60 1.80 2.00

unsampled inquiline†

unsampled

inquiline† Oak

DbOT 157 galls DbOT 156

DbOT 155

DbOT 147‡

DbOT 146‡

unsampled inquiline† unsampled inquiline† unsampled inquiline†

Inquiline DbOT Inquiline DbOT 37, Periclistus

DbOT 34, Rose Periclistus

DbOT 33, galls Periclistus DbOT 31, Periclistus DbOT 29, Periclistus DbOT 28, Periclistus DbOT 27, Periclistus Figure 3.5. Genome size diversity of inquilines (n = 12 species) and inducers (n = 18 species) (Appendix 2, Appendix 3). Genome size was analyzed by flow cytometry, and estimates displayed were obtained from this study. The gall community of one species of inducer may have several species of inquilines. † Only an inducer exited from the gall so genome size of inquilines from the same gall could not be estimated. Height of inducer genome size bar represents number of species.

120

Insecta Genome size (pg) Order 0 4 8 12 16 20 Thysanura n = 1 Ephemeroptera n = 1 Odonata n = 130 Blattodea n = 13 Isoptera n = 16 Mantodea n = 6 Phasmatodea n = 7 Embioptera n = 1 Orthoptera n = 49 Dermaptera n = 1 Zoraptera n = 1 Phthiraptera n = 1 Hemiptera n = 51

Hymenoptera n = 471

Strepsiptera n = 2

Coleoptera n = 237

Lepidoptera n = 169

Diptera n = 177

Mecoptera n = 2 Siphonaptera n = 1

Figure 3.6. Genome size diversity of orders within class Insecta. Genome size was analyzed by multiple methods, and estimates were obtained from this study (n = 309 species, Appendix 2, Appendix 3) and from literature (n = 1028 species, Appendix 4, Gregory 2011). Height of the genome size bar represents number of species.

121

CHAPTER FOUR

General discussion and conclusion

122

4. 1 Identification challenges within this thesis

Regardless of preference in using morphology, molecules, or a combination of both in specimen identification, there are significant issues in reliability. It is challenging to be proficient in the identification of many taxa, especially in the diverse order Hymenoptera (Godfray and

Shimada 1999, Gariepy et al. 2007, Stone et al. 2008). Possible sources of species identification errors include, but not limited to, outdated reference sources (keys and species descriptions), misinterpretation of correct reference sources, level of experience of observer (novice or expert), mislabelling specimens by observer (data entry), unspecific primer design, and DNA contamination. Throughout this thesis, both morphology and molecules were used for family level and species level (DbOT) identification, respectively. Identification systems based on morphology and/or molecular data are challenged with identifying specimens that are not included in the key/reference library, and such unknown specimens may lead to erroneous identifications (Gaston and O’Neill 2004). Ideally, identification systems should clearly designate all undescribed species as new to science, but ultimate responsibility to identify species is the user and not solely the system.

Morphology was given precedence over molecules when identifying reference specimens of Diplolepis (Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae) (Chapter Two), and also for superfamily and family level identification of other Hymenoptera (Chapter Two and

Chapter Three). This is not to say that morphology trumps molecules in identification, but rather that identification by DNA barcoding had to be monitored by the user to maintain high levels of success and accuracy. For example, some microhymenoptera sequences were contaminated by

Apoidea and Vespoidea DNA, but these sequences were detected and deleted from subsequent analyses. It is reasonable to assume that microhymenoptera sweep-netted and aspirated from

123

flowers would be contaminated with hairs from various bees and wasps, and due to the small size of microhymenoptera (< 3 mm long) the universal primers preferentially amplified the hairs from other Hymenoptera. In addition, a few parasitoid sequences were contaminated with host DNA due to preferential amplification by the universal primers, but these sequences were also easy to detect and deleted from subsequent analyses. The ability to re-examine specimens is critical to maintain identification accuracy by molecular methods such as DNA barcoding, and studies involving Hymenoptera need to be aware of possible contamination (Rougerie et al. 2010, Lee and Lee 2012).

An original intention that may have been understated by Hebert et al. (2003) was the necessity of collaboration between molecular biologists and taxonomists to successfully develop a DNA barcode reference library. Unfortunately, the Barcode of Life Database (BoLD, www.barcodinglife.org) does not allow confident assignment to species or genera for most families of Hymenoptera (Santos et al. 2011), and so the DNA barcode reference library is not readily available for identification of most Hymenoptera collected in bioinventories.Therefore, family level morphology was predominantly used to sort community members of rose galls induced by Diplolepis (Chapter Two) and to obtain broad scale (superfamily and family) genome size comparisons (Chapter Three). Afterwards, a species threshold (2.2% from its nearest neighbour) based on both DNA barcode and ITS1 sequences was calculated and then used to guide separation of specimens into DbOTs. The species threshold made it possible to estimate species (DbOTs) richness of rose gall communities (Chapter Two) and to make genome size comparisons between parasitoid and non-parasitoid lineages (Chapter Three), subfamilies of

Ichneumonoidea (Braconidae and Ichneumonidae) (Chapter Three), cleptoparasites and their hosts (Chapter Three), and inducers and inquilines of oak and rose galls (Chapter Three).

124

Application of a species threshold throughout this thesis is not the same as assuming equal mutation or speciation rates among Hymenoptera lineages, and it is recognized that a universal species threshold does not exist and should not be applied to any scientific investigation (Cognato 2006). However, the 2.2% species threshold applied throughout this thesis is based on congruence between COI and ITS1 sequences from Hymenoptera collected within a narrow geographic area (Chapter Two), is calculated from the more appropriate minimum average sequence divergence between nearest neighbour species (Meier et al. 2008), and is within the range of species thresholds applied in other bioinventory studies of

Hymenoptera (Smith et al. 2005a, Smith et al. 2009). There is a probability that a new DNA barcode from an unidentified individual may not be correctly assigned to its species because its

DNA barcode may fall outside the normally encountered range of genetic divergence recognized for a species (DeWalt 2011). However, the likelihood that large intraspecific genetic divergences would be found between individuals of the same species collected within the same narrow geographic area (Appendix 1, Appendix 3) is low because gene flow is not limited (DeWalt

2011). The lack of a DNA barcode reference library (Santos et al. 2011) and the lack of morphological characters (males, larvae, head removal) for species identification of

Hymenoptera (Chapter Two and Chapter Three) meant that the application of the 2.2% species threshold was necessary and practical to achieve the thesis objectives. Finally, a distinction needs to be recognized between applying a tested species threshold in a narrow geographic area without the availability of taxonomic expertise and applying an arbitrary universal species threshold to individuals collected from widely dispersed geographic areas without including available additional data (behavioural, molecular, morphological) necessary for species identification and discovery. As BoLD increases its DNA barcode reference library for

125

Hymenoptera, it will be possible to assign the DbOTs within this thesis to genus and species.

Though future species designation will provide an extra level of detail to the findings of this thesis, it will not alter the general conclusions of Chapter Two and Chapter Three.

Unfortunately, the universal primers (Lep-F1, Lep-R1, MLep-F1, MLep-R1) did not amplify a DNA barcode for several specimens in the superfamilies Ceraphronoidea,

Chrysidoidea, and Chalcidoidea; thus, one specimen was randomly selected to represent genome size estimation for some families within those superfamilies (Appendix 2, Appendix 3).

Therefore, multiple specimens (males and females) from the same family of Bethylidae,

Ceraphronidae, Eucharitidae, and Megaspilidae could not be included in the analyses as they could not be separated into unique DbOTs and have a mean genome size estimated per species.

Overall, the failure to amplify DNA barcodes with universal primers from a few families was inconsequential since most families collected for this thesis were readily sequenced (87.9 %, n =

29/33). Since the focus of this thesis was broad scale collecting of Hymenoptera, the impact of primer failure was negligible. However, if DNA barcodes must be generated for all specimens collected in another project, then alternative primers would need to be designed for specific taxa of Hymenoptera. Other studies had to design and optimize alternative primers for DNA barcoding of specific families within Chalcidoidea (Li et al. 2010) and several families across

Hymenoptera (Santos et al. 2011). The necessity of multiple primers and specific primers for

DNA barcoding of select taxa of Hymenoptera is no more cumbersome than using multiple morphological keys when sorting insects.

Developing experience and awareness of limitations of both morphological identifications of live Hymenoptera and DNA barcoding have provided a reasonable safeguard to minimize identification errors in this thesis. Sampling was restricted to intact specimens that

126

could be morphologically identified to both family and gender so that DNA contamination and incorrect genome size estimation (male haploid, female diploid) could be eliminated. As discussed above, morphological and molecular data are valuable characters, and if properly used together, they assist initial taxon separation and guide future taxon delimitation.

4. 2 Conclusions and synthesis

In Chapter Two, DNA barcodes and ITS1 sequences revealed that morphologically identified Diplolepis (Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae) associated with rose galls induced by Diplolepis contain either cryptic, synonymous, new, or unsampled species. Furthermore, a 2.2% species threshold estimated that the richness of parasitoids collected from rose galls induced by Diplolepis in Canada in a 10 year period was greater than previous estimated richness collected throughout North America, north of Mexico, over a 100 year period. These results provide evidence that additional character sets, whether they be morphological, molecular, and/or biological, are required to revise the delimitation of species of

Hymenoptera associated with rose galls.

The qualitative data of species of Periclistus and Torymus suggested that inquilines were not more inducer specific than the parasitoid, respectively. However, the dataset of the study was restricted to specimens less than 10 years old, and these preliminary results are suggestive but not strongly supported. A larger quantitative dataset would be required to adequately test for association of inducer species with community composition of either inquilines or parasitoids

(Bailey et al. 2009). The JDS reference collection at Laurentian University in Sudbury, ON, contains thousands of unidentified inhabitants from rose galls induced by Diplolepis collected over the past 42 years, and with the aid of DNA barcoding to sort specimens to DbOTs,

127

inquilines and parasitoids could be identified and quantified for each inducer. Additionally, a high precision food web could be recreated with the qualitative and quantitative trophic links for any inducer species (Kaartinen et al. 2010, Hrcek et al. 2011). Specimens of Hymenoptera > 10 years old would require development of new internal primer pairs to amplify degraded DNA.

Individuals would be selected by a taxonomic expert to serve as vouchers for male and females of a species (DbOT) and have their DNA barcodes amplified. To reduce costs, individuals of species that have one distinct DNA barcode cluster and that can be separated by morphology would not require further DNA barcoding. Otherwise, taxa that are difficult to identify by morphology and male specimens may all require DNA barcoding to construct an accurate food web.

A future unique contribution to cecidology would be to DNA barcode eggs, larvae, and pupae of inducers and inquilines with histological examinations of gall tissues. Cryptic, synonymous, new, or unsampled species in a gall community are more likely to be undetectable in their immature stages, and these lifestages are encountered during the process of histological sectioning of galls (LeBlanc and Lacroix 2001, Shorthouse et al. 2005, Leggo and Shorthouse

2006a, Leggo and Shorthouse 2006b, Sliva and Shorthouse 2006). The possible inclusion of

DNA barcoding in future histological studies offers the opportunity to search for distinct gall characters on a finer scale that may have been previously overlooked as intrataxon variability.

In Chapter Three, the goal of expanding the genome size database of Hymenoptera resulted in an increase of 66 %, 56 %, and 54 % in species (DbOTs), family, and superfamily new estimates (Figure 4. 1). Diversity of larval lifestyle was also increased with the first genome size estimates of cleptoparasites, inducers, and inquilines into the database. The addition of 309 new genome size estimates within the order Hymenoptera has now lifted the ranking of this

128

order from lowest genome size coverage of diverse holometabolous orders (Coleoptera, Diptera,

Lepidoptera) to the highest coverage of all insects, both hemimetabolous and holometabolous

(Table 4.1).

Broad guild categorizations (herbivore, parasitoid, predator) are insufficient to provide hypotheses and predictions about genome size patterns. This study determined that the order

Hymenoptera is not constrained to small C-values more so than other holometabolous orders. It has been suggested that parasitic or parasitoid insects have small genome sizes (Johnston et al.

2004, Johnston et al. 2007), but the extensive sampling of Hymenoptera within this study established that this is not the case. It is now known that parasitic or parasitoid biology is not a trait that unequivocally constrains genome size. For example, the entirely parasitic order

Siphonaptera (fleas) has genome size significantly larger than the median for all holometabolous insects. Coleoptera, Diptera, Lepidoptera, Neuroptera, and Trichoptera have several families with parasitoid species (Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997), but none have had their genome size estimated (Gregory 2011). To further support or refute that parasitic or parasitoid biology does not constrain genome size, genome size of parasitoid species should be compared to sister taxa (genera, family, order) that do not contain parasitoid species. Also, specific traits related to genome size should be clearly stated for a particular guild or taxon which can then be tested. For example, this study predicted that idiobionts would have smaller genome size than koinobionts based on the observation that idiobionts have shorter development time

(Blackburn 1991, Mayhew and Blackburn 1999). Though, no significant difference was found between genome size of idiobionts and koinobionts, the prediction was specific and based on data from published studies (Blackburn 1991, Mayhew and Blackburn 1999). It would not have been reasonable to predict differences between genome size of idiobionts and koinobionts based

129

on generalized statements about differences in their host range (Askew and Shaw 1986,

Pennacchio and Strand 2006) because there are currently no data suggesting such a relationship.

It is possible that high fecundity, small body size, or high metabolic rate may constrain genome size (Johnston et al. 2004, Johnston et al. 2007), but comparative tests of these traits between parasitic or parasitoid groups and non-parasitic or non-parasitoid groups are still required.

The importance of reduced development time and the link with small genome size was a central theme throughout Chapter Three. This pattern was evident when interacting species of

Hymenoptera were competing within a narrow window of opportunity for a resource that was critical for survival. This was true for cleptoparasites and inquilines having significantly smaller genome size than their hosts and inducers, respectively. Future sampling of other systems with cleptoparasites and inquilines can test the general prediction that they have significantly smaller genome size than their hosts. It would also be interesting to determine in which situations this pattern does not occur.

Both cleptoparasites and inquilines are restricted to specific habitats, such as nests and galls, respectively, in which they encounter hosts. Cleptoparasite and inquiline eggs are placed at some distance from any host or competitor and so it is plausible that ovipositing females do not assess host condition. However, ovipositing parasitoids often interact with their host to assess size, species, stage, and whether or not the host has been previously parasitized (Godfray 1994,

Quicke 1997). In essence, ovipositing parasitoids decide whether or not a host is acceptable before they oviposit. In general, idiobionts are competitively superior to koinobionts because their attack stops development of the host which in turn would kill any developing koinobiont

(Godfray 1994, Quicke 1997). Perhaps a relaxed mortality schedule of idiobionts in comparison to koinobionts has also relaxed some constraint on genome size. Thus, though idiobiont

130

development time has been reported to be faster than koinobionts (Blackburn 1991, Mayhew and

Blackburn 1999), it may be mortality risks that have a stronger influence on genome size.

Chapter Three did not reveal any significant difference in mean genome size between idiobiont and koinobiont species within both Braconidae and Ichneumonidae. Variation in genome size may be revealed if development time and mortality risks within closely related idiobionts or koinobionts that attack similar hosts are sampled. Afterwards, comparisons between idiobiont and koinobiont species attacking the same host may reveal differences that the broad scale sampling of this study could not investigate specifically.

This thesis illustrated the utility of DNA barcoding to enhance explorative surveys of richness of Hymenoptera in gall systems and sampling of species of Hymenoptera for broad scale genome size estimations and fine scale comparative tests. Data of genome size variation in any category of interest (species, habitat type, lifestyle) can be collected on a large scale due to the sampling efficiency of flow cytometry. With the addition of a molecular identification tool, such as DNA barcoding, the study of biology of Hymenoptera is no longer restricted to described species available in cultures. Now individuals can be sampled in the field and reliably linked every field season to continue observations and data collection. Based on larger scale observations, new hypotheses and predictions can be formulated about the effect of the amount of bulk DNA on organism physiology (development), morphology (size), and ecological interactions (Gregory 2005).

131

Table 4.1 Total number of genome size (GS) estimates of Insecta†. Developmental Number of families‡§ Number of species‡§ Order complexity with GS estimates with GS estimates Blattaria Hemimetabolous 4 13 Dermaptera Hemimetabolous 1 1 Embioptera Hemimetabolous 1 1 Ephemeroptera Hemimetabolous 1 1 Hemiptera Hemimetabolous 9 51 Isoptera Hemimetabolous 6 16 Mantodea Hemimetabolous 2 6 Odonata Hemimetabolous 9 130 Orthoptera Hemimetabolous 7 49 Phasmatodea Hemimetabolous 3 7 Phthiraptera Hemimetabolous 1 1 Thysanura Hemimetabolous 1 1 Zoraptera Hemimetabolous 1 1

Coleoptera Holometabolous 25 237 Diptera Holometabolous 18 177 Hymenoptera Holometabolous 36 (16) 471 (162) Lepidoptera Holometabolous 21 169 Mecoptera Holometabolous 1 2 Siphonaptera Holometabolous 1 1 Strepsiptera Holometabolous 2 2 † Genome size estimates listed include established methods such as feulgen densitometry, flow cytometry, and whole genome sequencing. ‡ Taxa listed in Appendix 2, Appendix 3, Appendix 4, and www.genomesize.com. § Number in parentheses state number of taxa that had their genome size estimated prior to this thesis.

132

Herbivore Ectoparasitoid Idiobiont Endoparasitoid Koinobiont Equivocal (Ecto/Endo) Equivocal (Idio/Koino)

Hymenoptera Genome size (pg)

Superfamily

0.00 0.50 1.00 1.50 2.00 Xyleoidea Pamphiliodea Tenthredinoidea† n = 0 + 30 Cephoidea n = 1 Siricoidea Xiphydrioidea Orussoidea Stephanoidea

Ceraphronoidea n = 0 + 2

Megalyroidea Trigonalyoidea

Evanoidea‡ n = 0 + 1

Chrysidoidea‡ n = 0 + 4

Vespoidea‡ n = 85 + 20 paraphyletic Apoidea‡ n = 49 + 12

Ichneumonoidea† n = 11 + 126

Platygastroidea n = 0 + 9

Cynipoidea† n = 4 + 37 Proctotrupoidea n = 0 + 1 Diaprioidea n = 0 + 3

Chalcidoidea† n = 12 + 65

Mymarommatoidea

Figure 4.1. New genome size estimates within Hymenoptera. Genome size was analyzed by multiple methods, and estimates displayed were obtained from this study (red bars and red text, n = 310, Appendix 2, Appendix 3) and from literature (black bars and black text, n = 162, Appendix 4). Superfamily in red text indicates new genome size estimates for entire superfamily. Development syndrome of parasitoids is mapped onto tree from Sharkey et al. (2011). Some superfamilies include several larval feeding modes: † Inducers or inquilines, ‡ cleptoparasite, § predator. Height of genome size bar represents number of species.

133

REFERENCES

134

Abrahamson WG, Melika G, Scrafford R, Csóka G (1998) Host-plant associations and

specificity among cynipid gall-inducing wasps of eastern USA. In: G Csóka, WJ

Mattson, GN Stone, PW Price (eds), The biology of gall-inducing . U.S. Forest

Service General Technical Report NC-199. pp 226-240.

Ács Z, Melika G, Pénzes Z, Pujade-Villar J, Stone GN (2007) The phylogenetic relationships

between Dryocosmus - Chilaspis and allied genera of oak gallwasps (Hymenoptera,

Cynipidae: Cynipini). Systematic Entomology 32:70-80.

Ács Z, Challis RJ, Bihari P, Blaxter M, Hayward A, Melika G, Csóka G, Pénzes Z, Pujade-Villar

J, Nieves-Aldrey J-L, Schönrogge K, Stone GN (2010) Phylogeny and DNA barcoding of

inquiline oak gallwasps (Hymenoptera: Cynipidae) of the Western Palaearctic. Molecular

Phylogenetics and Evolution 55: 210-225.

Aebi A, Schönrogge K, Melika G, Quacchia A, Alma A, Stone GN (2007) Native and introduced

parasitoids attacking the invasive chestnut gall wasp . EPPO

Bulletin 37: 166-171.

Aguiar AP, Santos BF (2010) Discovery of potent, unsuspected sampling disparities for Malaise

and Möricke traps, as shown for Neotropical Cryptini (Hymenoptera, Ichneumonidae).

Journal Insect Conservation 14: 199-206.

Alonso-Zarazaga MA, Pujade-Villar J (2006) What is Diplolepis analis Boyer de Fonscolombe,

1832 (Hymenoptera, Cynipidae)? Bulletin de la Societe Entomologique de France 111:

119-121.

Alves-dos-Santos I, Melo GAR, Rozen Jr JG (2002) Biology and immature stages of the

tribe Tetrapediini (Hymenoptera: Apidae). American Museum Novitates 3377: 1-45.

135

Ardila-Garcia AM, Umphrey GJ, Gregory TR (2010) An expansion of the genome size dataset

for the insect order Hymenoptera, with a first test of parasitism and eusociality as

possible constraints. Insect Molecular Biology 19: 337-346.

Askew RR (1975) The organization of chalcid-dominated parasitoid communities centred upon

endophytic hosts. In: PW Price (ed), Evolutionary strategies of parasitic insects and

mites. Plenum Press, New York. pp 130-153.

Askew RR, Plantard O, Gómez JF, Nieves MH, Nieves-Aldrey JL (2006) A catalogue of

parasitoids and inquilines in galls of Aylacini, Diplolepidini and Pediaspidini (Hym.,

Cynipidae) in the West Palaearctic. Zootaxa 1301: 1-60.

Askew RR, Shaw MR (1986) Parasitoid communities: their size, structure and development. In: J

Waage, D Greathead (eds), Insect parasitoids. Academic Press, London. pp 237-264.

Austin AD, Dowton M (2000) The Hymenoptera - an introduction. In: AD Austin, M Dowton

(eds), Hymenoptera: Evolution, Biodiversity and Biological Control. CSIRO Publishing,

Collingwood. pp 3-8.

Bailey R, Schönrogge K, Cook JM, Melika G, Csóka G, Thuróczy C, Stone GN (2009) Host

niches and defensive extended phenotypes structure communities. Plos

Biology 7: e1000179.

Barcenas NM, Thompson NJ, Gomez-Tovar V, Morales-Ramos JA, Johnston JS (2008) Sex

determination and genome size in Catolaccus grandis (Burks, 1954) (Hymenoptera:

Pteromalidae). Journal of Hymenoptera Research 17: 201-209.

Barron JR (1977) The nearctic species of Orthopelma (Hymenoptera: Ichneumonidae).

Systematic Entomology 32: 171-176.

136

Bassett HF (1890) New species of North American Cynipidae. Transactions of the American

Entomological Society 17:59-63.

Beattie AJ, Oliver I (1994) Taxonomic minimalism. Trends in Ecology and Evolution 9: 488-

490.

Beattie AJ, Oliver I (1999) Biodiversity buzzwords: Another reply to Goldstein. Conservation

Biology 13: 1514.

Bennett AMR (2008) Review and identification keys to the ichneumonid parasitoids

(Hymenoptera: Ichneumonidae) of Nearctic Choristoneura species (Lepidoptera:

Tortricidae) Canadian Entomologist 140: 1-47.

Bennett MD, Leitch IJ (2005) Genome size evolution in plants. In: TR Gregory (ed), The

Evolution of the Genome. San Diego, Elsevier. pp 89-162.

Beutenmüller W (1908) Notes on Harris’s types of Cynipidae. Psyche 15: 9-10.

Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007)

Cryptic species as a window on diversity and conservation. Trends in Ecology and

Evolution 22: 148 -155.

Blackburn TM (1990) Comparative and experimental studies of animal life histories. PhD thesis.

University of Oxford, Oxford, England. 214 pp.

Blackburn TM (1991) Evidence for a fast-slow continuum of life-history traits among parasitoid

Hymenoptera. Functional Ecology 5: 65-74.

Boivin G (2010) Phenotypic plasticity and fitness in egg parasitoids. Neotropical Entomology

39: 457-463.

137

Boring CA, Sharanowski BJ, Sharkey MJ (2011) Maxfischeriinae: a new braconid subfamily

(Hymenoptera) with highly specialized egg morphology. Systematic Entomology 36:

529-548.

Brooks SE, Shorthouse JD (1997) Biology of the rose stem galler Diplolepis nodulosa

(Hymenoptera: Cynipidae) and its associated component community in central Ontario.

The Canadian Entomologist 129: 1121-1140.

Brooks SE, Shorthouse JD (1998) Developmental morphology of stem galls of Diplolepis

nodulosa (Hymenoptera: Cynipidae) and those modified by the inquiline Periclistus

pirata (Hymenoptera: Cynipidae) on Rosa blanda (Rosaceae). Canadian Journal Botany

76: 365-381.

Brown Jr W, George Jr M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA.

Proceedings of the National Academy of Science USA 76: 1967-1971.

Burks BD (1979) Cynipoidea. In: KV Krombien, PD Hurd, DR Smith Jr, BD Burks (eds),

Catalog of Hymenoptera of North America North of Mexico. Volume 1. Smithsonian

Institution Press, Washington DC. pp 1045-1107.

Cardinal S, Straka J, Danforth BN (2010) Comprehensive phylogeny of apid bees reveals the

evolutionary origins and antiquity of cleptoparasitism. Proceedings of the National

Academy of Sciences 107: 16207-16211.

Casiraghi M, Labra M, Ferri E, Galimberti A, De Mattia F (2010) DNA barcoding: a six-

question tour to improve users' awareness about the method. Briefings in Bioinformatics

11: 440-453.

138

Caterino MS, Tishechkin AK (2006) DNA identification and morphological description of the

first confirmed larvae of Hateriinae (Coleoptera: Histeridae). Systematic Entomology 31:

405-418.

Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell

volume and cell growth rate, and the solution of the DNA c-value paradox. Journal of

Cell Science 34: 247-278.

CFIA (2011) List of approved arthropod biological control agents from commercial sources that

do not fall under the mandate of the Plant Protection Act. www.inspection.gc.ca/english/

plaveg/ protect/dir/biocontrole.shtml. December 2011.

Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba:

nucleotide sequence, gene organization and genetic code. Journal of Molecular Evolution

22: 252-271.

Cognato AI (2006) Standard percent DNA sequence difference for insects does not predict

species boundaries. Journal Economic Entomology 99: 1037-1045.

Cognato AI, Sun JH (2007) DNA based cladograms augment the discovery of a new Ips species

from China (Coleoptera: Curculionidae: Scolytinae). Cladistics, 23, 539-551.

Craddock EM, Kacmarczyk T, Dawley RM (2000). The roles of genome size and cell size in

body size variation among Hawaiian Drosophila. Abstract, 41st Annual Drosophila

Research Conference, Pittsburg, PA, 20-26 March.

Csóka G, Stone GN, Melika G (2005) Biology, ecology, and evolution of gall-inducing

Cynipidae. In: Raman A, Schaefer CW, and Withers TM (eds), Biology, ecology and

evolution of gall-inducing arthropods. Vol. 2. Science Publishers Inc., Enfield. pp 573-

642.

139

Dailey DC, Campbell L (1973) A new species of Diplolepis from California. The Pan-Pacific

Entomologist 49: 174-176. von Dalla Torre KW, Kieffer JJ (1910) Cynipidae. In: FE Schulze (ed) Das Tierreich. Ein

Zusammenstellung und Kennzeichnung der rezenten Tierformen. Vol. 24. Lieferung

Hymenoptera. Friedländer und Sohn, Berlin. 891 pp.

Derraik JGB, Early JW, Closs GP, Dickinson KJM (2010) Morphospecies and taxonomic

species comparison for Hymenoptera. Journal of Insect Science 10: 1-7.

DeSalle R, Egan MG, Siddall M (2005) The Unholy Trinity: taxonomy, species delimitation and

DNA Barcoding. Philosophical Transactions: Biological Sciences 360: 1905-1916.

DeWalt RE (2011) DNA barcoding: a taxonomic point of view. Journal of the North American

Benthological Society 30:174-181.

Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of

trout and human. Cytometry 51A: 127-128.

Drown DM, Brown JM (1998) Molecular phylogeny of North American oak-galling cynipini

(Hymenoptera: Cynipidae) supports need for generic revision. In: G Csóka, WJ Mattson,

GN Stone, PW Price (eds), The biology of gall-inducing arthropods. U.S. Forest Service

General Technical Report NC-199. pp 241-246.

Ebach MC, de Carvalho MR (2010) Anti-intellectualism in the DNA Barcoding Enterprise.

Zoologia 27: 165-178.

Eggleton P, Belshaw R (1992) Insect parasitoids: an evolutionary overview. Philosophical

Transactions of the Royal Society of London Series B 337: 1-20.

Eggleton P, Gaston KJ (1990) "Parasitoid" species and assemblages: convenient definitions or

misleading compromises? Oikos 59: 417-421.

140

ESC (2011) Joint Annual Meetings of The Entomological Society of Canada. http://www.esc-

sec.ca/ annmeet.html. December 2011.

Evans D (1965) The life history and immature stages of Synergus pacificus McCracken and

Egbert (Hymenoptera: Cynipidae). Canadian Entomologist 97: 185-188.

Evans D (1967) The bisexual and agamic generations of Besbicus mirabilis (Hymenoptera:

Cynipidae), and their associate insects. Canadian Entomologist 99: 187-196.

Ferrari JA, Rai KS (1989) Phenotypic correlates of genome size variation in Aedes albopictus.

Evolution 43: 895-899.

Finston TL, Hebert PD, Foottit RB (1995) Genome size variation in aphids. Insect Biochemistry

Molecular Biology 25: 189-196.

Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode

identification. Molecular Ecology 11: 839-850.

Floyd R, Lima J, deWaard J, Humble L, Hanner R (2010) Common goals: policy implications of

DNA barcoding as a protocol for identification of arthropod pests. Biological Invasions

12: 2947-2954.

Gadau J, Gerloffs CU, Krugers N, Chan H, Schmid-Hempel P, Wille A, Page Jr RE (2001) A

linkage analysis of sex determination in Bombus terrestris (L.) (Hymenoptera: Apidae).

Heredity 87: 234-242.

Gariepy TD, Kuhlmann U, Gillott C, Erlandson M (2007) Parasitoids, predators and PCR: the

use of diagnostic molecular markers in biological control of Arthropods. Journal of

Applied Entomology 131: 225-240.

141

Gariepy T, Kuhlmann U, Gillott C, Erlandson M (2008) A large-scale comparison of

conventional and molecular methods for the evaluation of host-parasitoid associations in

nontarget risk-assessment studies. Journal Applied of Ecology 45: 708-715.

Gaston KJ, O'Neill MA (2004) Automated species identification: why not? Philosophical

Translations of the Royal Society London B 359: 655-667.

Gauld ID, Bolton B (1988) The Hymenoptera. British Museum (Natural History)/Oxford

University Press, London. 332 pp.

Gibson GAP, Huber JT, Woolley JB (1997) Annotated keys to the genera of Nearctic

Chalcidoidea (Hymenoptera). NRC Research Press, Ottawa. 794 pp.

Godfray HCJ (1994) Parasitoids, behavioural and evolutionary ecology. Princeton University

Press, Princeton. 488 pp.

Godfray HCJ, Shimada M. (1999) Parasitoids: a model system to answer questions in

behavioural, evolutionary and population ecology. Research Population Ecology 41: 3-

10.

Goldstein PZ (1997) How many things are there? A reply to Oliver and Beattie, Beattie and

Oliver, Oliver and Beattie, and Oliver and Beattie. Conservation Biology 11: 571-574.

Gokhman VE, Johnston JS, Small C,Rajwani R, Hanrahan SJ, Govind S (2011) Genomic and

karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae).

Comparative Cytogenenetics 5: 211-221.

Gómez JL, Nieves-Aldrey JL, Nieves MH (2008) Comparative morphology, biology and

phylogeny of terminal-instar larvae of the European species of Toryminae (Hym.,

Chalcidoidea, Torymidae) parasitoids of gall wasps (Hym. Cynipidae). Zoological

Journal of the Linnean Society 154: 676-721.

142

Goulet H, Hubert JF (1993) Hymenoptera of the world. An identification guide to families.

Research Branch, Agricultural Canada Publication, Ottawa. 668 pp.

Graham MWR de V, Gijswijt MJ (1998) Revision of the European species of Torymus Dalman

(s. lat.) (Hymenoptera: Torymidae). Zoologische Verhandelingen 317: 1-202.

Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-

value enigma. Biological Reviews 76: 65-101.

Gregory TR (2002) Genome size and developmental complexity. Genetica 115: 131-146.

Gregory TR (2005) Genome size evolution in animals. In: TR Gregory (ed), The Evolution of

the Genome. San Diego, Elsevier. pp 3-87.

Gregory TR (2011) Animal Genome Size Database. www.genomesize.com.

Gregory TR, Johnston JS (2008) Genome size diversity in the family Drosophilidae. Heredity

101: 228-238.

Gregory TR, Nedvěd O, Adamowicz SJ (2003) C-value estimates for 31 species of ladybird

beetles (Coleoptera: Coccinellidae). Hereditas 139: 121-127.

Greilhuber J, Doležel J, Lysá MA, Bennett MD (2005) The origin, evolution and proposed

stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA. Contents

Annals of Botany 95: 255-260.

Grissell EE (1995) Toryminae (Hymenoptera: Chalcidoidea: Torymidae): a redefinition, generic

classification, and annotated world catalog of species. Memoirs on Entomology,

International 2:1-470.

Grissell EE (1999) Hymenopteran biodiversity: some alien notions. American Entomologist 45:

235-244.

143

Grissell EE (2004) A new species of Torymus (Hymenoptera: Torymidae) associated with

Dactylopius (Hemiptera: Dactylopiidae). Journal of the Kansas Entomological Society

77: 639-643.

Güçlü S, Hayat R, Shorthouse JD, Tozlu G (2008) Gall-inducing wasps of the genus Diplolepis

(Hymenoptera: Cynipidae) on shrub roses of Turkey. Proceedings of the Entomological

Society of Washington 110: 204-217.

Hafen E, Stocker H (2003) How are the sizes of cells, organs, and bodies controlled? PLoS Biol

1: e86.

Hanner RH, Lima J, Floyd R (2009) DNA barcoding and its relevance to pests, plants and

biological control. Acta Horticulturae 823: 41-47.

Hanrahan SJ, Johnston JS (2011) New genome size estimates of 134 species of arthropods.

Chromosome Research 19: 809-823.

Harper LJ, Schönrogge K, Lim KY, Francis P, and Lichtenstein CP (2004) Cynipid galls: insect-

induced modifications of plant development create novel plant organs. Plant, Cell and

Environment 27: 327-335.

Harvey JA (2005) Factors affecting the evolution of development strategies in parasitoid wasps:

the importance of functional constraints and incorporating complexity. Entomologia

Experimentalis et Applicata 117: 1-13.

Harvey JA, Strand MR (2002) The developmental strategies of endoparasitoid wasps vary with

host feeding ecology. Ecology 83: 2439-2451.

Hawkins BA (1994) Pattern and Process in Host-Parasitoid Interactions. University of

Cambridge Press, Cambridge. 200 pp.

144

Hayward A, Stone GN (2005) Oak gall wasp communities: evolution and ecology. Basic and

Applied Ecology: 6 435-443.

Hebert PD N, Cywinska A, Ball SL, deWaard J R (2003) Biological identifications through

DNA barcodes. Proceedings of the Royal Society London. Series B 270: 313-321.

Heraty J, Ronquist F, Carpenter JM, Hawks D, Schulmeister S, Dowling AP, Murray D, Munro

J, Wheeler WC, Schiff N, Sharkey M (2011) Evolution of the Hymenopteran

megaradiation. Molecular Phylogenetics and Evolution 60:73-88.

Honey Bee Genome Sequencing Consortium (2006) Insights into social insects from the genome

of the Apis mellifera. Nature 443: 931-949.

Hrcek J, Miller SE, Quicke DLJ, Smith MA (2011) Molecular detection of trophic links in a

complex insect host–parasitoid food web. Molecular Ecology Resources 11: 786-794.

Huber JT (2009) Biodiversity of Hymenoptera. In: RG Foottit, PH Adler (eds), Insect

Biodiversity: Science and Society. Blackwell Publishing, London. pp 303-323.

Ikai N, Hijii N (2007) Sex ratio of inquiline wasps on cynipid oak galls in relation to gall

characteristics. Annals of the Entomological Society of America 100: 869-875.

Ishiwata K, Sasaki Go, Ogawac J, Miyata T, Su Z-H (2011) Phylogenetic relationships among

insect orders based on three nuclear protein-coding gene sequences. Molecular

Phylogenetics and Evolution 58: 169-180.

Ivanova NV, deWaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for

recovering high-quality DNA. Molecular Ecology Notes 6: 998-1002.

Ji Y-J, Zhang D-X, He L-J (2003) Evolutionary conservation and versatility of a new set of

primers for amplifying the ribosomal internal transcribed spacer regions in insects and

other invertebrates. Molecular Ecology Notes 3: 581-585.

145

Johnston JS, Ross LD, Beani L, Hughes DP, Kathirithamby J (2004) Tiny genomes and

endoreduplication in Strepsiptera. Insect Molecular Biology 13: 581-585.

Johnston JS, Yoon KS, Strycharz JP, Pittendrigh BR, Clark JM (2007) Body lice and head lice

(Anoplura: Pediculidae) have the smallest genomes of any hemimetabolous insect

reported to date. Journal Medical Entomology 44: 1009-1012.

Kaartinen R, Stone GN, Hearn J, Lohse K, Roslin T (2010) Revealing secret liaisons: DNA

barcoding changes our understanding of food webs. Ecological Entomology 35: 623-638.

KinseyAC (1920) Phylogeny of cynipid genera and biological characteristics. Bulletin American

Museum Natural History 42: 357-402.

Kinsey AC (1922) Studies of some new and described Cynipidae (Hymenoptera). Indiana

University Studies 53: 3-141.

Krell F-T (2004) Parataxonomy vs. taxonomy in biodiversity studies - pitfalls and applicability

of ‘morphospecies’ sorting. Biodiversity and Conservation 13: 795-812.

Lalonde RG, Shorthouse JD (2000) Using rose galls for field exercises in community ecology

and island biogeography. The American Biology Teacher 62: 436-441.

Lawrence P (1990) The biochemical and physiological effects of insect hosts on the development

and ecology of their insect parasites: an overview. Archives of Insect Biochemistry and

Physiology 13: 217-228.

LaSalle J, Gauld ID (1991) Parasitic Hymenoptera and the biodiversity crisis. Redia 74: 315-334.

LeBlanc DA, Lacroix CR (2001) Developmental potential of galls induced by Diplolepis

rosaefolii (Hymenoptera : Cynipidae) on the leaves of Rosa virginiana and the influence

of Periclistus species on the Diplolepis rosaefolii galls. International Journal of Plant

Science 162: 29-46.

146

Lee W, Lee S (2012) Unexpected problem in aphid DNA barcoding by universal primers.

Entomological Science 15: 121-126.

Leggo JJ, Shorthouse JD (2006a) Development of stem galls of Diplolepis triforma

(Hymenoptera: Cynipidae) on Rosa acicularis (Rosaceae). The Canadian Entomologist

138: 661-680.

Leggo JJ, Shorthouse JD (2006b) Modification of galls of Diplolepis triforma (Hymenoptera:

Cynipidae) by the parasitoids Eurytoma spongiosa (Hymenoptera: Eurytomidae) and

Glyphomerus stigma (Hymenoptera: Torymidae). The Canadian Entomologist 138: 681-

696.

Li Y, Zhou X, Feng G, Hu H, Niu L, Hebert PDN, Huang D (2010), COI and ITS2 sequences

delimit species, reveal cryptic taxa and host specificity of fig-associated Sycophila

(Hymenoptera, Eurytomidae). Molecular Ecology Resources 10: 31-40.

Liljeblad J, Ronquist F (1998) A phylogenetic analysis of higher-level gall wasp relationships

(Hymenoptera: Cynipidae). Systematic Entomology 23: 229-252.

Liljeblad J, Ronquist F, Nieves-Aldrey J-L, Fontal-Cazalla F, Ros-Farre P, Gaitros D, Pujade-

Villar J (2008) A fully web-illustrated morphological phylogenetic study of relationships

among oak gall wasps and their closest relatives (Hymenoptera: Cynipidae). Zootaxa

1796: 1-73.

Liu Z, Engel MS, Grimaldi DA (2007) Phylogeny and geological history of the cynipoid wasps

(Hymenoptera: Cynipoidea). American Museum Novitates 3583: 1-48.

Lopes DM, de Carvalho CR, Clarindo WR, Praça MW, Tavares MG (2009) Genome size

estimation of three species (Hymenoptera, Meliponinae) by flow cytometry.

Apidologie 40: 517-523.

147

Lotfalizadeh H, Delvare G, Rasplus J (2007) Eurytoma caninae sp. n. (Hymenoptera,

Eurytomidae), a common species previously overlooked with E. rosae. Zootaxa 1640:

55-68.

Mackauer M, Sequeira R (1993) Patterns of development in insect parasites. In: NE Beckage, SN

Thompson, BA Federici (eds), Parasites and Pathogens of Insects. Academic Press, New

York. pp 1-20.

Masner L, Barron JR, Danks HV, Finnamore AT, Francoeur A, Gibson GAP, Mason WR,

Yoshimoto CM (1979) Hymenoptera. In: HV Danks (ed), Canada and its insect fauna.

Memoirs of the Entomological Society of Canada 108. Entomological Society of Canada,

Ottawa. pp 485-508.

Mayhew PJ, Blackburn TM (1999) Does parasitoid development mode organise life-history traits

in the parasitoid Hymenoptera? Journal of Animal Ecology 68: 906-916.

Meier R, Zhang G, Ali F (2008) The use of mean instead of smallest interspecific distances

exaggerates the size of the barcoding gap and leads to misidentification. Systematic

Biology 57: 809-813.

Melika G, Abrahamson WG (2000) Historical review and current state of the world generic

classification of oak galls (Hymenoptera: Cynipidae: Cynipini). In: AD Austin, M

Dowton (eds), Hymenoptera: Evolution, Biodiversity and Biological Control. CSIRO

Publishing, Collingwood. pp 218-230.

Melika G, Abrahamson WG (2007) Review of the Nearctic gallwasp species of the genus

Bassettia Ashmead, 1887, with description of new species (Hymenoptera: Cynipidae:

Cynipini). Acta Zoologica Academiae Scientiarum Hungaricae 53: 131-148.

148

Melika G, Bechtold M (2001) Taxonomic notes and type designations of gall inducing cynipid

wasps described by G. Mayr ( Insecta: Hymenoptera: Cynipidae ). Annalen des

Naturhistorischen Museums in Wien 103 B: 327-329.

Melo GAR, Gonçalves RB (2005) Higher-level bee classification (Hymenoptera, Apoidea,

Apidae sensu lato). Revista Brasileira de Zoologia 22: 153-159.

Meyer CP, Paulay G (2005) DNA barcoding: Error rates based on comprehensive sampling.

PLoS Biology 3: 2229-2238.

Michener CD (2000) The bees of the world. Johns Hopkins University Press, Baltimore. 913 pp.

Miller KB, Alarie Y, Wolfe GW, Whiting MF (2005) Association of insect lifestages using DNA

sequences: the larvae of Philodytes umbrinus (Motschulsky) (Coleoptera: Dytiscidae).

Systematic Entomology 30: 499-509.

Monti MM, Nappo AG, Giorgini M (2005) Molecular characterization of closely related species

in the parasitic genus Encarsia (Hymenoptera: Aphelinidae) based on the mitochondrial

cytochrome subunit I gene. Bulletin of Entomological Research 95: 401-408.

Mills NJ (1992) Parasitoid guilds, life-styles, and host ranges in the parasitoid complexes of

tortricoid hosts (Lepidoptera: Tortricidae). Environmental Entomology 21: 320-329.

Nieves-Aldrey J-L, Medianero E (2011) Taxonomy of inquilines of oak gall wasps of Panama,

with description of eight new species of Synergus Hartig (Hymenoptera, Cynipidae,

Synergini). Zootaxa 2774: 1–47.

Oliver I, Beattie AJ (1993) A possible method for the rapid assessment of biodiversity

Conservation Biology 7: 562-568.

Oliver I, Beattie AJ (1996) Invertebrate morphospecies as surrogates for species: A case study.

Conservation Biology 10: 99-109.

149

Olson E (1964) A preliminary study of Minnesota rose gall insects. Journal of the Minnesota

Academy of Science 32: 26-29.

Packer L, Gibbs J, Sheffield C, Hanner R (2009) DNA barcoding and the mediocrity of

morphology. Molecular Ecology Resources 9 (Suppl. 1): 42-50.

Pennacchio F, Strand MR (2006) Evolution of developmental strategies in parasitic

Hymenoptera. Annual Review of Entomology 51: 233-258.

Pénzes Z, Melika G, Bozsóki Z, Bihari P, Mikó I, Tavakoli M, Pujade-Villar J, Fehér B, Fӧlüp

D, Szabó K, Bozsó M, Sipos B, Somogy K, Stone GN (2009) Systematic reappraisal of

the gall-usurping wasp genus Synophrus Hartig, 1843 (Hymenoptera: Cynipidae:

Synergini). Systematic Entomology 34: 688-711.

Petitpierre E, Segarra C, Juan C (1993) Genome size and chromosomal evolution in leaf beetles

(Coleoptera, Chrysomelidae). Hereditas 119: 1-6.

Pires CSS, Price PW (2000) Patterns of host plant growth and attack and establishment of gall-

inducing wasp (Hymenoptera: Cynipidae). Environmental Entomology 29: 49-54.

Plantard O, Shorthouse JD, and Rasplus J-Y (1998) Molecular phylogeny of the genus

Diplolepis (Hymenoptera: Cynipidae). In: G Csóka, WJ Mattson, GN Stone, PW Price

(eds), The biology of gall-inducing arthropods. U.S. Forest Service General Technical

Report NC-199. pp 247–260.

Plantard O, Solignac M (1998) Wolbachia induced thelytoky in cynipids. In: G Csóka, WJ

Mattson, GN Stone, PW Price (eds), The biology of gall-inducing arthropods. U.S. Forest

Service General Technical Report NC-199. pp 111–121.

Pulawski WJ (2011) http://researcharchive.calacademy.org/research/entomology/Entomology_

Resources/Hymenoptera/sphecidae/Family_group_names_and_classification.pdf

150

Pujade-Villar J, Plantard O (2002) About the validity of Diplolepis fructuum (Rübsaamen) and

some new synonyms in Diplolepis nervosa (Curtis) (Hym.: Cynipidae: Diplolepidini). In:

G Melika, C Thuróczy (eds), Parasitic Wasps: Evolution, Systematic, Biodiversity and

Biological Control. Agroinform. pp 135-142.

Quicke DLJ (1997) Parasitic wasps. Chapman & Hall, London. 470 pp.

Quicke DLJ, Laurenne NM, Fitton MG, Broad GR (2009) A thousand and one wasps: a 28S

rDNA and morphological phylogeny of the Ichneumonidae (Insecta: Hymenoptera) with

an investigation into alignment parameter space and elision. Journal of Natural History

43: 1305-1421.

Rasch EM, Barr HJ, Rasch RW (1971) The DNA content of sperm of Drosophila melanogaster.

Chromosoma 33: 1-18.

Rempel SJ (2002) The Torymus Complex (Hymenoptera: Torymidae) associated with galls of

Diplolepis (Hymenoptera: Cynipidae) in Canada. MSc thesis. Laurentian University,

Sudbury. 153 pp.

Ritchie AJ (1984) A review of the higher classification of the inquiline gall wasps

(Hymenoptera: Cynipidae) and a revision of the Nearctic species of Periclistus Forster.

PhD thesis. Carleton University, Ottawa. 368 pp.

Ritchie AJ, Peters TM (1981) The external morphology of Diplolepis rosae (Hymenoptera:

Cynipidae, Cynipinae). Annals of the Entomological Society of America 74: 191-199.

Rohwer SA, Fagan M (1917) The type-species of the genera of Cynipoidea or the gall wasps and

parasitic Cynipoids. Proceedings of the United States Nntional Museum 3: 357-380.

151

Rokas A, Melika G, Abe Y, Nieves-Aldrey JL, Cook JM, Stone GN (2003) Lifecycle closure,

lineage sorting, and hybridization revealed in a phylogenetic analysis of European oak

gallwasps (Hymenoptera: Cynipidae: Cynipini) using mitochondrial sequence data.

Molecular Phylogenetics and Evolution 26: 36-45.

Rokas A, Nylander JAA, Ronquist F, Stone GN (2002) A maximum likelihood analysis of eight

phylogenetic markers in gallwasps (Hymenoptera: Cynipidae): implications for insect

phylogenetic studies. Molecular Phylogenetics and Evolution 22: 206-219.

Ronquist F (1994) Evolution of parasitism among closely related species: Phylogenetic

relationships and the origin of inquilinism in gall wasps (Hymenoptera, Cynipidae).

Evolution 48: 241-266.

Ronquist F, Liljeblad J (2001) Evolution of the gall wasp-host plant association. Evolution 55:

2503-2522.

Rougerie R, Smith MA, Fernandez-Triana J, Lopez-Vaamonde C, Ratnasingham S, Hebert PDN

(2010) Molecular analysis of parasitoid linkages (MAPL): gut contents of adult parasitoid

wasps reveal larval host. Molecular Ecology 20: 179-186.

Rozen Jr JG (2001) A Taxonomic Key to Mature Larvae of Cleptoparasitic Bees (Hymenoptera:

Apoidea). American Museum Novitates 3309: 1-28.

Rozen Jr JG (2003) Eggs, ovariole numbers, and modes of parasitism of cleptoparasitic bees,

with emphasis on Neotropical species (Hymenoptera: Apoidea). American Museum

Novitates 3413: 1-36.

Rozen Jr JG, Kamel SM (2007) Investigations on the biologies and immature stages of the

cleptoparasitic bee genera Radoszkowskiana and Coelioxys and their Megachile Hosts

152

(Hymenoptera: Apoidea: Megachilidae: Megachilini). American Museum Novitates

3573: 1-43.

Rozen Jr JG, Kamel SM (2009) Hospicidal behavior of the cleptoparasitic wasp Sapyga

luteomaculata and investigations into ontogenetic changes in its larval anatomy

(Hymenoptera: Vespoidea: Sapygidae). American Museum Novitates 3644: 1-24.

Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Conservation

Biology 20: 1026-1033.

Santos AMC, Besnard G, Quicke DLJ (2011) Applying DNA barcoding for the study of

geographical variation in host–parasitoid interactions. Molecular Ecology Resources 11:

46-59.

Schick KN, Potter D, Shorthouse JD (2010) A preliminary study of molecular relationships

within Diplolepis polita (Hymenoptera: Cynipidae). 7th International Congress of

Hymenopterists. Köszeg, Hungary. Oral presentation.

Schmidt-Ott U, Ab MR, Sander K, Johnston JS (2009) Extremely small genomes in two

unrelated dipteran insects with shared early developmental traits. Development Genes

and Evolution 219: 207-210.

Schönrogge K, Atkinson RJ, Bellido D, and Pujade-Villar J (2002) The population biology of

oak gall wasps (Hymenoptera: Cynipidae). Annual Review of Entomology 47: 633-668.

Scudder GGE (2009) The importance of insects. In: RG Foottit, PH Adler (eds), Insect

Biodiversity: Science and Society. Wiley-Blackwell, Oxford. pp 7-32.

Sha ZL, Zhu CD, Murphy RW, La Salle J, Huang DW (2006) Mitochondrial phylogeography of

a leafmeiner parasitoid, Diglyphus isaea (Hymenoptera: Eulophidae) in China. Biological

38: 380-389.

153

Sharanowski BJ, Dowling APG, Sharkey MJ (2011) Molecular phylogenetics of Braconidae

(Hymenoptera: Ichneumonoidea), based on multiple nuclear genes, and implications for

classification. Systematic Entomology 36: 549-572.

Sharkey MJ (2007) Phylogeny and classification of Hymenoptera. Zootaxa 1668: 521-548.

Sharkey MJ, Carpenter JM, Vilhelmsen L, Heraty J, Liljeblad J, Dowling APG, Schulmeister S,

Murray D, Deans AR, Ronquist F, Krogmann L, Wheeler WC (2011) Phylogenetic

relationships among superfamilies of Hymenoptera. Cladistics 27: 1-33.

Sheehan W, Hawkins BA (1991) Attack strategy as an indicator of host range in metopiinae and

pimplinae Ichneumonidae (Hymenoptera). Ecological Entomology 16: 129-131.

Sheffield CS, Hebert PD, Kevan PG, Packer L (2009) DNA barcoding a regional bee

(Hymenoptera: Apoidea) fauna and its potential for ecological studies. Molecular

Ecology Resources 9 (Suppl. 1): 196-207.

Shorthouse JD (1973) The insect community associated with rose galls of Diplolepis polita

(Cynipidae, Hymenoptera). Quaestiones Entomologicae 9: 55-98.

Shorthouse JD (1975) The roles of insect inhabitants in six Diplolepis (Cynipidae, Hymenoptera)

rose leaf galls of Western Canada. PhD thesis. University of Saskatchewan, Saskatoon,

Canada. 276 pp.

Shorthouse JD (1980) Modifications of galls of Diplolepis polita by the inquiline Periclistus

pirata. Bulletin de la Société Botanique de France 127: 79-84.

Shorthouse JD (1987) Gall inducing cynipid wasps attacking Rosa rugosa. Canadian Journal of

Plant Science 67: 1227-123l.

154

Shorthouse JD (1988) Occurrence of two gall wasps of the genus Diplolepis (Hymenoptera:

Cynipidae) on the domestic shrub rose, Rosa Rugosa Thunb. (Rosaceae). The Canadian

Entomologist, 120, 727-737.

Shorthouse JD (1993) Adaptations of the gall wasps of the genus Diplolepis (Hymenoptera:

Cynipidae) and the role of gall anatomy in cynipid systematics. Memoires of the

Entomological Society of Canada 165: 139-163.

Shorthouse JD (1998) Role of Periclistus (Hymenoptera: Cynipidae) inquilines in leaf galls of

Diplolepis (Hymenoptera: Cynipidae) on wild roses in Canada. In: G Csóka, WJ Mattson,

GN Stone, PW Price (eds), The biology of gall-inducing arthropods. U.S. Forest Service

General Technical Report NC-199. pp 61–81.

Shorthouse JD (2010) Galls induced by cynipid wasps of the genus Diplolepis (Hymenoptera:

Cynipidae) on the roses of Canada's grasslands. In: JD Shorthouse, KD Floate (eds),

Arthropods of Canadian Grasslands (Volume 1): Ecology and Interactions in Grassland

Habitats. Biological Survey of Canada, Ottawa. pp 251-279.

Shorthouse JD, Brooks SE (1998) Biology of the galler Diplolepis rosaefolii (Hymenoptera:

Cynipidae), its associated component community, and host shift to the shrub rose Thérèse

Bugnet. The Canadian Entomologist 130: 357-366.

Shorthouse JD, Leggo JJ (2002) Immature stages of the galler Diplolepis triforma

(Hymenoptera: Cynipidae) with comments on the role of its prepupa. The Canadian

Entomologist 134: 433-446.

Shorthouse JD, Leggo JJ, Sliva MD, Lalonde RG (2005) Has egg location influenced the

radiation of Diplolepis (Hymenoptera: Cynipidae) gall wasps on wild roses? Basic and

Applied Ecology 6: 423-434.

155

Shorthouse JD, Ritchie RJ (1984) Description and biology of a new species of Diplolepis

Fourcroy (Hymenoptera: Cynipidae) inducing galls on the stems of Rosa acicularis. The

Canadian Entomologist 116: 1623-1636.

Sliva MD, Shorthouse JD (2006) Comparison of the development of stem galls induced by

Aulacidae hieracii (Hymenoptera: Cynipidae) on hawkweed and by Diplolepis spinosa

(Hymenoptera: Cynipidae) on rose. Canadian Journal of Botany 84: 1052-1074.

Smith DR (1996) Review of the Gasteruptiidae (Hymenoptera) of eastern North America.

Proceedings of the Entomological Society of Washington 98: 491-499.

Smith MA, Eveleigh ES, McCann KS, McCarthy PC, Van Rooyen KI (2011) Barcoding a

quantified food web: crypsis, concepts, ecology and hypotheses. PLoS ONE 6(7):

e14424.

Smith MA, Fernandez-Triana J, Roughley R, Hebert PDN (2009) DNA barcode accumulation

curves for understudied taxa and areas. Molecular Ecology Resources 9: 208-216.

Smith MA, Fisher BL, Hebert PDN (2005a) DNA barcoding for effective biodiversity

assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical

Transactions of the Royal Society B: Biological Science 360: 1825-1834.

Smith MA, Umphrey GJ, Fisher BL, Hebert PDN (2005b) Rapid assessment of ant diversity in a

northern world heritage site using DNA barcodes. London, UK: The Natural History

Museum. Poster.

Smith MA, Rodriguez JJ, Whitfield JB, Deans AR, Janzen DH, Hallwachs W, Hebert PDN

(2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of

natural history, DNA barcoding, morphology, and collections. Proceedings National

Academy Science USA 105: 12359-12364.

156

Stone GN, Atkinson RJ, Rokas A, Nieves-Aldrey JL, Melika G, Acs Z, Csoka G, Hayward A,

Bailey R, Buckee C, McVean GAT (2008) Evidence for widespread cryptic sexual

generations in apparently purely asexual Andricus gallwasps. Molecular Ecology 17:

652–665.

Stone GN, Cook JM (1998) The structure of cynipid oak galls: patterns in the evolution of an

extended phenotype. Proceedings of the Royal Society of London B 265: 979-988.

Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends in

Ecology & Evolution 18: 512-522.

Stone GN, Schönrogge K, Atkinson AJ, Bellido D, Pujade-Villar J (2002) The population

biology of oak gall wasps (Hymenoptera:Cynipidae) Annual Review of Entomology

47:633-668.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular

evolutionary genetics analysis using maximum likelihood, evolutionary distance, and

maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739.

Tavares MG, Carvalho CR, Soares FAF (2010a) Genome size variation in Melipona species

(Hymenoptera: Apidae) and sub-grouping by their DNA content. Apidologie 41: 636-

642.

Tavares MG, Carvalho CR, Soares FAF, Fernandes A (2010b) Detection of diploid males in a

natural colony of the cleptobiotic bee Lestrimelitta sp (Hymenoptera, Apidae) Genetics

and Molecular Biology 33: 491-493.

Teletchea F (2010) After 7 years and 1000 citations: Comparative assessment of the DNA

barcoding and the DNA taxonomy proposals for taxonomists and non-taxonomists.

Mitochondrial DNA 21: 206-226.

157

Triplehorn CA, Johnson NF (2005) Borer and Delong's Introduction to the Study of Insects.

Thomson, Brooks/ Cole, Belmont. 864 pp.

Torchio PF, Burdick DJ (1988) Comparative notes on the biology and development of Epeolus

compactus Cresson, a cleptoparasite of Colletes kincaidii Cockerell. Annals

Entomological Society America 81: 626-636.

Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401: 447-452.

Truman JW, Riddiford LM (2002) Endocrine insights into the evolution of metamorphosis in

insects. Annual Review Entomology 47: 467-500.

Tsutsui ND, Suarez AV, Spagna JC, Johnston JS (2008) The evolution of genome size in ants.

BMC Evolutionary Biology 8: 64.

Vinson SB, Iwantsch GF (1980) Host suitability for insect parasitoids. Annual Review

Entomology 25: 397-419. deWaard JR, Mitchell A, Keena MA, Gopurenko D, Boykin LM, Armstrong KF, Pogue MG,

Lima J, Floyd R, Hanner RH, Humble LM (2010) Towards a global barcode library for

Lymantria (Lepidoptera: Lymantriinae) tussock moths of biosecurity concern. PloS One

5: e14280.

Waugh J (2007) DNA barcoding in animal species: Progress, potential and pitfalls. BioEssays

29:188-197.

Weis AE, Walton R, Crego CL (1988) Reactive plant-tissue sites and the population biology of

gall makers. Annual Review of Entomology 33: 467-486.

Weld LH (1952) New American cynipid wasps from galls. Proceedings of the United States

National Museum 102: 315-343.

158

Wiebes-Rijks AA, Shorthouse, JD (1992) Ecological relationships of insects inhabiting cynipid

galls. In: JD Shorthouse and O Rohfritsch (eds), Biology of Insect-Induced Galls. Oxford

University Press, New York. pp 238–257.

Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for

integrative taxonomy. Systematic Biology 54:844–851.

Yassin A, Markow TA, Narechania A, O'Grady PM, DeSalle R (2010) The genus Drosophila as

a model for testing tree- and character-based methods of species identification using

DNA barcoding. Molecular Phylogenetics and Evolution 57: 509–517.

Yasumatsu K, Taketani A (1967) Some remarks on the commonly known species of the genus

Diplolepis Geoffroy in Japan. Esakia 6: 77-87.

159

Appendix 1. Taxa included in DNA barcoding of rose gall inhabitants, together with identification and collection information. Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 1 D. eglanteriae JDS DbOT01 601 385 Rose093-08 1996-05 Canada Niagara F (ON) SEB, JDS 1 2 D. eglanteriae JDS DbOT01 601 Rose502-08 1996-05 Canada Niagara F (ON) SEB 1 3 D. eglanteriae JDS DbOT01 601 Rose504-08 1996-05 Canada Niagara F (ON) SEB 1 4 D. eglanteriae JDS DbOT01 601 Rose505-08 1996-05 Canada Niagara F (ON) SEB 1 5 D. eglanteriae JDS DbOT01 601 Rose506-08 1996-05 Canada Niagara F (ON) SEB 1 6 D . sp. JL DbOT01 601 Hygen980-10 2010-08 Canada Guelph (ON) GL, JL, TE 2 7 D . sp. JL DbOT01 601 Hygen981-10 2010-08 Canada Guelph (ON) GL, JL, TE 2 8 D . sp. JL DbOT01 601 Hygen982-10 2010-08 Canada Guelph (ON) GL, JL, TE 2 9 D . sp. JL DbOT01 601 Hygen983-10 2010-08 Canada Guelph (ON) GL, JL, TE 2 10 D . sp. JDS DbOT02 601 Rose553-08 1996-11 Japan Kuroishi (Aomori) NS 1 11 D . sp. JDS DbOT02 601 Rose554-08 1996-11 Japan Kuroishi (Aomori) NS 1 12 D. bicolor JDS DbOT03 601 385 Rose004-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 13 D. bicolor JDS DbOT03 601 Rose005-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 14 D. bicolor JDS DbOT03 601 Rose006-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 15 D. bicolor JDS DbOT03 601 Rose007-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 160 16 D. bicolor JDS DbOT03 601 Rose008-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 17 D. bicolor JDS DbOT03 601 Rose009-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 18 D. bicolor JDS DbOT03 601 Rose011-08 1999-10 Canada Kelowna (BC) RGL, JDS 1 19 D. bicolor JDS DbOT03 601 385 Rose015-08 2003-05 Canada Coaldale (AB) JDS, MRS 1 20 D. bicolor JDS DbOT03 601 Rose016-08 2003-05 Canada Coaldale (AB) JDS, MRS 1 21 D. bicolor JDS DbOT03 601 Rose017-08 2003-05 Canada Pincher Creek (AB) JDS, MRS 1 22 D. bicolor JDS DbOT03 601 Rose018-08 2003-05 Canada Pincher Creek (AB) JDS, MRS 1 23 D. bicolor JDS DbOT03 601 Rose019-08 2003-05 Canada Pincher Creek (AB) JDS, MRS 1 24 D. bicolor JDS DbOT03 601 Rose020-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 25 D . sp. JL DbOT03 601 Perna172-09 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 26 D. bicolor JDS DbOT04 601 Rose001-08 1999-09 Canada Lethbridge (AB) JDS, MRS 1 27 D. bicolor JDS DbOT04 601 Rose002-08 1999-09 Canada Lethbridge (AB) JDS, MRS 1 28 D. bicolor JDS DbOT04 601 Rose003-08 1999-09 Canada Lethbridge (AB) JDS, MRS 1 29 D. bicolor JDS DbOT04 601 Rose010-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 30 D. bicolor JDS DbOT04 601 385 Rose013-08 2002-10 Canada Coaldale (AB) JDS 1 31 D. bicolor JDS DbOT04 601 Rose014-08 2002-10 Canada Coaldale (AB) JDS 1 32 D. bassetti JDS DbOT05 601 Rose086-08 2002-10 Canada Coaldale (AB) BE, JDS 1 33 D. bassetti JDS DbOT05 601 Rose313-08 2002-10 Canada Coaldale (AB) JDS 1 34 D. bassetti JDS DbOT05 601 Rose314-08 2002-10 Canada Coaldale (AB) JDS 1 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 35 D. bassetti JDS DbOT05 601 Rose315-08 2002-10 Canada Coaldale (AB) JDS 1 36 D. bassetti JDS DbOT05 601 Rose316-08 2002-10 Canada Coaldale (AB) JDS 1 37 D. bassetti JDS DbOT05 601 Rose317-08 2002-10 Canada Coaldale (AB) JDS 1 38 D. bassetti JDS DbOT05 601 Rose318-08 2002-10 Canada Coaldale (AB) JDS 1 39 D. bassetti JDS DbOT05 601 Rose319-08 2002-10 Canada Coaldale (AB) JDS 1 40 D. bassetti JDS DbOT05 601 Rose320-08 2002-10 Canada Coaldale (AB) JDS 1 41 D. bassetti JDS DbOT05 601 Rose321-08 2002-10 Canada Coaldale (AB) JDS 1 42 D. bassetti JDS DbOT05 601 Rose333-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 43 D. bassetti JDS DbOT05 601 Rose334-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 44 D . sp. JL DbOT05 601 Pipi395-09 2002-05 Canada Coaldale (AB) JDS 2 45 D. bassetti JDS DbOT06 601 Rose322-08 1999-10 Canada Osoyoos (BC) RGL, JDS 1 46 D. bassetti JDS DbOT06 601 Rose324-08 1999-10 Canada Osoyoos (BC) RGL, JDS 1 47 D. bassetti JDS DbOT06 601 Rose325-08 1999-10 Canada Osoyoos (BC) RGL, JDS 1 48 D. bassetti JDS DbOT06 601 Rose326-08 1999-10 Canada Osoyoos (BC) RGL, JDS 1 49 D. bassetti JDS DbOT06 601 Rose327-08 1999-10 Canada Osoyoos (BC) RGL, JDS 1 50 D. bassetti JDS DbOT06 601 Rose328-08 1999-10 Canada Osoyoos (BC) RGL, JDS 1 161 51 D. bassetti JDS DbOT06 601 Rose329-08 1999-10 Canada Osoyoos (BC) RGL, JDS 1 52 D. bassetti JDS DbOT06 601 Rose330-08 1999-10 Canada Osoyoos (BC) RGL, JDS 1 53 D. bassetti JDS DbOT06 601 Rose332-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 53 D. bassetti JDS DbOT06 601 Rose335-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 55 D. bassetti JDS DbOT06 601 Rose336-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 56 D. bassetti JDS DbOT06 601 Rose337-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 57 D. polita JDS DbOT07 601 Rose363-08 1986-10 Canada Cypress Hills P P (AB) JDS 1 58 D. polita JDS DbOT07 601 Rose365-08 1986-10 Canada Cypress Hills P P (AB) JDS 1 59 D. polita JDS DbOT07 601 Rose366-08 1986-10 Canada Cypress Hills P P (AB) JDS 1 60 D. polita JDS DbOT07 601 Rose378-08 1998-08 Canada Queen Charlotte I (BC) JDS 1 61 D. polita JDS DbOT07 601 Rose379-08 1998-08 Canada Queen Charlotte I (BC) JDS 1 62 D. polita JDS DbOT07 601 Rose380-08 1998-08 Canada Queen Charlotte I (BC) JDS 1 63 D. polita JDS DbOT07 601 Rose381-08 1998-08 Canada Queen Charlotte I (BC) JDS 1 64 D. polita JDS DbOT07 601 Rose382-08 1998-08 Canada Queen Charlotte I (BC) JDS 1 65 D. polita JDS DbOT07 601 Rose386-08 1998-08 Canada Queen Charlotte I (BC) JDS 1 66 D. polita JDS DbOT07 601 Rose390-08 1995-10 Canada Pacific Rim N P (BC) JDS 1 67 D . sp. JL DbOT07 601 Vnmb769-09 2008-09 Canada Clute (ON) GL, JL 2 68 D . sp. JL DbOT07 601 Vnmb789-09 2008-09 Canada Smooth Rock F (ON) GL, JL 2 69 D. polita JDS DbOT08 601 Rose394-08 2003-03 USA San Joaquin C (CA) KNS 1 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 70 D. polita JDS DbOT08 601 Rose395-08 2003-03 USA San Joaquin C (CA) KNS 1 71 D. polita JDS DbOT08 601 Rose396-08 2003-03 USA San Joaquin C (CA) KNS 1 72 D. polita JDS DbOT08 601 Rose397-08 2003-03 USA San Joaquin C (CA) KNS 1 73 D. polita JDS DbOT08 601 Rose398-08 2003-03 USA San Joaquin C (CA) KNS 1 74 D. polita JDS DbOT08 601 Rose399-08 2003-03 USA San Joaquin C (CA) KNS 1 75 D. polita JDS DbOT08 601 Rose400-08 2003-03 USA San Joaquin C (CA) KNS 1 76 D. fructuum JDS DbOT09 601 390 Rose094-08 2008-01 Turkey Kelkit (Gümüşhane ) SG, RH 1 77 D. fructuum JDS DbOT09 601 Rose452-08 2008-01 Turkey (Gümüşhane ) SG, RH 1 78 D. fructuum JDS DbOT09 601 Rose453-08 2008-01 Turkey (Gümüşhane ) SG, RH 1 79 D. fructuum JDS DbOT09 601 Rose453-08 2008-01 Turkey (Gümüşhane ) SG, RH 1 80 D. fructuum JDS DbOT09 601 Rose455-08 2008-01 Turkey (Gümüşhane ) SG, RH 1 81 D. fructuum JDS DbOT09 601 Rose456-08 2008-01 Turkey (Gümüşhane ) SG, RH 1 82 D. fructuum JDS DbOT09 601 Rose457-08 2008-01 Turkey (Gümüşhane ) SG, RH 1 83 D. fructuum JDS DbOT09 601 Rose458-08 2008-01 Turkey (Gümüşhane ) SG, RH 1 84 D. fructuum JDS DbOT09 601 Rose459-08 2008-01 Turkey (Gümüşhane ) SG, RH 1 85 D. fructuum JDS DbOT09 601 Rose460-08 2008-01 Turkey (Gümüşhane ) SG, RH 1 162 86 D. fructuum JDS DbOT09 601 Rose461-08 2008-01 Turkey Erzurum (Erzurum) SG, RH 1 87 D. fructuum JDS DbOT09 601 Rose462-08 2008-01 Turkey Erzurum (Erzurum) SG, RH 1 88 D. fructuum JDS DbOT09 601 Rose463-08 2008-01 Turkey Erzurum (Erzurum) SG, RH 1 89 D. fructuum JDS DbOT09 601 Rose464-08 2008-01 Turkey Erzurum (Erzurum) SG, RH 1 90 D. fructuum JDS DbOT09 601 Rose465-08 2008-01 Turkey Erzurum (Erzurum) SG, RH 1 91 D. fructuum JDS DbOT09 601 Rose466-08 2008-01 Turkey Erzurum (Erzurum) SG, RH 1 92 D. fructuum JDS DbOT09 601 Rose467-08 2008-01 Turkey Erzurum (Erzurum) SG, RH 1 93 D. fructuum JDS DbOT09 601 Rose468-08 2008-01 Turkey Erzurum (Erzurum) SG, RH 1 94 D. fructuum JDS DbOT09 601 Rose469-08 2008-01 Turkey Erzurum (Erzurum) SG, RH 1 95 D. fructuum JDS DbOT09 601 Rose470-08 2008-01 Turkey Erzurum (Erzurum) SG, RH 1 96 D . sp. JL DbOT10 601 Hygen339-10 2009-04 Canada Picton (ON) JDS 2 97 D . sp. JL DbOT10 601 Hygen340-10 2009-04 Canada Picton (ON) JDS 2 98 D . sp. JL DbOT11 601 Hygen341-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 99 D . sp. JL DbOT11 601 Hygen342-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 100 D . sp. JL DbOT11 601 Hygen343-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 101 D . sp. JL DbOT11 601 Hygen344-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 102 D . sp. JL DbOT11 601 Hygen347-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 103 D . sp. JL DbOT11 601 Hygen348-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 104 D. rosae JDS DbOT11 601 Rose091-08 2003-04 Canada Picton (ON) JDS 1 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 105 D. rosae JDS DbOT11 601 Rose488-08 1987-10 Canada St. Johns (NF) AW, RWW 1 106 D. rosae JDS DbOT11 601 Rose489-08 1987-10 Canada St. Johns (NF) AW, RWW 1 107 D. rosae JDS DbOT11 601 Rose490-08 1987-10 Canada St. Johns (NF) AW, RWW 1 108 D. rosae JDS DbOT11 601 Rose491-08 1987-10 Canada St. Johns (NF) AW, RWW 1 109 D. rosae JDS DbOT11 601 Rose492-08 1987-10 Canada St. Johns (NF) AW, RWW 1 110 D. rosae JDS DbOT11 601 Rose493-08 2003-04 Canada Prince Edward C (ON) JDS 1 111 D. rosae JDS DbOT11 601 Rose494-08 2003-04 Canada Prince Edward C (ON) JDS 1 112 D. rosae JDS DbOT11 601 Rose495-08 2003-04 Canada Prince Edward C (ON) JDS 1 113 D. rosae JDS DbOT11 601 Rose496-08 2003-04 Canada Prince Edward C (ON) JDS 1 114 D. rosae JDS DbOT11 601 Rose497-08 1994-05 Canada Malden Center (ON) JDS 1 115 D. rosae JDS DbOT11 601 Rose498-08 1994-05 Canada Malden Center (ON) JDS 1 116 D. rosae JDS DbOT11 601 Rose499-08 1994-05 Canada Malden Center (ON) JDS 1 117 D. rosae JDS DbOT11 601 Rose500-08 1994-05 Canada Malden Center (ON) JDS 1 118 D. rosae JDS DbOT11 601 Rose501-08 1994-05 Canada Malden Center (ON) JDS 1 119 D. rosaefolii JDS DbOT12 601 Rose294-08 1999-09 Canada Douglas P P (SK) JDS, MRS 1 120 D. rosaefolii JDS DbOT12 601 Rose295-08 1999-09 Canada Douglas P P (SK) JDS, MRS 1 163 121 D. rosaefolii JDS DbOT12 601 Rose296-08 1999-09 Canada Douglas P P (SK) JDS, MRS 1 122 D. rosaefolii JDS DbOT12 601 388 Rose303-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 123 D. rosaefolii JDS DbOT12 601 Rose304-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 124 D. rosaefolii JDS DbOT12 601 Rose305-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 125 D. rosaefolii JDS DbOT12 601 Rose306-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 126 D. rosaefolii JDS DbOT12 601 Rose307-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 127 D. rosaefolii JDS DbOT12 601 Rose308-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 128 D. rosaefolii JDS DbOT12 601 Rose309-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 129 D. rosaefolii JDS DbOT12 601 Rose310-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 130 D. rosaefolii JDS DbOT12 601 Rose311-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 131 D. rosaefolii JDS DbOT12 601 Rose312-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 132 D . sp. JL DbOT13 601 Hygen351-10 2009-05 Canada Timmins (ON) ADR, JDS 2 133 D . sp. JL DbOT13 601 Hygen355-10 2009-05 Canada Timmins (ON) ADR, JDS 2 134 D. rosaefolii JDS DbOT13 601 386 Rose284-08 1991-09 Canada Timmins (ON) JDS 1 135 D. rosaefolii JDS DbOT13 601 Rose285-08 1991-09 Canada Timmins (ON) JDS 1 136 D. rosaefolii JDS DbOT13 601 Rose286-08 1991-09 Canada Timmins (ON) JDS 1 137 D. rosaefolii JDS DbOT13 601 Rose287-08 1991-09 Canada Timmins (ON) JDS 1 138 D. rosaefolii JDS DbOT13 601 Rose288-08 1991-09 Canada Timmins (ON) JDS 1 139 D . sp. JL DbOT13 400 Hygen349-10 2008-09 Canada Timmins (ON) GL, JL 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 140 D . sp. JL DbOT13 601 Hygen350-10 2008-09 Canada Timmins (ON) GL, JL 2 141 D . sp. JL DbOT13 601 Hygen354-10 2008-09 Canada Timmins (ON) GL, JL 2 142 D . sp. JL DbOT13 597 Pipi157-09 2008-09 Canada Sudbury (ON) GL, JL 2 143 D . sp. JL DbOT13 471 Pipi158-09 2008-09 Canada Sudbury (ON) GL, JL 2 144 D . sp. JL DbOT13 597 Pipi159-09 2008-09 Canada Sudbury (ON) GL, JL 2 145 D . sp. JL DbOT13 597 Pipi161-09 2008-09 Canada Sudbury (ON) GL, JL 2 146 D . sp. JL DbOT13 597 Pipi167-09 2008-09 Canada Sudbury (ON) GL, JL 2 147 D . sp. JL DbOT13 597 Pipi169-09 2008-09 Canada Sudbury (ON) GL, JL 2 148 D . sp. JL DbOT13 601 Vnmb794-09 2008-09 Canada Smooth Rock F (ON) GL, JL 2 149 D . sp. JL DbOT14 601 Hygen299-10 2009-05 Canada Chelmsford (ON) JDS 2 150 D . sp. JL DbOT14 601 Hygen302-10 2009-04 Canada Renfrew (ON) MRS, JDS 2 151 D. fusiformans JDS DbOT14 601 Rose082-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 152 D. fusiformans JDS DbOT14 601 Rose223-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 153 D. fusiformans JDS DbOT14 601 Rose224-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 153 D. fusiformans JDS DbOT14 601 Rose225-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 155 D. fusiformans JDS DbOT14 601 Rose226-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 164 156 D. fusiformans JDS DbOT14 601 Rose227-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 157 D. fusiformans JDS DbOT14 601 Rose228-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 158 D. fusiformans JDS DbOT14 597 Rose229-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 159 D. fusiformans JDS DbOT14 601 Rose230-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 160 D . sp. JDS DbOT14 601 Rose558-08 2000-06 Canada Renfrew (ON) JDS 1 161 D . sp. JDS DbOT14 601 Rose562-08 1971-05 Canada Peace River (AB) JDS 1 162 D. nebulosa JDS DbOT14 601 Rose442-08 2002-10 Canada Coaldale (AB) JDS 1 163 D. nebulosa JDS DbOT14 601 Rose443-08 2002-10 Canada Coaldale (AB) JDS 1 164 D. nebulosa JDS DbOT14 601 Rose449-08 2002-10 Canada Coaldale (AB) JDS 1 165 D . sp. JL DbOT15 601 Hygen317-10 2009-05 Canada Fort Macleod (AB) JDS 2 166 D . sp. JL DbOT15 601 Hygen318-10 2009-05 Canada Fort Macleod (AB) JDS 2 167 D . sp. JL DbOT15 601 Hygen320-10 2009-05 Canada Fort Macleod (AB) JDS 2 168 D . sp. JL DbOT15 601 Hygen322-10 2009-05 Canada Fort Macleod (AB) JDS 2 169 D. ignota JDS DbOT15 601 394 Rose021-08 2007-05 Canada (mid-west) JDS, MRS 1 170 D. ignota JDS DbOT15 601 Rose022-08 2007-05 Canada (mid-west) JDS, MRS 1 171 D. ignota JDS DbOT15 601 Rose023-08 2007-05 Canada (mid-west) JDS, MRS 1 172 D. ignota JDS DbOT15 601 394 Rose024-08 2007-05 Canada (mid-west) JDS, MRS 1 173 D. ignota JDS DbOT15 601 Rose025-08 2007-05 Canada (mid-west) JDS, MRS 1 174 D. ignota JDS DbOT15 601 394 Rose026-08 2007-05 Canada (mid-west) JDS, MRS 1 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 175 D. ignota JDS DbOT15 601 Rose027-08 2007-05 Canada (mid-west) JDS, MRS 1 176 D. ignota JDS DbOT15 601 Rose028-08 2007-05 Canada (mid-west) JDS, MRS 1 177 D. ignota JDS DbOT15 601 Rose029-08 2007-05 Canada (mid-west) JDS, MRS 1 178 D. ignota JDS DbOT15 601 Rose030-08 2007-05 Canada (mid-west) JDS, MRS 1 179 D. ignota JDS DbOT15 601 Rose031-08 2007-05 Canada (mid-west) JDS, MRS 1 180 D. ignota JDS DbOT15 601 Rose032-08 2007-05 Canada (mid-west) JDS, MRS 1 181 D. ignota JDS DbOT15 601 Rose033-08 2007-05 Canada (mid-west) JDS, MRS 1 182 D. ignota JDS DbOT15 601 Rose034-08 2007-05 Canada (mid-west) JDS, MRS 1 183 D. ignota JDS DbOT15 601 Rose035-08 2007-05 Canada (mid-west) JDS, MRS 1 184 D. ignota JDS DbOT15 601 Rose036-08 2007-05 Canada (mid-west) JDS, MRS 1 185 D. ignota JDS DbOT15 601 Rose037-08 2007-05 Canada (mid-west) JDS, MRS 1 186 D. ignota JDS DbOT15 601 Rose038-08 2007-05 Canada (mid-west) JDS, MRS 1 187 D . sp. JL DbOT15 601 Rose723-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 188 D . sp. JL DbOT15 601 Rose724-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 189 D . sp. JL DbOT15 601 Rose725-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 190 D . sp. JL DbOT15 601 Rose726-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 165 191 D . sp. JL DbOT15 601 Rose727-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 192 D . sp. JL DbOT15 601 Rose728-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 193 D . sp. JL DbOT15 601 Rose729-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 194 D . sp. JL DbOT15 601 Rose730-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 195 D . sp. JL DbOT15 601 Rose731-09 2007-09 Canada Coaldale (AB) JDS, MRS 2 196 D . sp. JL DbOT15 601 Rose732-09 2007-09 Canada Coaldale (AB) JDS, MRS 2 197 D . sp. JL DbOT15 601 Rose733-09 2007-09 Canada Coaldale (AB) JDS, MRS 2 198 D . sp. JL DbOT15 601 Rose734-09 2007-09 Canada Coaldale (AB) JDS, MRS 2 199 D . sp. JL DbOT15 601 Rose735-09 2007-09 Canada Coaldale (AB) JDS, MRS 2 200 D . sp. JL DbOT15 601 Rose736-09 2007-09 Canada Coaldale (AB) JDS, MRS 2 201 D . sp. JL DbOT15 601 Rose737-09 2007-09 Canada Coaldale (AB) JDS, MRS 2 202 D . sp. JL DbOT15 601 Rose738-09 2007-09 Canada Coaldale (AB) JDS, MRS 2 203 D . sp. JL DbOT15 601 Hygen310-10 2009-10 Canada Sudbury (ON) JDS 2 204 D. nebulosa JDS DbOT15 601 Rose081-08 2004-10 Canada Manitoulin I (ON) ADR, JDS 1 205 D. nebulosa JDS DbOT15 601 Rose423-08 2004-10 Canada Manitoulin I (ON) ADR, JDS 1 206 D. nebulosa JDS DbOT15 601 394 Rose424-08 2004-10 Canada Manitoulin I (ON) ADR, JDS 1 207 D. nebulosa JDS DbOT15 601 Rose425-08 2004-10 Canada Manitoulin I (ON) ADR, JDS 1 208 D. nebulosa JDS DbOT15 601 Rose426-08 2004-10 Canada Manitoulin I (ON) ADR, JDS 1 209 D. nebulosa JDS DbOT15 601 Rose427-08 2004-10 Canada Manitoulin I (ON) ADR, JDS 1 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 210 D. nebulosa JDS DbOT15 601 Rose428-08 2004-10 Canada Manitoulin I (ON) ADR, JDS 1 211 D. nebulosa JDS DbOT15 601 Rose429-08 2004-10 Canada Manitoulin I (ON) ADR, JDS 1 212 D. nebulosa JDS DbOT15 601 Rose430-08 2004-10 Canada Manitoulin I (ON) ADR, JDS 1 213 D. nebulosa JDS DbOT15 601 Rose431-08 2004-10 Canada Manitoulin I (ON) ADR, JDS 1 214 D. nebulosa JDS DbOT15 601 Rose433-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 215 D. nebulosa JDS DbOT15 601 Rose434-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 216 D. nebulosa JDS DbOT15 601 Rose435-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 217 D. nebulosa JDS DbOT15 601 Rose436-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 218 D. nebulosa JDS DbOT15 601 394 Rose437-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 219 D. nebulosa JDS DbOT15 601 Rose438-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 220 D. nebulosa JDS DbOT15 601 Rose439-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 221 D. nebulosa JDS DbOT15 601 Rose440-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 222 D. nebulosa JDS DbOT15 601 Rose441-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 223 D. nebulosa JDS DbOT15 601 Rose444-08 2002-10 Canada Coaldale (AB) JDS 1 224 D. nebulosa JDS DbOT15 601 Rose445-08 2002-10 Canada Coaldale (AB) JDS 1 225 D. nebulosa JDS DbOT15 601 Rose446-08 2002-10 Canada Coaldale (AB) JDS 1 166 226 D. nebulosa JDS DbOT15 601 Rose447-08 2002-10 Canada Coaldale (AB) JDS 1 227 D. nebulosa JDS DbOT15 601 Rose448-08 2002-10 Canada Coaldale (AB) JDS 1 228 D. nebulosa JDS DbOT15 601 Rose450-08 2002-10 Canada Coaldale (AB) JDS 1 229 D. nebulosa JDS DbOT15 601 Rose451-08 2002-10 Canada Coaldale (AB) JDS 1 230 D . sp. JL DbOT15 601 Rose670-09 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 231 D . sp. JL DbOT15 601 Rose671-09 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 232 D . sp. JL DbOT15 601 Rose672-09 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 233 D . sp. JL DbOT15 601 Rose673-09 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 234 D . sp. JL DbOT15 601 Rose674-09 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 235 D . sp. JL DbOT15 601 Rose675-09 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 236 D . sp. JL DbOT15 597 Rose676-09 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 237 D . sp. JL DbOT15 601 Rose677-09 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 238 D . sp. JL DbOT15 601 Rose678-09 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 239 D . sp. JL DbOT15 601 394 Rose679-09 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 240 D . sp. JL DbOT15 567 Rose680-09 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 241 D . sp. JL DbOT15 601 Rose681-09 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 242 D . sp. JL DbOT15 601 Rose682-09 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 243 D . sp. JL DbOT15 601 Rose683-09 2002-10 Canada Coaldale (AB) JDS 2 244 D . sp. JL DbOT15 601 Rose684-09 2002-10 Canada Coaldale (AB) JDS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 245 D . sp. JL DbOT15 601 Rose685-09 2002-10 Canada Coaldale (AB) JDS 2 246 D . sp. JL DbOT15 601 Rose686-09 2002-10 Canada Coaldale (AB) JDS 2 247 D . sp. JL DbOT15 601 Rose687-09 2002-10 Canada Coaldale (AB) JDS 2 248 D . sp. JL DbOT15 601 Rose688-09 2002-10 Canada Coaldale (AB) JDS 2 249 D . sp. JL DbOT15 601 Rose689-09 2002-10 Canada Coaldale (AB) JDS 2 250 D . sp. JL DbOT15 601 Rose690-09 2002-10 Canada Coaldale (AB) JDS 2 251 D . sp. JL DbOT15 601 Hygen375-10 2009-05 Canada Peachland (BC) RGL 2 252 D . sp. JL DbOT15 601 Hygen376-10 2009-05 Canada Peachland (BC) RGL 2 253 D . sp. JL DbOT15 601 Hygen377-10 2009-05 Canada Peachland (BC) RGL 2 253 D . sp. JL DbOT15 601 Hygen378-10 2009-05 Canada Peachland (BC) RGL 2 255 D. variabilis JDS DbOT15 601 Rose083-08 2007-05 Canada Peachland (BC) RGL, JDS 1 256 D. variabilis JDS DbOT15 601 Rose203-08 2007-05 Canada Peachland (BC) RGL, JDS 1 257 D. variabilis JDS DbOT15 601 Rose204-08 2007-05 Canada Peachland (BC) RGL, JDS 1 258 D. variabilis JDS DbOT15 601 Rose206-08 2007-05 Canada Peachland (BC) RGL, JDS 1 259 D. variabilis JDS DbOT15 601 Rose207-08 2007-05 Canada Peachland (BC) RGL, JDS 1 260 D. variabilis JDS DbOT15 601 Rose208-08 2007-05 Canada Peachland (BC) RGL, JDS 1 167 261 D. variabilis JDS DbOT15 601 Rose209-08 2007-05 Canada Peachland (BC) RGL, JDS 1 262 D. variabilis JDS DbOT15 601 Rose210-08 2007-05 Canada Peachland (BC) RGL, JDS 1 263 D. variabilis JDS DbOT15 601 Rose211-08 2007-05 Canada Peachland (BC) RGL, JDS 1 264 D . sp. JL DbOT15 601 Rose707-09 2007-05 Canada Peachland (BC) JB, RGL, JDS 2 265 D . sp. JL DbOT15 601 Rose708-09 2007-05 Canada Peachland (BC) JB, RGL, JDS 2 266 D . sp. JL DbOT15 562 Rose710-09 2007-05 Canada Peachland (BC) JB, RGL, JDS 2 267 D . sp. JL DbOT15 601 Rose711-09 2007-05 Canada Peachland (BC) JB, RGL, JDS 2 268 D . sp. JL DbOT15 601 Rose714-09 2007-05 Canada Peachland (BC) JB, RGL, JDS 2 269 D . sp. JL DbOT16 601 Hygen308-10 2009-09 Canada Deux Rivieres (ON) JDS 2 270 D. gracilis JDS DbOT16 601 Rose338-08 1972-09 Canada Leader (SK) JDS 1 271 D. gracilis JDS DbOT16 601 Rose341-08 1999-09 Canada Moose Jaw (SK) JDS, MRS 1 272 D. gracilis JDS DbOT16 601 Rose346-08 1999-09 Canada Saskatoon (SK) JDS, MRS 1 273 D. gracilis JDS DbOT16 601 Rose352-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 274 D. gracilis JDS DbOT16 601 Rose353-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 275 D. gracilis JDS DbOT16 601 Rose353-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 276 D. gracilis JDS DbOT16 601 Rose355-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 277 D. gracilis JDS DbOT16 601 Rose356-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 278 D . nebulosa JDS DbOT16 601 Rose432-08 2007-09 Canada Waterton L N P (AB) JDS, MRS 1 279 D. nodulosa JDS DbOT17 601 Rose418-08 1999-10 Canada Kelowna (BC) RGL, JDS 1 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 280 D . sp. JL DbOT17 601 Rose659-09 2002-04 Canada Manitoulin I (ON) STO, JDS 2 281 D . sp. JL DbOT17 601 Rose660-09 2002-04 Canada Manitoulin I (ON) STO, JDS 2 282 D . sp. JL DbOT17 601 Rose661-09 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 283 D . sp. JL DbOT17 601 Rose662-09 2000-04 Canada Manitoulin I (ON) JB, JLe, SR 2 284 D . sp. JL DbOT17 601 Rose663-09 2000-04 Canada Manitoulin I (ON) JB, JLe, SR 2 285 D . sp. JL DbOT17 601 Rose664-09 2000-04 Canada Manitoulin I (ON) JB, JLe, SR 2 286 D . sp. JL DbOT17 601 Rose665-09 2000-04 Canada Manitoulin I (ON) JB, JLe, SR 2 287 D . sp. JL DbOT17 601 Rose666-09 2000-04 Canada Manitoulin I (ON) JB, JLe, SR 2 288 D . sp. JL DbOT17 601 Rose667-09 1999-08 Canada Manitoulin I (ON) JLe, JDS 2 289 D . sp. JL DbOT17 601 Rose668-09 1999-08 Canada Manitoulin I (ON) JLe, JDS 2 290 D . sp. JDS DbOT18 601 Rose530-08 2003-04 Canada Picton (ON) JDS 1 291 D . sp. JDS DbOT18 601 Rose532-08 2003-04 Canada Picton (ON) JDS 1 292 D . sp. JDS DbOT18 601 Rose533-08 2003-04 Canada Picton (ON) JDS 1 293 D . sp. JDS DbOT18 601 Rose534-08 2003-04 Canada Picton (ON) JDS 1 294 D. triforma JDS DbOT18 601 Rose043-08 2008-01 Canada Sudbury (ON) AJR, JDS 1 295 D. triforma JDS DbOT18 601 Rose044-08 2008-01 Canada Sudbury (ON) AJR, JDS 1 168 296 D. triforma JDS DbOT18 601 Rose045-08 2008-01 Canada Sudbury (ON) AJR, JDS 1 297 D. triforma JDS DbOT18 601 Rose046-08 2008-01 Canada Sudbury (ON) AJR, JDS 1 298 D. triforma JDS DbOT18 601 Rose047-08 2008-01 Canada Sudbury (ON) AJR, JDS 1 299 D . sp. JL DbOT18 601 Hygen323-10 2009-05 Canada Chelmsford (ON) JDS 2 300 D . sp. JL DbOT18 601 Hygen324-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 301 D . sp. JL DbOT18 601 Hygen326-10 2008-09 Canada Timmins (ON) GL, JL 2 302 D . sp. JL DbOT18 601 Hygen327-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 303 D . sp. JL DbOT18 601 Hygen984-10 2008-09 Canada Timmins (ON) GL, JL 2 304 D . sp. JL DbOT18 601 Hygen987-10 2008-09 Canada Timmins (ON) GL, JL 2 305 D . sp. JL DbOT18 601 Hygen989-10 2008-09 Canada Timmins (ON) GL, JL 2 306 D . sp. JL DbOT18 601 Hygen991-10 2008-09 Canada Timmins (ON) GL, JL 2 307 D . sp. JL DbOT18 601 Hygen992-10 2008-09 Canada Timmins (ON) GL, JL 2 308 D . sp. JL DbOT18 597 Pipi181-09 2008-09 Canada Sudbury (ON) GL, JL 2 309 D . sp. JL DbOT18 582 Pipi182-09 2008-09 Canada Sudbury (ON) GL, JL 2 310 D . sp. JL DbOT18 597 Pipi183-09 2008-09 Canada Sudbury (ON) GL, JL 2 311 D . sp. JL DbOT18 601 Pipi185-09 2008-09 Canada Sudbury (ON) GL, JL 2 312 D . sp. JL DbOT18 599 Pipi186-09 2008-09 Canada Sudbury (ON) GL, JL 2 313 D . sp. JL DbOT18 601 Pipi187-09 2008-09 Canada Sudbury (ON) GL, JL 2 314 D . sp. JL DbOT18 601 Pipi188-09 2008-09 Canada Sudbury (ON) GL, JL 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 315 D . sp. JL DbOT18 601 Pipi189-09 2008-09 Canada Sudbury (ON) GL, JL 2 316 D . sp. JL DbOT18 601 Vnmb781-09 2008-09 Canada Timmins (ON) GL, JL 2 317 D . sp. JDS DbOT19 601 Rose564-08 1976-05 Canada Sudbury (ON) JDS 1 318 D . sp. JL DbOT19 601 Hygen325-10 2009-05 Canada Sudbury (ON) JDS 2 319 D . sp. JL DbOT19 601 Pipi190-09 2008-09 Canada Sudbury (ON) GL, JL 2 320 D . sp. JL DbOT19 601 Vnmb777-09 2008-09 Canada Timmins (ON) GL, JL 2 321 D . sp. JL DbOT20 601 Hygen425-10 2009-05 Canada Sudbury (ON) JDS 2 322 D . sp. JL DbOT20 601 Hygen426-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 323 D . sp. JL DbOT20 584 Hygen427-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 324 D . sp. JL DbOT20 589 Hygen428-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 325 D . sp. JL DbOT20 601 Hygen430-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 326 D . sp. JL DbOT20 579 Hygen433-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 327 D . sp. JL DbOT20 601 Hygen434-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 328 D . sp. JL DbOT20 591 Hygen985-10 2009-05 Canada Chelmsford (ON) JDS 2 329 D . sp. JL DbOT20 601 Hygen986-10 2009-05 Canada Chelmsford (ON) JDS 2 330 D . sp. JL DbOT20 560 Hygen988-10 2009-05 Canada Chelmsford (ON) JDS 2 169 331 D . sp. JL DbOT20 601 Hygen990-10 2009-05 Canada Chelmsford (ON) JDS 2 332 D. spinosa JDS DbOT20 601 Rose084-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 333 D. spinosa JDS DbOT20 584 Rose095-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 334 D. spinosa JDS DbOT20 601 Rose096-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 335 D. spinosa JDS DbOT20 601 Rose097-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 336 D. spinosa JDS DbOT20 601 Rose098-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 337 D. spinosa JDS DbOT20 601 Rose104-08 2005-05 Canada Thunder Bay (ON) MJTB, JDS 1 338 D. spinosa JDS DbOT20 601 Rose105-08 2005-05 Canada Thunder Bay (ON) MJTB, JDS 1 339 D. spinosa JDS DbOT20 601 Rose106-08 2005-05 Canada Thunder Bay (ON) MJTB, JDS 1 340 D. spinosa JDS DbOT20 601 Rose107-08 2005-05 Canada Thunder Bay (ON) MJTB, JDS 1 341 D. spinosa JDS DbOT20 585 Rose108-08 2005-05 Canada Thunder Bay (ON) MJTB, JDS 1 342 D. spinosa JDS DbOT20 601 Rose109-08 2005-05 Canada Attawapiskat (ON) MJTB 1 343 D. spinosa JDS DbOT20 601 Rose110-08 2005-05 Canada Attawapiskat (ON) MJTB 1 344 D. spinosa JDS DbOT20 601 Rose111-08 2005-05 Canada Attawapiskat (ON) MJTB 1 345 D. spinosa JDS DbOT20 601 Rose112-08 2005-05 Canada Attawapiskat (ON) MJTB 1 346 D. spinosa JDS DbOT20 601 Rose113-08 2005-05 Canada Attawapiskat (ON) MJTB 1 347 D. spinosa JDS DbOT20 601 Rose114-08 2005-05 Canada Fort Albany (ON) MJTB 1 348 D. spinosa JDS DbOT20 601 Rose115-08 2005-05 Canada Fort Albany (ON) MJTB 1 349 D. spinosa JDS DbOT20 601 Rose116-08 2005-05 Canada Fort Albany (ON) MJTB 1 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 350 D. spinosa JDS DbOT20 601 Rose117-08 2005-05 Canada Fort Albany (ON) MJTB 1 351 D. spinosa JDS DbOT20 601 Rose118-08 2005-05 Canada Fort Albany (ON) MJTB 1 352 D. spinosa JDS DbOT20 589 Rose124-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 353 D. spinosa JDS DbOT20 585 Rose125-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 353 D. spinosa JDS DbOT20 601 Rose126-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 355 D. spinosa JDS DbOT20 601 Rose130-08 2006-04 Canada Renfrew (ON) JDS, MRS 1 356 D. spinosa JDS DbOT20 601 Rose132-08 2006-04 Canada Kanata (ON) JDS, MRS 1 357 D. spinosa JDS DbOT20 600 Rose133-08 2006-04 Canada Kanata (ON) JDS, MRS 1 358 D. spinosa JDS DbOT20 601 Rose149-08 1999-09 Canada Cypress Hills P P (SK) JDS, MRS 1 359 D . sp. JL DbOT20 601 Vnmb785-09 2008-09 Canada Barber`s Bay (ON) GL, JL 2 360 D. spinosa JDS DbOT21 601 Rose134-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 1 361 D. spinosa JDS DbOT21 601 Rose135-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 1 362 D. spinosa JDS DbOT21 601 Rose136-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 1 363 D. spinosa JDS DbOT21 601 Rose137-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 1 364 D. spinosa JDS DbOT21 601 Rose138-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 1 365 D. spinosa JDS DbOT21 601 Rose139-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 1 170 366 D. spinosa JDS DbOT21 601 Rose140-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 1 367 D. spinosa JDS DbOT21 601 Rose141-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 1 368 D. spinosa JDS DbOT21 601 Rose142-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 1 369 D. spinosa JDS DbOT21 601 Rose143-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 1 370 D . sp. JL DbOT21 601 Rose565-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 371 D . sp. JL DbOT21 601 Rose566-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 372 D . sp. JL DbOT21 601 Rose567-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 373 D . sp. JL DbOT21 601 Rose609-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 374 D . sp. JL DbOT21 601 Rose610-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 375 D . sp. JL DbOT21 601 Rose611-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 376 D. californica JDS DbOT22 601 Rose515-08 1969-08 USA San Diego C (CA) FGA 1 377 D. californica JDS DbOT22 601 Rose516-08 1969-08 USA San Diego C (CA) FGA 1 378 D. californica JDS DbOT22 601 Rose518-08 1969-08 USA San Diego C (CA) FGA 1 379 D. californica JDS DbOT22 601 Rose519-08 1993-02 USA Davis (CA) RGL, JDS 1 380 D. californica JDS DbOT22 601 Rose520-08 1993-02 USA Davis (CA) RGL, JDS 1 381 D. californica JDS DbOT22 601 Rose521-08 1993-02 USA Davis (CA) RGL, JDS 1 382 D. californica JDS DbOT22 601 Rose523-08 1993-02 USA Davis (CA) RGL, JDS 1 383 D. californica JDS DbOT22 601 Rose524-08 1993-02 USA Davis (CA) RGL, JDS 1 384 D. radicum JDS DbOT23 601 Rose179-08 2005-05 Canada Fort Albany (ON) MJTB 1 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 385 D. radicum JDS DbOT23 601 Rose180-08 2005-05 Canada Fort Albany (ON) MJTB 1 386 D. radicum JDS DbOT23 601 Rose181-08 2005-05 Canada Fort Albany (ON) MJTB 1 387 D. radicum JDS DbOT23 601 Rose182-08 2005-05 Canada Fort Albany (ON) MJTB 1 388 D. radicum JDS DbOT23 601 Rose183-08 2005-05 Canada Fort Albany (ON) MJTB 1 389 D . sp. JL DbOT23 601 Rose691-09 2005-05 Canada Fort Albany (ON) MJTB 2 390 D . sp. JL DbOT23 601 Rose693-09 2005-05 Canada Fort Albany (ON) MJTB 2 391 D . sp. JL DbOT23 601 Rose694-09 2005-05 Canada Fort Albany (ON) MJTB 2 392 D . sp. JL DbOT23 601 Rose696-09 2005-05 Canada Fort Albany (ON) MJTB 2 393 D . sp. JL DbOT23 601 Rose698-09 2005-05 Canada Fort Albany (ON) MJTB 2 394 D . sp. JL DbOT23 601 Hygen363-10 2009-05 Canada Chelmsford (ON) JL 2 395 D . sp. JL DbOT23 601 Hygen364-10 2009-05 Canada Chelmsford (ON) JL 2 396 D. radicum JDS DbOT24 601 Rose087-08 2003-05 Canada Great Sand H (SK) JDS, MRS 1 397 D . sp. JL DbOT24 601 Rose701-09 2003-05 Canada Sceptre (SK) JDS, MRS 2 398 D . sp. JL DbOT24 601 Rose702-09 2003-05 Canada Sceptre (SK) JDS, MRS 2 399 D . sp. JL DbOT24 601 Rose704-09 2003-05 Canada Sceptre (SK) JDS, MRS 2 400 D . sp. JL DbOT24 601 Rose705-09 2003-05 Canada Sceptre (SK) JDS, MRS 2 171 401 D . sp. JL DbOT24 601 Rose706-09 2003-05 Canada Sceptre (SK) JDS, MRS 2 402 D . sp. JDS DbOT24 601 Rose557-08 2000-06 Canada Renfrew (ON) JDS 1 403 P. arefactus ADR DbOT25 599 Perna007-09 1967-04 USA Yolo C (CA) CD 1 404 P. arefactus ADR DbOT25 599 Perna008-09 1967-04 USA Yolo C (CA) CD 1 405 P. pirata ADR DbOT26 365 Perna028-09 1976-05 Canada Manitoulin I (ON) RGL, JDS 1 406 P. pirata ADR DbOT26 367 Pipi246-09 1978-05 Canada Manitoulin I (ON) JDS 1 407 P . sp. JL DbOT26 601 Hygen331-10 2009-04 Canada Renfrew (ON) MRS, JDS 2 408 P . sp. JL DbOT26 601 Hygen332-10 2009-05 Canada Sudbury (ON) JDS 2 409 P . sp. JL DbOT26 601 Hygen334-10 2009-05 Canada Sudbury (ON) JDS 2 410 P . sp. JL DbOT26 601 705 Hygen435-10 2009-05 Canada Sudbury (ON) JDS 2 411 P . sp. JL DbOT26 601 705 Hygen437-10 2009-05 Canada Sudbury (ON) JDS 2 412 P . sp. JL DbOT26 601 Hygen438-10 2009-05 Canada Sudbury (ON) JDS 2 413 P . sp. JL DbOT26 590 Perna082-09 2002-05 Canada Timmins (ON) JDS 2 414 P . sp. JL DbOT26 601 Perna129-09 2002-05 Canada Timmins (ON) JDS 2 415 P . sp. JL DbOT26 601 Perna131-09 2002-05 Canada Timmins (ON) JDS 2 416 P . sp. JL DbOT26 601 Perna133-09 2002-05 Canada Lethbridge (AB) JDS 2 417 P . sp. JL DbOT26 601 Perna182-09 1999-09 Canada Liebenthal (SK) JDS, MRS 2 418 P . sp. JL DbOT26 601 Perna227-09 2002-05 Canada Timmins (ON) JDS 2 419 P . sp. JL DbOT26 601 Perna229-09 2002-05 Canada Timmins (ON) JDS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 420 P . sp. JL DbOT26 601 Perna230-09 2002-05 Canada Timmins (ON) JDS 2 421 P . sp. JL DbOT26 477 Perna233-09 2002-05 Canada Timmins (ON) JDS 2 422 P . sp. JL DbOT26 597 Perna235-09 2002-05 Canada Timmins (ON) JDS 2 423 P . sp. JL DbOT26 601 Perna237-09 2002-05 Canada Timmins (ON) JDS 2 424 P . sp. JL DbOT26 526 Perna247-09 2002-05 Canada Lethbridge (AB) JDS 2 425 P . sp. JL DbOT26 601 Perna273-09 2002-05 Canada Timmins (ON) JDS 2 426 P . sp. JL DbOT26 575 Perna274-09 2002-05 Canada Timmins (ON) JDS 2 427 P . sp. JL DbOT26 575 Perna278-09 2009-04 Canada Renfrew (ON) MRS, JDS 2 428 P . sp. JL DbOT26 601 Pipi471-09 2002-05 Canada Timmins (ON) JDS 2 429 P . sp. JL DbOT26 601 Pipi472-09 2002-05 Canada Timmins (ON) JDS 2 430 P . sp. JL DbOT26 601 Pipi497-09 1999-09 Canada Liebenthal (SK) JDS, MRS 2 431 P . sp. JL DbOT26 601 Pipi499-09 1999-09 Canada Liebenthal (SK) JDS, MRS 2 432 P . sp. JL DbOT26 601 Pipi518-09 2002-05 Canada Dryden (ON) STO, JDS 2 433 P . sp. JL DbOT26 599 Vnmb786-09 2008-09 Canada Barber`s Bay (ON) GL, JL 2 434 P. pirata ADR DbOT27 367 Pipi238-09 1981-10 Canada Macklin (SK) RGL, JDS 1 435 P . sp. JL DbOT27 601 Hygen436-10 2009-05 Canada Sudbury (ON) JDS 2 172 436 P . sp. JL DbOT27 599 Lymmk188-09 2007-05 Canada Waterton L N P (AB) JDS 2 437 P . sp. JL DbOT27 599 Lymmk189-09 2007-05 Canada Waterton L N P (AB) JDS 2 438 P . sp. JL DbOT27 601 706 Perna152-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 439 P . sp. JL DbOT27 601 Perna153-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 440 P . sp. JL DbOT27 601 Perna154-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 441 P . sp. JL DbOT27 601 Perna155-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 442 P . sp. JL DbOT27 601 706 Perna156-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 443 P . sp. JL DbOT27 601 Perna157-09 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 444 P . sp. JL DbOT27 601 Perna158-09 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 445 P . sp. JL DbOT27 601 Perna159-09 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 446 P . sp. JL DbOT27 556 706 Perna264-09 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 447 P . sp. JL DbOT27 601 Perna265-09 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 448 P . sp. JL DbOT27 601 706 Perna266-09 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 449 P . sp. JL DbOT27 502 Perna267-09 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 450 P . sp. JL DbOT27 601 Pipi493-09 1999-09 Canada Liebenthal (SK) JDS, MRS 2 451 P . sp. JL DbOT27 601 Pipi494-09 1999-09 Canada Liebenthal (SK) JDS, MRS 2 452 P . sp. JL DbOT27 601 Pipi495-09 1999-09 Canada Liebenthal (SK) JDS, MRS 2 453 P . sp. JL DbOT27 601 Pipi516-09 2002-05 Canada Dryden (ON) STO, JDS 2 453 P . sp. JL DbOT27 601 Pipi517-09 2002-05 Canada Dryden (ON) STO, JDS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 455 P . sp. JL DbOT27 601 Pipi519-09 2002-05 Canada Dryden (ON) STO, JDS 2 456 P . sp. JL DbOT27 601 Pipi520-09 2002-05 Canada Dryden (ON) STO, JDS 2 457 P . sp. JL DbOT27 601 Pipi521-09 2002-05 Canada Dryden (ON) STO, JDS 2 458 P . sp. JL DbOT27 601 Pipi522-09 2002-05 Canada Dryden (ON) STO, JDS 2 459 P . sp. JL DbOT27 601 Pipi523-09 2002-05 Canada Dryden (ON) STO, JDS 2 460 P . sp. JL DbOT27 601 Pipi524-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 461 P . sp. JL DbOT27 601 Pipi525-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 462 P . sp. JL DbOT27 601 Pipi526-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 463 P . sp. JL DbOT27 601 Pipi527-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 464 P . sp. JL DbOT27 601 Pipi528-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 465 P . sp. JL DbOT27 601 Pipi529-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 466 P . sp. JL DbOT27 601 Pipi530-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 467 P . sp. JL DbOT27 601 Pipi531-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 468 P . sp. JL DbOT27 601 Pipi540-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 469 P . sp. JL DbOT27 601 Pipi541-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 470 P . sp. JL DbOT27 601 Pipi542-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 173 471 P . sp. JL DbOT27 601 Pipi543-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 472 P . sp. JL DbOT27 601 Pipi544-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 473 P . sp. JL DbOT27 601 Pipi545-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 474 P . sp. JL DbOT27 601 Pipi546-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 475 P . sp. JL DbOT27 601 Pipi547-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 476 P . sp. JL DbOT27 601 Rose568-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 477 P . sp. JL DbOT27 601 Rose569-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 478 P . sp. JL DbOT27 601 Rose570-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 479 P . sp. JL DbOT27 601 Rose571-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 480 P . sp. JL DbOT27 601 Rose572-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 481 P . sp. JL DbOT27 601 Rose612-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 482 P . sp. JL DbOT28 601 703 Hygen371-10 2009-05 Canada Peachland (BC) RGL 2 483 P . sp. JL DbOT28 601 703 Hygen372-10 2009-05 Canada Peachland (BC) RGL 2 484 P . sp. JL DbOT28 601 703 Hygen373-10 2009-05 Canada Peachland (BC) RGL 2 485 P. piceus ADR DbOT29 365 Perna022-09 1972-03 USA Solano C (CA) JDS 1 486 P. piceus ADR DbOT29 367 Pipi232-09 1972-03 USA Solano C (CA) JDS 1 487 P. piceus ADR DbOT29 367 Pipi233-09 1972-03 USA Solano C (CA) JDS 1 488 P. piceus ADR DbOT29 367 Pipi235-09 1972-03 USA Solano C (CA) JDS 1 489 P. piceus ADR DbOT29 367 Pipi236-09 1972-03 USA Solano C (CA) JDS 1 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 490 "P. weldi (nom . nud .)"§ ADR DbOT30 365 Perna035-09 1981-10 Canada Banff (AB) RGL, JDS 1 491 "P. weldi (nom . nud .)"§ ADR DbOT30 367 Pipi262-09 1971-08 Canada Dawson City (YK) RGL, JDS 1 492 "P. weldi (nom . nud .)"§ ADR DbOT30 367 Pipi264-09 1981-10 Canada Banff (AB) RGL, JDS 1 493 "P. weldi (nom . nud .)"§ ADR DbOT30 367 Pipi268-09 1981-10 Canada Lethbridge (AB) RGL, JDS 1 494 P . sp. JL DbOT30 601 Hygen294-10 2009-05 Canada Fort Macleod (AB) JDS 2 495 P . sp. JL DbOT30 601 Hygen295-10 2009-05 Canada Fort Macleod (AB) JDS 2 496 P . sp. JL DbOT30 601 Hygen366-10 2008-09 Canada Timmins (ON) GL, JL 2 497 P . sp. JL DbOT30 601 Hygen370-10 2008-09 Canada Timmins (ON) GL, JL 2 498 P . sp. JL DbOT30 599 Perna045-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 499 P . sp. JL DbOT30 599 Perna046-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 500 P . sp. JL DbOT30 599 Perna049-09 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 501 P . sp. JL DbOT30 599 Perna050-09 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 502 P . sp. JL DbOT30 599 Perna051-09 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 503 P . sp. JL DbOT30 599 Perna052-09 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 504 P . sp. JL DbOT30 599 Perna053-09 2005-05 Canada Fort Albany (ON) MJTB 2 505 P . sp. JL DbOT30 599 Perna054-09 2005-05 Canada Fort Albany (ON) MJTB 2 174 506 P . sp. JL DbOT30 599 Perna055-09 2005-05 Canada Fort Albany (ON) MJTB 2 507 P . sp. JL DbOT30 599 Perna056-09 2005-05 Canada Fort Albany (ON) MJTB 2 508 P . sp. JL DbOT30 593 Perna089-09 1999-10 Canada Winfield (BC) RGL, JDS 2 509 P . sp. JL DbOT30 593 Perna090-09 1999-10 Canada Winfield (BC) RGL, JDS 2 510 P . sp. JL DbOT30 599 Perna093-09 2001-08 Canada Timmins (ON) JDS 2 511 P . sp. JL DbOT30 599 Perna094-09 2001-08 Canada Timmins (ON) JDS 2 512 P . sp. JL DbOT30 601 Perna168-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 513 P . sp. JL DbOT30 601 Perna169-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 514 P . sp. JL DbOT30 601 Perna173-09 2005-05 Canada Fort Albany (ON) MJTB 2 515 P . sp. JL DbOT30 601 Perna174-09 2005-05 Canada Fort Albany (ON) MJTB 2 516 P . sp. JL DbOT30 601 Perna175-09 2005-05 Canada Fort Albany (ON) MJTB 2 517 P . sp. JL DbOT30 601 Perna176-09 1999-10 Canada Winfield (BC) RGL, JDS 2 518 P . sp. JL DbOT30 601 Perna177-09 1999-10 Canada Winfield (BC) RGL, JDS 2 519 P . sp. JL DbOT30 601 Perna178-09 2001-08 Canada Timmins (ON) JDS 2 520 P . sp. JL DbOT30 601 Perna180-09 2001-08 Canada Timmins (ON) JDS 2 521 P . sp. JL DbOT30 601 Perna181-09 2001-08 Canada Timmins (ON) JDS 2 522 P . sp. JL DbOT30 560 Perna191-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 523 P . sp. JL DbOT30 601 Perna192-09 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 524 P . sp. JL DbOT30 566 Perna195-09 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 525 P . sp. JL DbOT30 553 Perna196-09 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 526 P . sp. JL DbOT30 557 Perna197-09 2005-05 Canada Fort Albany (ON) MJTB 2 527 P . sp. JL DbOT30 601 Perna198-09 2005-05 Canada Fort Albany (ON) MJTB 2 528 P . sp. JL DbOT30 565 Perna200-09 2005-05 Canada Fort Albany (ON) MJTB 2 529 P . sp. JL DbOT30 601 Perna201-09 2005-05 Canada Fort Albany (ON) MJTB 2 530 P . sp. JL DbOT30 601 Pipi039-09 2008-09 Canada Sudbury (ON) GL, JL 2 531 P . sp. JL DbOT30 582 704 Pipi172-09 2008-09 Canada Sudbury (ON) GL, JL 2 532 P . sp. JL DbOT30 597 704 Pipi174-09 2008-09 Canada Sudbury (ON) GL, JL 2 533 P . sp. JL DbOT30 582 704 Pipi175-09 2008-09 Canada Sudbury (ON) GL, JL 2 534 P . sp. JL DbOT30 597 704 Pipi176-09 2008-09 Canada Sudbury (ON) GL, JL 2 535 P . sp. JL DbOT30 601 704 Pipi178-09 2008-09 Canada Sudbury (ON) GL, JL 2 536 P . sp. JL DbOT30 601 Pipi386-09 2003-05 Canada Pincher Creek (AB) JDS, MRS 2 537 P . sp. JL DbOT30 601 Pipi405-09 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 538 P . sp. JL DbOT30 601 Pipi410-09 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 539 P . sp. JL DbOT30 601 Pipi412-09 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 530 P . sp. JL DbOT30 601 Pipi414-09 2005-05 Canada Fort Albany (ON) MJTB 2 175 531 P . sp. JL DbOT30 601 Pipi415-09 2005-05 Canada Fort Albany (ON) MJTB 2 532 P . sp. JL DbOT30 601 Pipi416-09 2005-05 Canada Fort Albany (ON) MJTB 2 533 P . sp. JL DbOT30 601 Pipi417-09 2005-05 Canada Fort Albany (ON) MJTB 2 534 P . sp. JL DbOT30 601 Pipi418-09 2005-05 Canada Fort Albany (ON) MJTB 2 535 P . sp. JL DbOT30 601 Pipi419-09 2005-05 Canada Fort Albany (ON) MJTB 2 536 P . sp. JL DbOT30 601 Pipi420-09 2005-05 Canada Fort Albany (ON) MJTB 2 537 P . sp. JL DbOT30 601 Pipi421-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 538 P . sp. JL DbOT30 601 Pipi422-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 539 P . sp. JL DbOT30 601 Pipi423-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 550 P . sp. JL DbOT30 601 Pipi424-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 551 P . sp. JL DbOT30 601 Pipi427-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 552 P . sp. JL DbOT30 601 Pipi428-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 553 P . sp. JL DbOT30 601 Pipi429-09 2002-10 Canada Coaldale (AB) JDS 2 553 P . sp. JL DbOT30 601 Pipi430-09 2002-10 Canada Coaldale (AB) JDS 2 555 P . sp. JL DbOT30 601 Pipi431-09 2002-10 Canada Coaldale (AB) JDS 2 556 P . sp. JL DbOT30 601 Pipi432-09 2002-10 Canada Coaldale (AB) JDS 2 557 P . sp. JL DbOT30 601 Pipi433-09 2002-10 Canada Coaldale (AB) JDS 2 558 P . sp. JL DbOT30 601 Pipi434-09 2002-10 Canada Coaldale (AB) JDS 2 559 P . sp. JL DbOT30 601 Pipi435-09 2002-10 Canada Coaldale (AB) JDS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 560 P . sp. JL DbOT30 601 Pipi436-09 2002-10 Canada Coaldale (AB) JDS 2 561 P . sp. JL DbOT30 601 Pipi478-09 2001-08 Canada Timmins (ON) JDS 2 562 P . sp. JL DbOT30 601 Pipi479-09 2001-08 Canada Timmins (ON) JDS 2 563 P . sp. JL DbOT30 569 Pipi481-09 2001-08 Canada Timmins (ON) JDS 2 564 P . sp. JL DbOT30 601 Pipi482-09 2001-08 Canada Timmins (ON) JDS 2 565 P . sp. JL DbOT30 601 Pipi490-09 1999-10 Canada Winfield (BC) RGL, JDS 2 566 P . sp. JL DbOT30 574 Pipi491-09 1999-10 Canada Winfield (BC) RGL, JDS 2 567 P . sp. JL DbOT30 601 Pipi565-09 2002-10 Canada Coaldale (AB) JDS 2 568 P . sp. JL DbOT30 601 Pipi566-09 2002-10 Canada Coaldale (AB) JDS 2 569 P . sp. JL DbOT30 599 Vnmb766-09 2008-09 Canada Timmins (ON) GL, JL 2 570 P . sp. JL DbOT31 601 Perna145-09 2002-05 Canada Red Lake (ON) STO, JDS 2 571 P . sp. JL DbOT31 601 Pipi508-09 2002-05 Canada Red Lake (ON) STO, JDS 2 572 P . sp. JL DbOT31 601 Pipi514-09 2002-05 Canada Red Lake (ON) STO, JDS 2 573 "P. ashmeadi (nom . nud .)"§ ADR DbOT32 367 Pipi195-09 1979-05 Canada Manitoulin I (ON) JDS 1 574 "P. ashmeadi (nom . nud .)"§ ADR DbOT32 367 Pipi197-09 1979-05 Canada Manitoulin I (ON) JDS 1 575 "P. cataractans (nom . nud .)"§ ADR DbOT32 367 Pipi209-09 1979-05 Canada Sudbury (ON) JDS 1 176 576 P . sp. JL DbOT32 601 Hygen311-10 2009-10 Canada Sudbury (ON) JDS 2 577 P . sp. JL DbOT32 601 699 Hygen356-10 2009-05 Canada Chelmsford (ON) JDS 2 578 P . sp. JL DbOT32 601 699 Hygen358-10 2008-09 Canada Timmins (ON) GL, JL 2 579 P . sp. JL DbOT32 601 699 Hygen367-10 2008-09 Canada Timmins (ON) GL, JL 2 580 P . sp. JL DbOT32 599 Perna072-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 581 P . sp. JL DbOT32 599 Perna077-09 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 582 P . sp. JL DbOT32 601 Perna116-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 583 P . sp. JL DbOT32 601 Perna117-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 584 P . sp. JL DbOT32 601 Perna124-09 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 585 P . sp. JL DbOT32 601 Perna125-09 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 586 P . sp. JL DbOT32 601 Perna136-09 2002-05 Canada Cochrane (ON) STO, JDS 2 587 P . sp. JL DbOT32 601 Perna138-09 2002-05 Canada Cochrane (ON) STO, JDS 2 588 P . sp. JL DbOT32 601 Perna139-09 2002-05 Canada Cochrane (ON) STO, JDS 2 589 P . sp. JL DbOT32 601 Perna142-09 2002-05 Canada Cochrane (ON) STO, JDS 2 590 P . sp. JL DbOT32 601 Perna146-09 2002-05 Canada Red Lake (ON) STO, JDS 2 591 P . sp. JL DbOT32 601 Perna147-09 2002-05 Canada Red Lake (ON) STO, JDS 2 592 P . sp. JL DbOT32 601 Perna150-09 2002-05 Canada Dryden (ON) STO, JDS 2 593 P . sp. JL DbOT32 601 Perna151-09 2002-05 Canada Dryden (ON) STO, JDS 2 594 P . sp. JL DbOT32 601 Perna160-09 2008-02 Canada Peachland (BC) JB, RGL, JDS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 595 P . sp. JL DbOT32 601 Perna161-09 2008-02 Canada Peachland (BC) JB, RGL, JDS 2 596 P . sp. JL DbOT32 601 Perna162-09 2008-02 Canada Peachland (BC) JB, RGL, JDS 2 597 P . sp. JL DbOT32 601 Perna163-09 2008-02 Canada Peachland (BC) JB, RGL, JDS 2 598 P . sp. JL DbOT32 601 Perna164-09 2008-02 Canada Peachland (BC) JB, RGL, JDS 2 599 P . sp. JL DbOT32 601 Perna165-09 2008-02 Canada Peachland (BC) JB, RGL, JDS 2 600 P . sp. JL DbOT32 601 Perna166-09 2008-02 Canada Peachland (BC) JB, RGL, JDS 2 601 P . sp. JL DbOT32 601 Perna167-09 2008-02 Canada Peachland (BC) JB, RGL, JDS 2 602 P . sp. JL DbOT32 529 Perna223-09 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 603 P . sp. JL DbOT32 601 Perna226-09 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 604 P . sp. JL DbOT32 555 Perna257-09 2002-05 Canada Cochrane (ON) STO, JDS 2 605 P . sp. JL DbOT32 601 Perna259-09 2002-05 Canada Cochrane (ON) STO, JDS 2 606 P . sp. JL DbOT32 530 Perna260-09 2002-05 Canada Cochrane (ON) STO, JDS 2 607 P . sp. JL DbOT32 593 Perna262-09 2002-05 Canada Cochrane (ON) STO, JDS 2 608 P . sp. JL DbOT32 555 Perna268-09 2008-02 Canada Peachland (BC) JB, RGL, JDS 2 609 P . sp. JL DbOT32 601 Perna269-09 2008-02 Canada Peachland (BC) JB, RGL, JDS 2 610 P . sp. JL DbOT32 584 Perna270-09 2008-02 Canada Peachland (BC) JB, RGL, JDS 2 177 611 P . sp. JL DbOT32 582 699 Pipi160-09 2008-09 Canada Sudbury (ON) GL, JL 2 612 P . sp. JL DbOT32 582 699 Pipi162-09 2008-09 Canada Sudbury (ON) GL, JL 2 613 P . sp. JL DbOT32 582 699 Pipi163-09 2008-09 Canada Sudbury (ON) GL, JL 2 614 P . sp. JL DbOT32 582 Pipi164-09 2008-09 Canada Sudbury (ON) GL, JL 2 615 P . sp. JL DbOT32 597 699 Pipi165-09 2008-09 Canada Sudbury (ON) GL, JL 2 616 P . sp. JL DbOT32 601 Pipi166-09 2008-09 Canada Sudbury (ON) GL, JL 2 617 P . sp. JL DbOT32 590 Pipi168-09 2008-09 Canada Sudbury (ON) GL, JL 2 618 P . sp. JL DbOT32 582 Pipi170-09 2008-09 Canada Sudbury (ON) GL, JL 2 619 P . sp. JL DbOT32 582 Pipi171-09 2008-09 Canada Sudbury (ON) GL, JL 2 620 P . sp. JL DbOT32 588 Pipi173-09 2008-09 Canada Sudbury (ON) GL, JL 2 621 P . sp. JL DbOT32 597 Pipi177-09 2008-09 Canada Sudbury (ON) GL, JL 2 622 P . sp. JL DbOT32 601 Pipi500-09 2002-05 Canada Cochrane (ON) STO, JDS 2 623 P . sp. JL DbOT32 601 Pipi503-09 2002-05 Canada Cochrane (ON) STO, JDS 2 624 P . sp. JL DbOT32 601 Pipi505-09 2002-05 Canada Cochrane (ON) STO, JDS 2 625 P . sp. JL DbOT32 601 Pipi507-09 2002-05 Canada Cochrane (ON) STO, JDS 2 626 P . sp. JL DbOT32 601 Pipi509-09 2002-05 Canada Red Lake (ON) STO, JDS 2 627 P . sp. JL DbOT32 601 Pipi511-09 2002-05 Canada Red Lake (ON) STO, JDS 2 628 P . sp. JL DbOT32 601 Pipi513-09 2002-05 Canada Red Lake (ON) STO, JDS 2 629 P . sp. JL DbOT32 601 Pipi515-09 2002-05 Canada Red Lake (ON) STO, JDS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 630 P . sp. JL DbOT32 601 Pipi533-09 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 631 P . sp. JL DbOT32 601 Pipi550-09 2007-05 Canada Peachland (BC) JB, RGL, JDS 2 632 P . sp. JL DbOT32 601 Pipi553-09 2007-05 Canada Peachland (BC) JB, RGL, JDS 2 633 P . sp. JL DbOT32 601 Pipi555-09 2007-05 Canada Peachland (BC) JB, RGL, JDS 2 634 P . sp. JL DbOT32 601 Pipi557-09 2008-02 Canada Peachland (BC) JB, RGL, JDS 2 635 P . sp. JL DbOT32 601 Pipi559-09 2008-02 Canada Peachland (BC) JB, RGL, JDS 2 636 P . sp. JL DbOT32 599 Vnmb771-09 2008-09 Canada Clute (ON) GL, JL 2 637 P . sp. JL DbOT33 601 Hygen312-10 2009-05 Canada Fort Macleod (AB) JDS 2 638 P . sp. JL DbOT33 601 Hygen314-10 2009-05 Canada Sudbury (ON) JDS 2 639 P . sp. JL DbOT33 601 Hygen316-10 2009-05 Canada Fort Macleod (AB) JDS 2 640 P . sp. JL DbOT33 599 Perna075-09 2002-10 Canada Coaldale (AB) JDS 2 641 P . sp. JL DbOT33 601 Perna115-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 642 P . sp. JL DbOT33 601 Perna120-09 2002-10 Canada Coaldale (AB) JDS 2 643 P . sp. JL DbOT33 601 Perna188-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 644 P . sp. JL DbOT33 575 Perna218-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 645 P . sp. JL DbOT33 584 Perna222-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 178 646 P . sp. JL DbOT33 601 Perna283-09 2002-10 Canada Coaldale (AB) JDS 2 647 P . sp. JL DbOT33 558 Perna285-09 2002-10 Canada Coaldale (AB) JDS 2 648 P . sp. JL DbOT33 537 Pipi447-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 649 P . sp. JL DbOT33 601 Pipi455-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 650 P . sp. JL DbOT33 601 Pipi458-09 2007-05 Canada Coaldale (AB) JDS, MRS 2 651 "P. fusicolus (nom . nud .)"§ ADR DbOT34 599 Perna016-09 1979-05 Canada Manitoulin I (ON) JDS 1 652 "P. fusicolus (nom . nud .)"§ ADR DbOT34 367 Pipi214-09 1981-10 Canada Macklin (SK) RGL, JDS 1 653 "P. fusicolus (nom . nud .)"§ ADR DbOT34 367 Pipi218-09 1979-05 Canada Manitoulin I (ON) JDS 1 653 "P. fusicolus (nom . nud .)"§ ADR DbOT34 367 Pipi219-09 1979-05 Canada Manitoulin I (ON) JDS 1 655 "P. fusicolus (nom . nud .)"§ ADR DbOT34 367 Pipi220-09 1979-05 Canada Manitoulin I (ON) JDS 1 656 "P. fusicolus (nom . nud .)"§ ADR DbOT34 367 Pipi221-09 1979-05 Canada Manitoulin I (ON) JDS 1 657 P . sp. JL DbOT34 599 Perna041-09 2002-05 Canada Coaldale (AB) JDS 2 658 P . sp. JL DbOT34 599 Perna047-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 659 P . sp. JL DbOT34 599 702 Perna048-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 660 P . sp. JL DbOT34 601 Pipi390-09 2002-05 Canada Coaldale (AB) JDS 2 661 P . sp. JL DbOT34 601 Pipi394-09 2002-05 Canada Coaldale (AB) JDS 2 662 P . sp. JL DbOT34 601 Pipi401-09 2002-10 Canada Coaldale (AB) BE, JDS 2 663 P . sp. JL DbOT34 601 Pipi425-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 664 P . sp. JL DbOT34 601 Pipi426-09 2003-05 Canada Coaldale (AB) JDS, MRS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 665 "P. fusicolus (nom . nud .)"§ ADR DbOT35 599 Perna012-09 1977-05 Canada Allumette I (QC) JDS 1 666 "P. fusicolus (nom . nud .)"§ ADR DbOT35 599 Perna013-09 1977-05 Canada Arnprior (ON) JDS 1 667 "P. fusicolus (nom . nud .)"§ ADR DbOT35 599 Perna014-09 1977-05 Canada Arnprior (ON) JDS 1 668 P . sp. JL DbOT35 598 Perna096-09 2001-04 Canada Renfrew (ON) JDS 2 669 P . sp. JL DbOT35 601 701 Perna100-09 2003-04 Canada Renfrew (ON) JDS 2 670 P . sp. JL DbOT35 601 701 Perna101-09 2003-04 Canada Renfrew (ON) JDS 2 671 P . sp. JL DbOT35 601 Perna102-09 2003-04 Canada Renfrew (ON) JDS 2 672 P . sp. JL DbOT35 579 Pipi398-09 2002-10 Canada Coaldale (AB) BE, JDS 2 673 P . sp. JL DbOT35 576 Pipi403-09 2002-10 Canada Coaldale (AB) BE, JDS 2 674 P . sp. JL DbOT35 601 Pipi404-09 2002-10 Canada Coaldale (AB) BE, JDS 2 675 P . sp. JL DbOT35 601 Pipi437-09 2003-04 Canada Renfrew (ON) JDS 2 676 P . sp. JL DbOT35 601 Pipi438-09 2003-04 Canada Renfrew (ON) JDS 2 677 P . sp. JL DbOT35 601 Pipi439-09 2003-04 Canada Renfrew (ON) JDS 2 678 P . sp. JL DbOT35 601 Pipi444-09 2001-04 Canada Renfrew (ON) JDS 2 679 P . sp. JL DbOT36 601 706 Hygen288-10 2009-05 Canada Waterton L N P (AB) JDS 2 680 P . sp. JL DbOT36 601 Hygen306-10 2009-04 Canada Renfrew (ON) MRS, JDS 2 179 681 P . sp. JL DbOT36 601 Hygen368-10 2009-05 Canada Waterton L N P (AB) JDS 2 682 P . sp. JL DbOT36 599 Perna057-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 683 P . sp. JL DbOT36 599 Perna058-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 684 P . sp. JL DbOT36 599 Perna059-09 1999-09 Canada Saskatoon (SK) JDS, MRS 2 685 P . sp. JL DbOT36 599 Perna060-09 1999-09 Canada Saskatoon (SK) JDS, MRS 2 686 P . sp. JL DbOT36 599 Perna061-09 1999-09 Canada Saskatoon (SK) JDS, MRS 2 687 P . sp. JL DbOT36 599 Perna062-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 688 P . sp. JL DbOT36 599 Perna063-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 689 P . sp. JL DbOT36 599 Perna064-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 690 P . sp. JL DbOT36 601 Perna103-09 2003-04 Canada Renfrew (ON) JDS 2 691 P . sp. JL DbOT36 601 Perna104-09 1999-09 Canada Saskatoon (SK) JDS, MRS 2 692 P . sp. JL DbOT36 601 Perna105-09 1999-09 Canada Saskatoon (SK) JDS, MRS 2 693 P . sp. JL DbOT36 601 Perna106-09 1999-09 Canada Saskatoon (SK) JDS, MRS 2 694 P . sp. JL DbOT36 601 Perna107-09 1999-09 Canada Saskatoon (SK) JDS, MRS 2 695 P . sp. JL DbOT36 601 Perna108-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 696 P . sp. JL DbOT36 601 Perna109-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 697 P . sp. JL DbOT36 601 Perna110-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 698 P . sp. JL DbOT36 601 Perna111-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 699 P . sp. JL DbOT36 601 Perna185-09 1999-09 Canada Saskatoon (SK) JDS, MRS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 700 P . sp. JL DbOT36 601 Perna187-09 1999-09 Canada Saskatoon (SK) JDS, MRS 2 701 P . sp. JL DbOT36 601 Perna189-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 702 P . sp. JL DbOT36 601 Perna190-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 703 P . sp. JL DbOT36 601 Pipi448-09 1999-09 Canada Douglas P P (SK) JDS, MRS 2 704 T. flavicoxa SR DbOT37 367 Pipi361-09 1996-05 Canada Manitoulin I (ON) JDS 1 705 T. flavicoxa SR DbOT37 367 Pipi366-09 1998-04 Canada Chelmsford (ON) JDS, MSJ 1 706 T . sp. JL DbOT38 367 450 Hygen399-10 2009-05 Canada Chelmsford (ON) JL 2 707 T . sp. JL DbOT38 367 450 Hygen401-10 2009-05 Canada Chelmsford (ON) JL 2 708 T . sp. JL DbOT38 601 Hygen402-10 2009-05 Canada Chelmsford (ON) JL 2 709 T . sp. JL DbOT38 367 Hygen404-10 2009-05 Canada Chelmsford (ON) JL 2 710 T . sp. JL DbOT38 464 Torna033-10 2000-05 Canada Sudbury (ON) JLe 2 711 T . sp. JL DbOT38 464 Torna035-10 2000-05 Canada Sudbury (ON) JLe 2 712 T. magnificus SR DbOT39 367 Pipi369-09 1992-10 Canada (SK) JDS 1 713 T. magnificus SR DbOT39 367 Pipi370-09 1997-09 Canada Kelowna (BC) RGL 1 714 T. chrysochlorus SR DbOT40 367 Pipi337-09 1999-09 Canada Douglas P P (SK) JDS, MRS 1 715 T. chrysochlorus SR DbOT40 367 Pipi338-09 1999-09 Canada Douglas P P (SK) JDS, MRS 1 180 716 T. chrysochlorus SR DbOT40 367 Pipi339-09 1999-09 Canada Douglas P P (SK) JDS, MRS 1 717 T. chrysochlorus SR DbOT40 367 Pipi341-09 1999-09 Canada Douglas P P (SK) JDS, MRS 1 718 T. chrysochlorus SR DbOT40 367 Pipi342-09 1997-05 Canada Manitoulin I (ON) SEB, JDS 1 719 T. chrysochlorus SR DbOT40 318 Pipi343-09 1997-05 Canada Manitoulin I (ON) SEB, JDS 1 720 T. chrysochlorus SR DbOT40 367 Pipi344-09 1997-05 Canada Manitoulin I (ON) SEB, JDS 1 721 T. chrysochlorus SR DbOT40 367 Pipi345-09 1997-05 Canada Manitoulin I (ON) SEB, JDS 1 722 T. chrysochlorus SR DbOT40 367 Pipi357-09 1999-09 Canada Saskatoon (SK) JDS, MRS 1 723 T . sp. JL DbOT40 601 Hygen383-10 2009-09 Canada Deux Rivieres (ON) JDS 2 724 T . sp. JL DbOT40 367 Hygen398-10 2009-10 Canada Sudbury (ON) JDS 2 725 T . sp. JL DbOT40 464 Torna022-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 726 T . sp. JL DbOT40 305 Torna024-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 727 T . sp. JL DbOT40 464 Torna115-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 728 T . sp. JL DbOT40 307 Torna116-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 729 T . sp. JL DbOT40 381 Torna117-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 730 T . sp. JL DbOT40 381 Torna118-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 731 T . sp. JL DbOT40 381 Torna119-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 732 T . sp. JL DbOT40 465 Torna168-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 733 T . sp. JL DbOT40 465 Torna170-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 734 T . sp. JL DbOT40 381 Torna172-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 735 T . sp. JL DbOT40 381 Torna173-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 736 T . sp. JL DbOT40 465 Torna175-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 737 T . sp. JL DbOT40 367 Torna198-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 738 T. chrysochlorus SR DbOT41 367 Pipi358-09 1998-05 Canada Moosonee (ON) JDS, MSJ 1 739 T. chrysochlorus SR DbOT41 367 Pipi359-09 1998-05 Canada Moosonee (ON) JDS, MSJ 1 740 T . sp. JL DbOT41 464 Torna144-10 2005-05 Canada Fort Albany (ON) MJTB 2 741 T . sp. JL DbOT41 464 Torna146-10 2005-05 Canada Fort Albany (ON) MJTB 2 742 T . sp. JL DbOT41 381 Torna148-10 2005-05 Canada Fort Albany (ON) MJTB 2 743 T . sp. JL DbOT41 367 Torna215-10 2005-05 Canada Fort Albany (ON) MJTB 2 744 T . sp. JL DbOT41 367 Torna216-10 2005-05 Canada Fort Albany (ON) MJTB 2 745 T . sp. JL DbOT41 367 Torna220-10 2005-05 Canada Fort Albany (ON) MJTB 2 746 T . sp. JL DbOT41 367 Torna225-10 2005-05 Canada Fort Albany (ON) MJTB 2 747 T . sp. JL DbOT41 367 Torna228-10 2005-05 Canada Fort Albany (ON) MJTB 2 748 T . sp. JL DbOT41 601 382 Torna231-10 2008-01 Canada Sudbury (ON) AJR, JDS 2 749 T. sp. JL DbOT41 367 Torna232-10 2008-01 Canada Sudbury (ON) AJR, JDS 2 750 T. chrysochlorus SR DbOT42 367 Pipi347-09 1997-09 Canada Queen Charlotte I (BC) JDS 1 181 751 T. chrysochlorus SR DbOT42 367 Pipi349-09 1997-09 Canada Queen Charlotte I (BC) JDS 1 752 T. chrysochlorus SR DbOT42 367 Pipi350-09 1997-09 Canada Queen Charlotte I (BC) JDS 1 753 T. chrysochlorus SR DbOT42 367 Pipi351-09 1997-09 Canada Queen Charlotte I (BC) JDS 1 753 T. chrysochlorus SR DbOT43 367 Pipi340-09 1999-09 Canada Douglas P P (SK) JDS, MRS 1 755 T. chrysochlorus SR DbOT43 367 Pipi352-09 1999-08 Canada Timmins (ON) GB, JLe, JDS, JW 1 756 T. chrysochlorus SR DbOT43 367 Pipi353-09 2000-04 Canada Manitoulin I (ON) JB, JLe, SR 1 757 T . sp. JL DbOT43 367 448 Hygen407-10 2009-05 Canada Timmins (ON) ADR, JDS 2 758 T . sp. JL DbOT43 601 Hygen439-10 2009-05 Canada Chelmsford (ON) JDS 2 759 T . sp. JL DbOT43 464 Torna010-10 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 760 T . sp. JL DbOT43 464 Torna011-10 2007-09 Canada Waterton L N P (AB) JDS, MRS 2 761 T . sp. JL DbOT43 421 Torna043-10 2002-05 Canada Barber`s Bay (ON) STO, JDS 2 762 T . sp. JL DbOT43 381 Torna180-10 2002-05 Canada Dryden (ON) STO, JDS 2 763 T . sp. JL DbOT43 381 Torna181-10 2002-05 Canada Dryden (ON) STO, JDS 2 764 T . sp. JL DbOT43 381 Torna182-10 2002-05 Canada Dryden (ON) STO, JDS 2 765 T . sp. JL DbOT43 381 Torna183-10 2002-05 Canada Dryden (ON) STO, JDS 2 766 T . sp. JL DbOT43 367 Torna200-10 2002-05 Canada Dryden (ON) STO, JDS 2 767 T . sp. JL DbOT43 341 Torna202-10 2002-05 Canada Dryden (ON) STO, JDS 2 768 T . sp. JL DbOT43 319 Torna204-10 2002-05 Canada Dryden (ON) STO, JDS 2 769 T. bedeguaris SR DbOT44 364 Pipi286-09 1998-05 Canada Cochrane (ON) RGL, JDS 1 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 770 T. bedeguaris SR DbOT44 367 Pipi287-09 1998-05 Canada South Porcupine (ON) JDS, MSJ 1 771 T. bedeguaris SR DbOT44 367 Pipi288-09 2000-04 Canada Manitoulin I (ON) JB, JLe, SR 1 772 T. bedeguaris SR DbOT44 367 Pipi289-09 2000-04 Canada Manitoulin I (ON) JB, JLe, SR 1 773 T. bedeguaris SR DbOT44 367 Pipi291-09 1999-09 Canada Douglas P P (SK) JDS, MRS 1 774 T. bedeguaris SR DbOT44 367 Pipi294-09 1999-09 Canada Douglas P P (SK) JDS, MRS 1 775 T. bedeguaris SR DbOT44 367 Pipi295-09 1997-05 Canada Lethbridge (AB) SEB, JDS 1 776 T. bedeguaris SR DbOT44 367 Pipi296-09 1997-05 Canada Lethbridge (AB) SEB, JDS 1 777 T. bedeguaris SR DbOT44 367 Pipi297-09 1999-05 Canada H-S-I B J (AB) JDS, MRS 1 778 T. bedeguaris SR DbOT44 367 Pipi299-09 1999-05 Canada H-S-I B J (AB) JDS, MRS 1 779 T. bedeguaris SR DbOT44 367 Pipi301-09 1997-05 Canada Manitoulin I (ON) SEB, JDS 1 780 T. bedeguaris SR DbOT44 367 Pipi302-09 1997-05 Canada Manitoulin I (ON) SEB, JDS 1 781 T. bedeguaris SR DbOT44 367 Pipi303-09 1997-05 Canada Manitoulin I (ON) SEB, JDS 1 782 T. bedeguaris SR DbOT44 367 Pipi308-09 1995-10 Canada Sooke (BC) JDS 1 783 T. bedeguaris SR DbOT44 367 Pipi309-09 1995-10 Canada Victoria (BC) JDS 1 784 T. bedeguaris SR DbOT44 367 Pipi310-09 1997-10 Canada Fort McMurray (AB) JDS 1 785 T. bedeguaris SR DbOT44 367 Pipi311-09 1997-10 Canada Fort McMurray (AB) JDS 1 182 786 T. bedeguaris SR DbOT44 367 Pipi318-09 1999-09 Canada Cypress Hills P P (SK) JDS, MRS 1 787 T. bedeguaris SR DbOT44 367 Pipi319-09 1999-09 Canada Cypress Hills P P (SK) JDS, MRS 1 788 T. bedeguaris SR DbOT44 367 Pipi323-09 2000-04 Canada Sudbury (ON) JDS 1 789 T. bedeguaris SR DbOT44 367 Pipi325-09 1999-10 Canada Kelowna (BC) RGL, JDS 1 790 T. bedeguaris SR DbOT44 367 Pipi326-09 1999-10 Canada Oliver (BC) RGL, JDS 1 791 T. bedeguaris SR DbOT44 367 Pipi327-09 1999-06 Canada Chelmsford (ON) JLe, JDS 1 792 T. bedeguaris SR DbOT44 367 Pipi328-09 1999-10 Canada Kelowna (BC) RGL, JDS 1 793 T. bedeguaris SR DbOT44 367 Pipi329-09 1999-10 Canada Kelowna (BC) RGL, JDS 1 794 T . sp. JL DbOT44 367 Hygen381-10 2009-05 Canada Sudbury (ON) JDS 2 795 T . sp. JL DbOT44 367 Hygen384-10 2006-05 Canada Coaldale (AB) JDS 2 796 T . sp. JL DbOT44 367 Hygen385-10 2009-05 Canada Coaldale (AB) JDS 2 797 T . sp. JL DbOT44 601 393 Hygen386-10 2009-05 Canada Coaldale (AB) JDS 2 798 T . sp. JL DbOT44 367 Hygen387-10 2009-05 Canada Coaldale (AB) JDS 2 799 T . sp. JL DbOT44 367 Hygen388-10 2009-05 Canada Coaldale (AB) JDS 2 800 T . sp. JL DbOT44 367 Hygen389-10 2006-05 Canada Coaldale (AB) JDS 2 801 T . sp. JL DbOT44 367 Hygen390-10 2006-05 Canada Coaldale (AB) JDS 2 802 T . sp. JL DbOT44 367 Hygen391-10 2009-04 Canada Picton (ON) JDS 2 803 T . sp. JL DbOT44 367 Hygen392-10 2009-04 Canada Picton (ON) JDS 2 804 T . sp. JL DbOT44 367 Hygen393-10 2009-04 Canada Picton (ON) JDS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 805 T . sp. JL DbOT44 601 Hygen394-10 2009-04 Canada Picton (ON) JDS 2 806 T . sp. JL DbOT44 367 Hygen395-10 2009-04 Canada Picton (ON) JDS 2 807 T . sp. JL DbOT44 601 Hygen396-10 2009-04 Canada Picton (ON) JDS 2 808 T . sp. JL DbOT44 367 Hygen397-10 2009-04 Canada Picton (ON) JDS 2 809 T . sp. JL DbOT44 563 Hygen409-10 2009-05 Canada Timmins (ON) ADR, JDS 2 810 T . sp. JL DbOT44 367 Hygen417-10 2009-05 Canada Timmins (ON) ADR, JDS 2 811 T . sp. JL DbOT44 367 Hygen421-10 2009-05 Canada Peachland (BC) RGL 2 812 T . sp. JL DbOT44 367 Hygen423-10 2009-05 Canada Peachland (BC) RGL 2 813 T . sp. JL DbOT44 367 Hygen424-10 2009-05 Canada Peachland (BC) RGL 2 814 T . sp. JL DbOT44 599 Lymmk190-09 2007-05 Canada Waterton L N P (AB) JDS 2 815 T . sp. JL DbOT44 574 Pipi133-09 2008-09 Canada Sudbury (ON) GL, JL 2 816 T . sp. JL DbOT44 417 Pipi134-09 2008-09 Canada Sudbury (ON) GL, JL 2 817 T . sp. JL DbOT44 582 Pipi138-09 2008-09 Canada Sudbury (ON) GL, JL 2 818 T . sp. JL DbOT44 578 Pipi179-09 2008-09 Canada Sudbury (ON) GL, JL 2 819 T . sp. JL DbOT44 601 Rose573-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 820 T . sp. JL DbOT44 601 Rose574-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 183 821 T . sp. JL DbOT44 601 Rose575-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 822 T . sp. JL DbOT44 601 Rose577-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 823 T . sp. JL DbOT44 599 Rose578-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 824 T . sp. JL DbOT44 601 Rose579-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 825 T . sp. JL DbOT44 601 Rose580-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 826 T . sp. JL DbOT44 601 Rose613-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 827 T . sp. JL DbOT44 601 Rose617-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 828 T . sp. JL DbOT44 464 Torna008-10 2005-05 Canada Fort Albany (ON) MJTB 2 829 T . sp. JL DbOT44 464 Torna014-10 2003-05 Canada Coaldale (AB) JDS, MRS 2 830 T . sp. JL DbOT44 386 Torna015-10 2003-05 Canada Coaldale (AB) JDS, MRS 2 831 T . sp. JL DbOT44 464 Torna017-10 2002-10 Canada Coaldale (AB) JDS 2 832 T . sp. JL DbOT44 464 Torna018-10 2002-10 Canada Coaldale (AB) JDS 2 833 T . sp. JL DbOT44 460 Torna019-10 2002-10 Canada Coaldale (AB) JDS 2 834 T . sp. JL DbOT44 464 Torna020-10 2002-10 Canada Coaldale (AB) JDS 2 835 T . sp. JL DbOT44 464 Torna021-10 2002-10 Canada Coaldale (AB) JDS 2 836 T . sp. JL DbOT44 464 Torna023-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 837 T . sp. JL DbOT44 317 Torna038-10 2003-05 Canada Sceptre (SK) JDS, MRS 2 838 T . sp. JL DbOT44 464 Torna049-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 839 T . sp. JL DbOT44 464 Torna050-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 840 T . sp. JL DbOT44 464 Torna051-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 841 T . sp. JL DbOT44 464 Torna052-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 842 T . sp. JL DbOT44 464 Torna053-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 843 T . sp. JL DbOT44 464 Torna053-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 844 T . sp. JL DbOT44 464 Torna055-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 845 T . sp. JL DbOT44 464 Torna056-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 846 T . sp. JL DbOT44 464 Torna060-10 2005-05 Canada Fort Albany (ON) MJTB 2 847 T . sp. JL DbOT44 464 Torna065-10 2007-05 Canada Peachland (BC) RGL, JDS 2 848 T . sp. JL DbOT44 464 Torna066-10 2007-05 Canada Peachland (BC) RGL, JDS 2 849 T . sp. JL DbOT44 464 Torna067-10 2007-05 Canada Peachland (BC) RGL, JDS 2 850 T . sp. JL DbOT44 464 Torna068-10 2007-05 Canada Peachland (BC) RGL, JDS 2 851 T . sp. JL DbOT44 464 Torna069-10 2007-05 Canada Peachland (BC) RGL, JDS 2 852 T . sp. JL DbOT44 464 Torna070-10 2007-05 Canada Peachland (BC) RGL, JDS 2 853 T . sp. JL DbOT44 464 Torna071-10 2007-05 Canada Peachland (BC) RGL, JDS 2 853 T . sp. JL DbOT44 396 Torna072-10 2007-05 Canada Peachland (BC) RGL, JDS 2 855 T . sp. JL DbOT44 464 Torna074-10 2005-05 Canada Fort Albany (ON) MJTB 2 184 856 T . sp. JL DbOT44 464 Torna075-10 2005-05 Canada Fort Albany (ON) MJTB 2 857 T . sp. JL DbOT44 464 Torna076-10 2005-05 Canada Fort Albany (ON) MJTB 2 858 T . sp. JL DbOT44 464 Torna079-10 2005-05 Canada Fort Albany (ON) MJTB 2 859 T . sp. JL DbOT44 464 Torna081-10 2003-05 Canada Coaldale (AB) JDS, MRS 2 860 T . sp. JL DbOT44 339 Torna082-10 2003-05 Canada Coaldale (AB) JDS, MRS 2 861 T . sp. JL DbOT44 464 Torna089-10 2002-10 Canada Coaldale (AB) JDS 2 862 T . sp. JL DbOT44 396 Torna090-10 2002-10 Canada Coaldale (AB) JDS 2 863 T . sp. JL DbOT44 365 Torna091-10 2002-10 Canada Coaldale (AB) JDS 2 864 T . sp. JL DbOT44 386 Torna093-10 2002-10 Canada Coaldale (AB) JDS 2 865 T . sp. JL DbOT44 464 Torna094-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 866 T . sp. JL DbOT44 464 Torna095-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 867 T . sp. JL DbOT44 464 Torna097-10 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 868 T . sp. JL DbOT44 381 Torna103-10 2009-05 Canada Sudbury (ON) JDS 2 869 T . sp. JL DbOT44 453 Torna104-10 2003-05 Canada Coaldale (AB) JDS, MRS 2 870 T . sp. JL DbOT44 452 Torna105-10 2003-05 Canada Coaldale (AB) JDS, MRS 2 871 T . sp. JL DbOT44 464 Torna107-10 2007-09 Canada Coaldale (AB) JDS, MRS 2 872 T . sp. JL DbOT44 464 Torna108-10 2007-09 Canada Coaldale (AB) JDS, MRS 2 873 T . sp. JL DbOT44 381 Torna109-10 2007-09 Canada Coaldale (AB) JDS, MRS 2 874 T . sp. JL DbOT44 381 Torna110-10 2007-09 Canada Coaldale (AB) JDS, MRS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 875 T . sp. JL DbOT44 381 Torna111-10 2007-09 Canada Coaldale (AB) JDS, MRS 2 876 T . sp. JL DbOT44 464 Torna112-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 877 T . sp. JL DbOT44 464 Torna113-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 878 T . sp. JL DbOT44 464 Torna114-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 879 T . sp. JL DbOT44 464 Torna136-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 880 T . sp. JL DbOT44 464 Torna137-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 881 T . sp. JL DbOT44 464 Torna138-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 882 T . sp. JL DbOT44 464 Torna139-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 883 T . sp. JL DbOT44 381 Torna140-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 884 T . sp. JL DbOT44 381 Torna141-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 885 T . sp. JL DbOT44 381 Torna142-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 886 T . sp. JL DbOT44 381 Torna143-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 887 T . sp. JL DbOT44 437 Torna152-10 2007-05 Canada Peachland (BC) RGL, JDS 2 888 T . sp. JL DbOT44 464 Torna153-10 2007-05 Canada Peachland (BC) RGL, JDS 2 889 T . sp. JL DbOT44 464 Torna153-10 2007-05 Canada Peachland (BC) RGL, JDS 2 890 T . sp. JL DbOT44 464 Torna155-10 2007-05 Canada Peachland (BC) RGL, JDS 2 185 891 T . sp. JL DbOT44 381 Torna156-10 2007-05 Canada Peachland (BC) RGL, JDS 2 892 T . sp. JL DbOT44 381 Torna157-10 2007-05 Canada Peachland (BC) RGL, JDS 2 893 T . sp. JL DbOT44 381 Torna158-10 2007-05 Canada Peachland (BC) RGL, JDS 2 894 T . sp. JL DbOT44 381 Torna159-10 2007-05 Canada Peachland (BC) RGL, JDS 2 895 T . sp. JL DbOT44 464 Torna160-10 2007-05 Canada Coaldale (AB) JDS, MRS 2 896 T . sp. JL DbOT44 464 Torna161-10 2007-05 Canada Coaldale (AB) JDS, MRS 2 897 T . sp. JL DbOT44 464 Torna162-10 2007-05 Canada Coaldale (AB) JDS, MRS 2 898 T . sp. JL DbOT44 464 Torna163-10 2007-05 Canada Coaldale (AB) JDS, MRS 2 899 T . sp. JL DbOT44 381 Torna164-10 2007-05 Canada Coaldale (AB) JDS, MRS 2 900 T . sp. JL DbOT44 381 Torna165-10 2007-05 Canada Coaldale (AB) JDS, MRS 2 901 T . sp. JL DbOT44 381 Torna166-10 2007-05 Canada Coaldale (AB) JDS, MRS 2 902 T . sp. JL DbOT44 381 Torna167-10 2007-05 Canada Coaldale (AB) JDS, MRS 2 903 T . sp. JL DbOT44 465 Torna169-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 904 T . sp. JL DbOT44 381 Torna174-10 2004-10 Canada Manitoulin I (ON) ADR, JDR, JDS 2 905 T . sp. JL DbOT44 465 Torna184-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 906 T . sp. JL DbOT44 367 Torna192-10 2007-05 Canada Coaldale (AB) JDS, MRS 2 907 T . sp. JL DbOT44 367 Torna193-10 2007-05 Canada Coaldale (AB) JDS, MRS 2 908 T . sp. JL DbOT44 367 Torna195-10 2007-05 Canada Coaldale (AB) JDS, MRS 2 909 T . sp. JL DbOT44 352 Torna196-10 2007-05 Canada Coaldale (AB) JDS, MRS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 910 T . sp. JL DbOT44 367 Torna197-10 2007-05 Canada Coaldale (AB) JDS, MRS 2 911 T . sp. JL DbOT44 367 Torna207-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 912 T . sp. JL DbOT44 367 Torna208-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 913 T . sp. JL DbOT44 601 Torna209-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 914 T . sp. JL DbOT44 601 Torna210-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 915 T . sp. JL DbOT44 601 Torna211-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 916 T . sp. JL DbOT44 367 Torna212-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 917 T . sp. JL DbOT44 367 Torna213-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 918 T . sp. JL DbOT44 367 Torna214-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 919 T . sp. JL DbOT44 362 Torna221-10 2005-05 Canada Fort Albany (ON) MJTB 2 920 T . sp. JL DbOT44 367 Torna233-10 2007-05 Canada Peachland (BC) RGL, JDS 2 921 T . sp. JL DbOT44 367 Torna234-10 2007-05 Canada Peachland (BC) RGL, JDS 2 922 T . sp. JL DbOT44 367 Torna235-10 2009-04 Canada Picton (ON) JDS 2 923 T . sp. JL DbOT44 601 Torna236-10 2009-04 Canada Picton (ON) JDS 2 924 T . sp. JL DbOT44 367 Torna237-10 2009-04 Canada Picton (ON) JDS 2 925 T . sp. JL DbOT44 367 Torna238-10 2009-04 Canada Picton (ON) JDS 2 186 926 T . sp. JL DbOT44 601 Torna239-10 2009-04 Canada Picton (ON) JDS 2 927 T . sp. JL DbOT44 367 Torna240-10 2009-04 Canada Picton (ON) JDS 2 928 T . sp. JL DbOT44 367 Torna241-10 2009-04 Canada Picton (ON) JDS 2 929 T . sp. JL DbOT44 601 Vnmb779-09 2008-09 Canada Timmins (ON) GL, JL 2 930 T. bedeguaris SR DbOT45 367 Pipi304-09 2000-04 Canada Manitoulin I (ON) JB, JLe, SR 1 931 T. bedeguaris SR DbOT45 367 Pipi320-09 1999-11 Canada Manitoulin I (ON) JLe, JDS 1 932 T. bedeguaris SR DbOT45 363 Pipi322-09 2000-04 Canada Sudbury (ON) JDS 1 933 T. bedeguaris SR DbOT45 367 Pipi324-09 2000-04 Canada Sudbury (ON) JDS 1 934 T. solitarius SR DbOT45 367 Pipi371-09 1998-04 Canada Chelmsford (ON) JDS, MSJ 1 935 T. solitarius SR DbOT45 367 Pipi375-09 1998-04 Canada Chelmsford (ON) JDS, MSJ 1 936 T. solitarius SR DbOT45 367 Pipi376-09 1998-04 Canada Manitoulin I (ON) JDS, MSJ 1 937 T. solitarius SR DbOT45 367 Pipi377-09 1998-05 Canada Timmins (ON) JDS, MSJ 1 938 T. solitarius SR DbOT45 367 Pipi379-09 2000-04 Canada Sudbury (ON) JDS 1 939 T . sp. JL DbOT45 418 Torna002-10 2005-05 Canada Fort Albany (ON) MJTB 2 940 T . sp. JL DbOT45 464 Torna004-10 2005-05 Canada Fort Albany (ON) MJTB 2 941 T . sp. JL DbOT45 464 Torna005-10 2005-05 Canada Fort Albany (ON) MJTB 2 942 T . sp. JL DbOT45 464 Torna006-10 2005-05 Canada Fort Albany (ON) MJTB 2 943 T . sp. JL DbOT45 464 Torna007-10 2005-05 Canada Fort Albany (ON) MJTB 2 944 T . sp. JL DbOT45 464 Torna030-10 2002-05 Canada Timmins (ON) JDS 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 945 T . sp. JL DbOT45 464 Torna032-10 2002-05 Canada Timmins (ON) JDS 2 946 T . sp. JL DbOT45 464 Torna073-10 2005-05 Canada Fort Albany (ON) MJTB 2 947 T . sp. JL DbOT45 464 Torna077-10 2005-05 Canada Fort Albany (ON) MJTB 2 948 T . sp. JL DbOT45 447 Torna125-10 2002-05 Canada Timmins (ON) JDS 2 949 T . sp. JL DbOT45 464 Torna147-10 2005-05 Canada Fort Albany (ON) MJTB 2 950 T . sp. JL DbOT45 465 Torna179-10 2002-05 Canada Timmins (ON) JDS 2 951 T. bedeguaris SR DbOT45 367 Pipi306-09 2000-04 Canada Manitoulin I (ON) JB, JLe, SR 1 952 T. solitarius SR DbOT45 367 Pipi374-09 1998-04 Canada Chelmsford (ON) JDS, MSJ 1 953 T . sp. JL DbOT45 464 Torna003-10 2005-05 Canada Fort Albany (ON) MJTB 2 953 T . sp. JL DbOT45 464 Torna078-10 2005-05 Canada Fort Albany (ON) MJTB 2 955 T . sp. JL DbOT45 464 Torna080-10 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 956 T . sp. JL DbOT45 447 Torna100-10 2005-05 Canada Thunder Bay (ON) MJTB, JDS 2 957 T . sp. JL DbOT45 381 Torna126-10 2002-05 Canada Timmins (ON) JDS 2 958 T . sp. JL DbOT45 381 Torna127-10 2002-05 Canada Timmins (ON) JDS 2 959 T . sp. JL DbOT45 367 Hygen413-10 2009-05 Canada Fort Macleod (AB) JDS 2 960 T . sp. JL DbOT45 601 Rose576-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 187 961 T . sp. JL DbOT45 601 Rose614-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 962 T . sp. JL DbOT45 593 Rose615-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 963 T . sp. JL DbOT45 601 Rose616-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 964 T . sp. JL DbOT45 465 378 Torna185-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 965 T . sp. JL DbOT45 465 378 Torna186-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 966 T . sp. JL DbOT45 465 378 Torna187-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 967 T . sp. JL DbOT45 381 Torna188-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 968 T . sp. JL DbOT45 381 Torna189-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 969 T . sp. JL DbOT45 381 Torna190-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 970 T . sp. JL DbOT45 282 Torna206-10 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 971 T . sp. JL DbOT46 460 Torna059-10 2005-05 Canada Fort Albany (ON) MJTB 2 972 T . sp. JL DbOT46 464 Torna063-10 2005-05 Canada Fort Albany (ON) MJTB 2 973 T . sp. JL DbOT46 464 Torna145-10 2005-05 Canada Fort Albany (ON) MJTB 2 974 T . sp. JL DbOT46 381 Torna149-10 2005-05 Canada Fort Albany (ON) MJTB 2 975 T . sp. JL DbOT46 381 Torna151-10 2005-05 Canada Fort Albany (ON) MJTB 2 976 T. bicoloratus SR DbOT47 367 Pipi330-09 1999-10 Canada Kelowna (BC) RGL, JDS 1 977 T. bicoloratus SR DbOT47 367 Pipi331-09 1997-04 Canada Kelowna (BC) RGL 1 978 T. bicoloratus SR DbOT47 367 Pipi335-09 1999-10 Canada Kelowna (BC) RGL, JDS 1 979 T. bicoloratus SR DbOT48 367 Pipi332-09 1997-04 Canada Kelowna (BC) RGL 1 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 980 T. bicoloratus SR DbOT48 367 Pipi334-09 1999-10 Canada Kelowna (BC) RGL, JDS 1 981 Eupelmidae JL DbOT49 518 Hygen464-10 2009-05 Canada Lethbridge (AB) JDS 2 982 Eupelmidae JL DbOT49 518 Hygen462-10 2009-05 Canada Lethbridge (AB) JDS 2 983 Eupelmidae JL DbOT49 518 Hygen458-10 2009-05 Canada Fort Macleod (AB) JDS 2 984 Eurytomidae JL DbOT50 601 Hygen488-10 2009-05 Canada Chelmsford (ON) JDS 2 985 Eurytomidae JL DbOT50 601 Hygen489-10 2009-05 Canada Timmins (ON) ADR, JDS 2 986 Eurytomidae JL DbOT50 601 Hygen490-10 2009-05 Canada Chelmsford (ON) JDS 2 987 Eurytomidae JL DbOT50 601 Pipi001-09 2008-09 Canada Sudbury (ON) GL, JL 2 988 Eurytomidae JL DbOT50 601 Pipi002-09 2008-09 Canada Sudbury (ON) GL, JL 2 989 Eurytomidae JL DbOT50 601 Pipi004-09 2008-09 Canada Sudbury (ON) GL, JL 2 990 Eurytomidae JL DbOT50 601 Pipi005-09 2008-09 Canada Sudbury (ON) GL, JL 2 991 Eurytomidae JL DbOT50 601 Pipi010-09 2008-09 Canada Sudbury (ON) GL, JL 2 992 Eurytomidae JL DbOT50 601 Pipi012-09 2008-09 Canada Sudbury (ON) GL, JL 2 993 Eurytomidae JL DbOT50 601 Pipi014-09 2008-09 Canada Sudbury (ON) GL, JL 2 994 Eurytomidae JL DbOT50 601 Pipi015-09 2008-09 Canada Sudbury (ON) GL, JL 2 995 Eurytomidae JL DbOT50 601 Pipi016-09 2008-09 Canada Sudbury (ON) GL, JL 2 188 996 Eurytomidae JL DbOT50 601 Pipi024-09 2008-09 Canada Sudbury (ON) GL, JL 2 997 Eurytomidae JL DbOT50 601 Pipi026-09 2008-09 Canada Sudbury (ON) GL, JL 2 998 Eurytomidae JL DbOT50 601 Pipi028-09 2008-09 Canada Sudbury (ON) GL, JL 2 999 Eurytomidae JL DbOT50 579 Pipi030-09 2008-09 Canada Sudbury (ON) GL, JL 2 1000 Eurytomidae JL DbOT50 601 Pipi033-09 2008-09 Canada Sudbury (ON) GL, JL 2 1001 Eurytomidae JL DbOT50 596 Pipi035-09 2008-09 Canada Sudbury (ON) GL, JL 2 1002 Eurytomidae JL DbOT50 601 Pipi036-09 2008-09 Canada Sudbury (ON) GL, JL 2 1003 Eurytomidae JL DbOT50 601 Pipi038-09 2008-09 Canada Sudbury (ON) GL, JL 2 1004 Eurytomidae JL DbOT50 601 Pipi040-09 2008-09 Canada Sudbury (ON) GL, JL 2 1005 Eurytomidae JL DbOT50 601 Pipi045-09 2008-09 Canada Sudbury (ON) GL, JL 2 1006 Eurytomidae JL DbOT50 601 Pipi047-09 2008-09 Canada Sudbury (ON) GL, JL 2 1007 Eurytomidae JL DbOT50 601 Pipi048-09 2008-09 Canada Sudbury (ON) GL, JL 2 1008 Eurytomidae JL DbOT50 601 Pipi050-09 2008-09 Canada Sudbury (ON) GL, JL 2 1009 Eurytomidae JL DbOT50 601 Pipi052-09 2008-09 Canada Sudbury (ON) GL, JL 2 1010 Eurytomidae JL DbOT50 601 Pipi057-09 2008-09 Canada Sudbury (ON) GL, JL 2 1011 Eurytomidae JL DbOT50 601 Pipi059-09 2008-09 Canada Sudbury (ON) GL, JL 2 1012 Eurytomidae JL DbOT50 600 Pipi060-09 2008-09 Canada Sudbury (ON) GL, JL 2 1013 Eurytomidae JL DbOT50 600 Pipi062-09 2008-09 Canada Sudbury (ON) GL, JL 2 1014 Eurytomidae JL DbOT50 600 Pipi064-09 2008-09 Canada Sudbury (ON) GL, JL 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 1015 Eurytomidae JL DbOT50 586 Pipi070-09 2008-09 Canada Sudbury (ON) GL, JL 2 1016 Eurytomidae JL DbOT50 596 Pipi072-09 2008-09 Canada Sudbury (ON) GL, JL 2 1017 Eurytomidae JL DbOT50 586 Pipi076-09 2008-09 Canada Sudbury (ON) GL, JL 2 1018 Eurytomidae JL DbOT50 579 Pipi077-09 2008-09 Canada Sudbury (ON) GL, JL 2 1019 Eurytomidae JL DbOT50 600 Pipi079-09 2008-09 Canada Sudbury (ON) GL, JL 2 1020 Eurytomidae JL DbOT50 589 Pipi082-09 2008-09 Canada Sudbury (ON) GL, JL 2 1021 Eurytomidae JL DbOT50 600 Pipi084-09 2008-09 Canada Sudbury (ON) GL, JL 2 1022 Eurytomidae JL DbOT50 600 Pipi088-09 2008-09 Canada Sudbury (ON) GL, JL 2 1023 Eurytomidae JL DbOT50 600 Pipi089-09 2008-09 Canada Sudbury (ON) GL, JL 2 1024 Eurytomidae JL DbOT50 600 Pipi095-09 2008-09 Canada Sudbury (ON) GL, JL 2 1025 Eurytomidae JL DbOT51 409 Hygen494-10 2008-09 Canada Timmins (ON) GL, JL 2 1026 Eurytomidae JL DbOT51 583 Pipi003-09 2008-09 Canada Sudbury (ON) GL, JL 2 1027 Eurytomidae JL DbOT51 589 Pipi013-09 2008-09 Canada Sudbury (ON) GL, JL 2 1028 Eurytomidae JL DbOT51 469 Pipi022-09 2008-09 Canada Sudbury (ON) GL, JL 2 1029 Eurytomidae JL DbOT51 601 Pipi025-09 2008-09 Canada Sudbury (ON) GL, JL 2 1030 Eurytomidae JL DbOT51 517 Pipi029-09 2008-09 Canada Sudbury (ON) GL, JL 2 189 1031 Eurytomidae JL DbOT51 525 Pipi031-09 2008-09 Canada Sudbury (ON) GL, JL 2 1032 Eurytomidae JL DbOT51 469 Pipi034-09 2008-09 Canada Sudbury (ON) GL, JL 2 1033 Eurytomidae JL DbOT51 574 Pipi037-09 2008-09 Canada Sudbury (ON) GL, JL 2 1034 Eurytomidae JL DbOT51 521 Pipi043-09 2008-09 Canada Sudbury (ON) GL, JL 2 1035 Eurytomidae JL DbOT51 456 Pipi044-09 2008-09 Canada Sudbury (ON) GL, JL 2 1036 Eurytomidae JL DbOT51 469 Pipi056-09 2008-09 Canada Sudbury (ON) GL, JL 2 1037 Eurytomidae JL DbOT51 597 Pipi061-09 2008-09 Canada Sudbury (ON) GL, JL 2 1038 Eurytomidae JL DbOT51 574 Pipi065-09 2008-09 Canada Sudbury (ON) GL, JL 2 1039 Eurytomidae JL DbOT51 586 Pipi073-09 2008-09 Canada Sudbury (ON) GL, JL 2 1040 Eurytomidae JL DbOT51 538 Vnmb780-09 2008-09 Canada Timmins (ON) GL, JL 2 1041 Eurytomidae JL DbOT52 565 Pipi007-09 2008-09 Canada Sudbury (ON) GL, JL 2 1042 Eurytomidae JL DbOT52 469 Pipi018-09 2008-09 Canada Sudbury (ON) GL, JL 2 1043 Eurytomidae JL DbOT52 463 Pipi021-09 2008-09 Canada Sudbury (ON) GL, JL 2 1044 Eurytomidae JL DbOT52 469 Pipi055-09 2008-09 Canada Sudbury (ON) GL, JL 2 1045 Eurytomidae JL DbOT52 469 Pipi067-09 2008-09 Canada Sudbury (ON) GL, JL 2 1046 Eurytomidae JL DbOT52 469 Pipi069-09 2008-09 Canada Sudbury (ON) GL, JL 2 1047 Eurytomidae JL DbOT52 469 Pipi081-09 2008-09 Canada Sudbury (ON) GL, JL 2 1048 Eurytomidae JL DbOT52 469 Pipi091-09 2008-09 Canada Sudbury (ON) GL, JL 2 1049 Eurytomidae JL DbOT52 469 Pipi093-09 2008-09 Canada Sudbury (ON) GL, JL 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 1050 Eurytomidae JL DbOT53 580 Hygen486-10 2009-05 Canada Chelmsford (ON) JL 2 1051 Eurytomidae JL DbOT54 601 Pipi011-09 2008-09 Canada Sudbury (ON) GL, JL 2 1052 Eurytomidae JL DbOT54 601 Pipi051-09 2008-09 Canada Sudbury (ON) GL, JL 2 1053 Eurytomidae JL DbOT54 601 Vnmb787-09 2008-09 Canada Barber`s Bay (ON) GL, JL 2 1054 Eurytomidae JL DbOT54 601 Vnmb788-09 2008-09 Canada Barber`s Bay (ON) GL, JL 2 1055 Eulophidae JL DbOT55 601 Hygen497-10 2009-05 Canada Fort Macleod (AB) JDS 2 1056 Eulophidae JL DbOT56 601 Hygen498-10 2009-05 Canada Fort Macleod (AB) JDS 2 1057 Eulophidae JL DbOT57 601 Pipi094-09 2008-09 Canada Sudbury (ON) GL, JL 2 1058 Eulophidae JL DbOT57 596 Pipi141-09 2008-09 Canada Sudbury (ON) GL, JL 2 1059 Eulophidae JL DbOT58 601 Hygen516-10 2009-05 Canada Peachland (BC) RGL 2 1060 Eulophidae JL DbOT58 601 Hygen517-10 2009-05 Canada Peachland (BC) RGL 2 1061 Eulophidae JL DbOT59 601 Vnmb767-09 2008-09 Canada Clute (ON) GL, JL 2 1062 Eulophidae JL DbOT60 601 Hygen511-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 1063 Eulophidae JL DbOT60 601 Hygen512-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 1064 Eulophidae JL DbOT60 601 Hygen514-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 1065 Eulophidae JL DbOT61 469 Hygen508-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 190 1066 Eulophidae JL DbOT61 468 Hygen510-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 1067 Eulophidae JL DbOT61 601 Hygen519-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 1068 Eulophidae JL DbOT61 467 Lymmk184-09 2007-05 Canada Waterton L N P (AB) JDS 2 1069 Eulophidae JL DbOT61 467 Lymmk185-09 2007-05 Canada Waterton L N P (AB) JDS 2 1070 Eulophidae JL DbOT61 469 Rose589-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1071 Eulophidae JL DbOT61 469 Rose590-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1072 Eulophidae JL DbOT61 469 Rose591-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1073 Eulophidae JL DbOT61 469 Rose592-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1074 Eulophidae JL DbOT61 469 Rose593-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1075 Eulophidae JL DbOT61 469 Rose594-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1076 Eulophidae JL DbOT61 469 Rose595-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1077 Eulophidae JL DbOT61 469 Rose596-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1078 Pteromalidae JL DbOT62 469 Hygen506-10 2009-05 Canada Timmins (ON) ADR, JDS 2 1079 Pteromalidae JL DbOT63 469 Pipi140-09 2008-09 Canada Sudbury (ON) GL, JL 2 1080 Pteromalidae JL DbOT64 469 Hygen502-10 2009-05 Canada Waterton L N P (AB) JDS 2 1081 Pteromalidae JL DbOT65 459 Hygen499-10 2009-05 Canada Lethbridge (AB) JDS 2 1082 Pteromalidae JL DbOT65 469 Hygen515-10 2009-05 Canada Chelmsford (ON) JDS 2 1083 Pteromalidae JL DbOT65 469 Pipi154-09 2008-09 Canada Sudbury (ON) GL, JL 2 1084 Pteromalidae JL DbOT65 469 Pipi156-09 2008-09 Canada Sudbury (ON) GL, JL 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 1085 Pteromalidae JL DbOT65 469 Rose602-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1086 Pteromalidae JL DbOT66 469 Lymmk182-09 2007-05 Canada Waterton L N P (AB) JDS 2 1087 Pteromalidae JL DbOT66 467 Lymmk183-09 2007-05 Canada Waterton L N P (AB) JDS 2 1088 Pteromalidae JL DbOT66 469 Rose597-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1089 Pteromalidae JL DbOT66 445 Rose598-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1090 Pteromalidae JL DbOT66 469 Rose599-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1091 Pteromalidae JL DbOT66 469 Rose600-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1092 Pteromalidae JL DbOT66 469 Rose601-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1093 Pteromalidae JL DbOT66 445 Rose603-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1094 Pteromalidae JL DbOT66 442 Rose604-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1095 Ormyridae JL DbOT67 601 Hygen475-10 2008-09 Canada Timmins (ON) GL, JL 2 1096 Ormyridae JL DbOT67 601 Pipi132-09 2008-09 Canada Sudbury (ON) GL, JL 2 1097 Ormyridae JL DbOT67 601 Pipi180-09 2008-09 Canada Sudbury (ON) GL, JL 2 1098 Ormyridae JL DbOT68 601 Hygen465-10 2009-04 Canada Renfrew (ON) MRS, JDS 2 1099 Ormyridae JL DbOT68 591 Hygen467-10 2009-04 Canada Renfrew (ON) MRS, JDS 2 1100 Ormyridae JL DbOT68 591 Hygen468-10 2009-04 Canada Renfrew (ON) MRS, JDS 2 191 1101 Ormyridae JL DbOT68 601 Hygen469-10 2008-09 Canada Timmins (ON) GL, JL 2 1102 Ormyridae JL DbOT68 601 Hygen470-10 2008-09 Canada Timmins (ON) GL, JL 2 1103 Ormyridae JL DbOT68 601 Hygen471-10 2008-09 Canada Timmins (ON) GL, JL 2 1104 Ormyridae JL DbOT68 601 Hygen472-10 2009-05 Canada Chelmsford (ON) JDS 2 1105 Ormyridae JL DbOT68 601 Hygen474-10 2008-09 Canada Timmins (ON) GL, JL 2 1106 Ormyridae JL DbOT68 591 Hygen476-10 2008-09 Canada Timmins (ON) GL, JL 2 1107 Ormyridae JL DbOT68 601 Hygen477-10 2009-09 Canada Deux Rivieres (ON) JDS 2 1108 Ormyridae JL DbOT68 601 Hygen478-10 2009-09 Canada Deux Rivieres (ON) JDS 2 1109 Ormyridae JL DbOT68 600 Pipi127-09 2008-09 Canada Sudbury (ON) GL, JL 2 1110 Ormyridae JL DbOT68 601 Pipi128-09 2008-09 Canada Sudbury (ON) GL, JL 2 1111 Ormyridae JL DbOT68 592 Pipi129-09 2008-09 Canada Sudbury (ON) GL, JL 2 1112 Ormyridae JL DbOT68 601 Pipi130-09 2008-09 Canada Sudbury (ON) GL, JL 2 1113 Ormyridae JL DbOT68 601 Pipi131-09 2008-09 Canada Sudbury (ON) GL, JL 2 1114 Ormyridae JL DbOT68 581 Pipi139-09 2008-09 Canada Sudbury (ON) GL, JL 2 1115 Ormyridae JL DbOT68 598 Pipi153-09 2008-09 Canada Sudbury (ON) GL, JL 2 1116 Ichneumonidae JL DbOT69 601 Hygen446-10 2008-09 Canada Timmins (ON) GL, JL 2 1117 Ichneumonidae JL DbOT69 601 Hygen456-10 2009-05 Canada Waterton L N P (AB) JDS 2 1118 Ichneumonidae JL DbOT69 601 Hygen457-10 2009-05 Canada Waterton L N P (AB) JDS 2 1119 Ichneumonidae JL DbOT69 597 Pipi120-09 2008-09 Canada Sudbury (ON) GL, JL 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 1120 Ichneumonidae JL DbOT69 601 Pipi121-09 2008-09 Canada Sudbury (ON) GL, JL 2 1121 Ichneumonidae JL DbOT69 601 Rose605-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1122 Ichneumonidae JL DbOT69 601 Rose606-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1123 Ichneumonidae JL DbOT69 601 Rose608-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1124 Ichneumonidae JL DbOT69 601 Rose626-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1125 Ichneumonidae JL DbOT69 601 Rose628-08 2007-05 Canada Waterton L N P (AB) JDS, MRS 2 1126 Ichneumonidae JL DbOT70 601 Hygen452-10 2009-05 Canada Chelmsford (ON) JL 2 1127 Ichneumonidae JL DbOT70 601 Hygen453-10 2009-05 Canada Chelmsford (ON) JL 2 1128 Ichneumonidae JL DbOT71 601 Hygen451-10 2009-04 Canada Picton (ON) JDS 2 1129 Ichneumonidae JL DbOT71 601 Hygen454-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 1130 Ichneumonidae JL DbOT71 601 Hygen455-10 2009-05 Canada Manitoulin I (ON) JDR, JDS 2 1131 Ichneumonidae JL DbOT72 601 Hygen440-10 2008-09 Canada Timmins (ON) GL, JL 2 1132 Ichneumonidae JL DbOT72 601 Hygen441-10 2008-09 Canada Timmins (ON) GL, JL 2 1133 Ichneumonidae JL DbOT72 601 Hygen442-10 2009-05 Canada Chelmsford (ON) JDS 2 1134 Ichneumonidae JL DbOT72 601 Hygen443-10 2008-09 Canada Timmins (ON) GL, JL 2 1135 Ichneumonidae JL DbOT72 601 Hygen444-10 2009-09 Canada Deux Rivieres (ON) JDS 2 192 1136 Ichneumonidae JL DbOT72 601 Hygen445-10 2009-05 Canada Peachland (BC) RGL 2 1137 Ichneumonidae JL DbOT72 601 Hygen448-10 2009-05 Canada Coaldale (AB) JDS 2 1138 Ichneumonidae JL DbOT72 601 Hygen449-10 2009-05 Canada Coaldale (AB) JDS 2 1139 Ichneumonidae JL DbOT72 601 Hygen450-10 2009-04 Canada Picton (ON) JDS 2 1140 Ichneumonidae JL DbOT72 601 Pipi096-09 2008-09 Canada Sudbury (ON) GL, JL 2 1141 Ichneumonidae JL DbOT72 600 Pipi097-09 2008-09 Canada Sudbury (ON) GL, JL 2 1142 Ichneumonidae JL DbOT72 601 Pipi098-09 2008-09 Canada Sudbury (ON) GL, JL 2 1143 Ichneumonidae JL DbOT72 601 Pipi099-09 2008-09 Canada Sudbury (ON) GL, JL 2 1144 Ichneumonidae JL DbOT72 601 Pipi100-09 2008-09 Canada Sudbury (ON) GL, JL 2 1145 Ichneumonidae JL DbOT72 576 Pipi101-09 2008-09 Canada Sudbury (ON) GL, JL 2 1146 Ichneumonidae JL DbOT72 601 Pipi102-09 2008-09 Canada Sudbury (ON) GL, JL 2 1147 Ichneumonidae JL DbOT72 597 Pipi103-09 2008-09 Canada Sudbury (ON) GL, JL 2 1148 Ichneumonidae JL DbOT72 597 Pipi104-09 2008-09 Canada Sudbury (ON) GL, JL 2 1149 Ichneumonidae JL DbOT72 597 Pipi105-09 2008-09 Canada Sudbury (ON) GL, JL 2 1150 Ichneumonidae JL DbOT72 601 Pipi106-09 2008-09 Canada Sudbury (ON) GL, JL 2 1151 Ichneumonidae JL DbOT72 601 Pipi107-09 2008-09 Canada Sudbury (ON) GL, JL 2 1152 Ichneumonidae JL DbOT72 601 Pipi108-09 2008-09 Canada Sudbury (ON) GL, JL 2 1153 Ichneumonidae JL DbOT72 601 Pipi109-09 2008-09 Canada Sudbury (ON) GL, JL 2 1154 Ichneumonidae JL DbOT72 601 Pipi110-09 2008-09 Canada Sudbury (ON) GL, JL 2 Identification† no. basepairs Collection‡ DbOT ID Process ID n Specimen designation Verified COI ITS1 Date Country Site (Province or Region) Team Voucher 1155 Ichneumonidae JL DbOT72 601 Pipi111-09 2008-09 Canada Sudbury (ON) GL, JL 2 1156 Ichneumonidae JL DbOT72 597 Pipi112-09 2008-09 Canada Sudbury (ON) GL, JL 2 1157 Ichneumonidae JL DbOT72 599 Pipi113-09 2008-09 Canada Sudbury (ON) GL, JL 2 1158 Ichneumonidae JL DbOT72 597 Pipi114-09 2008-09 Canada Sudbury (ON) GL, JL 2 1159 Ichneumonidae JL DbOT72 597 Pipi115-09 2008-09 Canada Sudbury (ON) GL, JL 2 1160 Ichneumonidae JL DbOT72 584 Pipi116-09 2008-09 Canada Sudbury (ON) GL, JL 2 1161 Ichneumonidae JL DbOT72 601 Pipi117-09 2008-09 Canada Sudbury (ON) GL, JL 2 1162 Ichneumonidae JL DbOT72 601 Pipi118-09 2008-09 Canada Sudbury (ON) GL, JL 2 1163 Ichneumonidae JL DbOT72 601 Pipi119-09 2008-09 Canada Sudbury (ON) GL, JL 2 1164 Ichneumonidae JL DbOT72 601 Pipi122-09 2008-09 Canada Sudbury (ON) GL, JL 2 1165 Ichneumonidae JL DbOT72 600 Pipi123-09 2008-09 Canada Sudbury (ON) GL, JL 2 1166 Ichneumonidae JL DbOT72 595 Pipi124-09 2008-09 Canada Sudbury (ON) GL, JL 2 1167 Ichneumonidae JL DbOT72 601 Pipi125-09 2008-09 Canada Sudbury (ON) GL, JL 2 1168 Ichneumonidae JL DbOT72 600 Pipi126-09 2008-09 Canada Sudbury (ON) GL, JL 2 193 † Specimen designation: acronym of species name is as follows: D . = Diplolepis , P . = Periclistus , and T . = Torymus . Specimens of Diplolepis identified by JDS (n = 259) and JL (n = 143). Specimens of Periclistus identified by AJR (n = 26) and JL (n = 275). Specimens of Torymus identified by SR (n = 63) and JL (n = 214). Family identifications: Eulophidae, Eupelmidae, Eurytomidae, Ichneumonidae, Ormyridae, and Pteromalidae identified by JL (n = 188). Identiication verified: acronym of names is as follows: JL = Lima J, SR = Rempel S, AJR = Ritchie AJ, JDS = Shorthouse JD.

§ Species names of Ritchie (1984) are considered nomina nuda (nom . nud .). However, those species names are retained in this thesis for comparison.

‡ Collection site: acronym of province and regions are as follows: Allumette I = Allumette Island, Cypress Hills P P = Cypress Hills Provincial Park, Douglas P P = Douglas Provincial Park,Great Sand H = Great Sand Hills, H-S-I B J = Head-Smashed-In Buffalo Jump, Mantoulin I = Mantoulin Island, Niagara F = Niagara Falls, Pacific Rim N P = Pacific Rim National Park, Prince Edward C = Prince Edward County, Queen Charlotte I = Queen Charlotte Island, Smooth Rock F = Smooth Rock Falls, San Diego C = San Diego County, Solano C = Solano County, Waterton L N P = Waterton Lakes National Park, and Yolo C = Yolo County.

194 Collection team: acronym of names is as follows: FGA = Andrews FG, JB = Babin J, GB = Bagatto G, JB = Bannerman J, MJTB = Bodnar MJT, SEB = Brooks SE, CD = Dailey C, TE = Elliott T, BE = Evans B, SG = Guclu S, RH = Hyat R, RGL = Lalonde RG, JLe = Leggo J, GL = Lima G, JL = Lima J, STO = Offman ST, SR = Rempel S, ADR = Renelli AD, JDR = Renelli JD, AJR = Ritchie AJ, KNS = Schick KN, NS = Sekita N, JDS = Shorthouse JD, MRS = Shorthouse MR, JS = J Smith, MSJ = St. John Mark, AW = West A, RWW = West RW, and JW = Williams J. Collection voucher: acronym of location is as follows: 1 = JDS reference collection and 2 = JLima collection (University of Guelph). JDS reference collection: curators = AJR, JDS, and SR. contributors and volunteers = ADR, AW, BE, CD, FGA, GB, JB, JDR, JLe, JS, JW, KNS, MJTB, MRS, MSJ, NS, RGL, RH, RWW, SEB, SG, and STO. JLima collection (University of Guelph): curator = JL. volunteers: TE and GL. Appendix 2. Genome size estimation of Hymenoptera with information on specimen identification. Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 1 JL Apoidea Apidae Apinae A. mellifera DbOT 77 HYGEN552-10 f 0.24 FACS 2 JL Apoidea Apidae Apinae A. mellifera DbOT 77 HYGEN553-10 f 0.24 FACS 3 JL Apoidea Apidae Apinae A. mellifera DbOT 77 HYGEN554-10 f 0.23 FACS 4 JL Apoidea Apidae Apinae A. mellifera DbOT 77 HYGEN647-10 f 0.24 FACS 5 JL Apoidea Apidae Apinae A. mellifera DbOT 77 HYGEN648-10 f 0.24 FACS 6 JL Apoidea Apidae Apinae A. mellifera DbOT 77 HYGEN650-10 f 0.24 FACS 7 JL Apoidea Apidae Apinae A. mellifera DbOT 77 HYGEN651-10 f 0.24 FACS 8 JL Apoidea Apidae Apinae B. balteatus DbOT 78 HYGEN071-10 f 0.43 FACS 9 JL Apoidea Apidae Apinae B. rufocinctus DbOT 79 HYGEN575-10 m 0.46 FACS 10 JL Apoidea Apidae Apinae B. rufocinctus DbOT 79 HYGEN576-10 m 0.47 FACS 11 JL Apoidea Apidae Apinae B. sylvicola DbOT 80 HYGEN070-10 f 0.45 FACS 12 JL Apoidea Apidae Apinae B. sylvicola DbOT 80 HYGEN121-10 f 0.49 FACS 13 JL Apoidea Apidae Apinae B. sylvicola DbOT 80 HYGEN125-10 f 0.46 FACS 14 JL Apoidea Apidae Apinae B. impatiens DbOT 81 HYGEN560-10 f 0.51 FACS Apoidea Apidae Apinae B. impatiens DbOT 81 HYGEN634-10 195 15 JL f 0.49 FACS 16 JL Apoidea Apidae Apinae B. impatiens DbOT 81 HYGEN635-10 f 0.50 FACS 17 JL Apoidea Apidae Apinae B. impatiens DbOT 81 HYGEN636-10 f 0.50 FACS 18 JL Apoidea Apidae Apinae B. impatiens DbOT 81 HYGEN565-10 m 0.49 FACS 19 JL Apoidea Apidae Apinae B. impatiens DbOT 81 HYGEN637-10 m 0.50 FACS 20 JL Apoidea Apidae Apinae M. desponsa DbOT 82 HYGEN639-10 f 0.57 FACS 21 JL Apoidea Apidae Apinae N. perplexa DbOT 83 HYGEN542-10 m 0.27 FACS 22 JL Apoidea Apidae Colletinae H. affinis DbOT 84 HYGEN641-10 f 0.65 FACS 23 JL Apoidea Apidae Colletinae H. modestus DbOT 85 HYGEN640-10 f 0.67 FACS 24 JL Apoidea Apidae Colletinae H. mesillae DbOT 86 HYGEN908-10 f 0.38 CyAn 25 JL Apoidea Apidae Halictinae A. virescens DbOT 87 HYGEN644-10 m 0.80 FACS 26 JL Apoidea Apidae Halictinae H. rubicundus DbOT 88 HYGEN614-10 m 0.70 FACS 27 JL Apoidea Apidae Halictinae L. lineatulum DbOT 91 HYGEN586-10 m 0.70 FACS 28 JL Apoidea Apidae Halictinae L. lineatulum DbOT 91 HYGEN600-10 m 0.63 FACS 29 JL Apoidea Apidae Halictinae L. lineatulum DbOT 91 HYGEN642-10 m 0.68 FACS 30 JL Apoidea Crabronidae • R. clavipes DbOT 92 HYGEN567-10 m 0.33 FACS 31 JL Apoidea Crabronidae • R. clavipes DbOT 92 HYGEN621-10 m 0.35 FACS 32 JL Apoidea Crabronidae • P. gracilis DbOT350 HYGEN946-10 f 0.29 CyAn 33 JL Apoidea Sphecidae • • DbOT 93 HYGEN280-10 m 0.58 FACS 34 JL Apoidea Sphecidae • S. caementarium DbOT 94 HYGEN700-10 f 1.15 CyAn Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 35 JL Apoidea Sphecidae • C. californicus DbOT351 HYGEN725-10 m 0.56 CyAn 36 JL Ceraphronoidea Ceraphronidae • • • • f 0.27 CyAn 37 JL Ceraphronoidea Megaspilidae • • • • f 0.42 CyAn 38 BBCL Chalcidoidea Aphelinidae • E. eremicus • • f 0.60 Quanta 39 BBCL Chalcidoidea Aphelinidae • E. eremicus • • f 0.58 Quanta 40 BBCL Chalcidoidea Aphelinidae • E. formosa DbOT133 VNMB356-08 f 0.39 Quanta 41 BBCL Chalcidoidea Aphelinidae • E. formosa DbOT133 VNMB450-08 f 0.38 Quanta 42 JL Chalcidoidea Chalcididae • • DbOT127 HYGEN687-10 m 0.41 CyAn 43 JL Chalcidoidea Chalcididae • • DbOT127 HYGEN733-10 m 0.44 CyAn 44 JL Chalcidoidea Chalcididae • • DbOT127 HYGEN740-10 m 0.45 CyAn 45 JL Chalcidoidea Chalcididae • • DbOT127 HYGEN793-10 m 0.39 CyAn 46 JL Chalcidoidea Chalcididae • • DbOT127 HYGEN794-10 m 0.40 CyAn 47 JL Chalcidoidea Chalcididae • • DbOT127 HYGEN812-10 m 0.41 CyAn 48 JL Chalcidoidea Chalcididae • • DbOT127 HYGEN813-10 m 0.42 CyAn 49 BBCL Chalcidoidea Encyrtidae • L. dactylopii • • f 0.56 Quanta Chalcidoidea Encyrtidae • L. dactylopii • • 196 50 BBCL f 0.57 Quanta 51 BBCL Chalcidoidea Encyrtidae • L. dactylopii • • f 0.58 Quanta 52 JL Chalcidoidea Encyrtidae • • DbOT119 HYGEN775-10 f 0.30 CyAn 53 JL Chalcidoidea Encyrtidae • • DbOT119 HYGEN780-10 f 0.30 CyAn 54 JL Chalcidoidea Encyrtidae • • DbOT120 HYGEN767-10 f 0.60 CyAn 55 JL Chalcidoidea Encyrtidae • • DbOT120 HYGEN778-10 f 0.63 CyAn 56 JL Chalcidoidea Encyrtidae • • DbOT120 HYGEN779-10 f 0.63 CyAn 57 JL Chalcidoidea Encyrtidae • • DbOT120 HYGEN783-10 f 0.65 CyAn 58 JL Chalcidoidea Encyrtidae • • DbOT120 HYGEN784-10 f 0.63 CyAn 59 JL Chalcidoidea Encyrtidae • • DbOT120 HYGEN768-10 m 0.62 CyAn 60 JL Chalcidoidea Encyrtidae • • DbOT120 HYGEN774-10 m 0.62 CyAn 61 JL Chalcidoidea Encyrtidae • • DbOT120 HYGEN781-10 m 0.64 CyAn 62 JL Chalcidoidea Encyrtidae • • DbOT120 HYGEN782-10 m 0.63 CyAn 63 JL Chalcidoidea Encyrtidae • • DbOT121 HYGEN707-10 f 0.29 CyAn 64 JL Chalcidoidea Encyrtidae • • DbOT121 HYGEN708-10 m 0.30 CyAn 65 JL Chalcidoidea Encyrtidae • • DbOT121 HYGEN709-10 m 0.28 CyAn 66 JL Chalcidoidea Encyrtidae • • DbOT122 HYGEN764-10 f 0.52 CyAn 67 JL Chalcidoidea Encyrtidae • • DbOT122 HYGEN765-10 f 0.53 CyAn 68 JL Chalcidoidea Encyrtidae • • DbOT122 HYGEN766-10 f 0.54 CyAn 69 JL Chalcidoidea Encyrtidae • • DbOT122 HYGEN785-10 f 0.52 CyAn Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 70 JL Chalcidoidea Encyrtidae • • DbOT122 HYGEN786-10 f 0.53 CyAn 71 JL Chalcidoidea Encyrtidae • • DbOT122 HYGEN787-10 f 0.53 CyAn 72 JL Chalcidoidea Encyrtidae • • DbOT123 HYGEN777-10 m 0.35 CyAn 73 JL Chalcidoidea Encyrtidae • • DbOT124 HYGEN762-10 f 0.29 CyAn 74 JL Chalcidoidea Encyrtidae • • DbOT124 HYGEN702-10 m 0.29 CyAn 75 JL Chalcidoidea Encyrtidae • • DbOT124 HYGEN761-10 m 0.28 CyAn 76 JL Chalcidoidea Encyrtidae • • DbOT124 HYGEN769-10 m 0.28 CyAn 77 JL Chalcidoidea Encyrtidae • • DbOT124 HYGEN770-10 m 0.30 CyAn 78 JL Chalcidoidea Eucharitidae • • • • f 0.45 CyAn 79 JL Chalcidoidea Eulophidae • • DbOT 55 HYGEN497-10 f 0.43 FACS 80 JL Chalcidoidea Eulophidae • • DbOT 56 HYGEN498-10 f 0.43 FACS 81 JL Chalcidoidea Eulophidae • • DbOT 57 PIPI141-09 f 0.54 Quanta 82 JL Chalcidoidea Eulophidae • • DbOT 58 HYGEN516-10 f 0.55 FACS 83 JL Chalcidoidea Eulophidae • • DbOT 58 HYGEN517-10 f 0.54 FACS 84 JL Chalcidoidea Eulophidae • • DbOT 60 HYGEN511-10 f 0.49 FACS Chalcidoidea Eulophidae • • DbOT 60 HYGEN512-10 197 85 JL f 0.48 FACS 86 JL Chalcidoidea Eulophidae • • DbOT 60 HYGEN514-10 f 0.50 FACS 87 JL Chalcidoidea Eulophidae • • DbOT 61 HYGEN508-10 f 0.59 FACS 88 JL Chalcidoidea Eulophidae • • DbOT 61 HYGEN519-10 f 0.60 FACS 89 JL Chalcidoidea Eulophidae • • DbOT 61 HYGEN510-10 f 0.58 FACS 90 JL Chalcidoidea Eulophidae • • DbOT105 HYGEN703-10 f 0.51 CyAn 91 JL Chalcidoidea Eulophidae • • DbOT105 HYGEN704-10 f 0.50 CyAn 92 JL Chalcidoidea Eulophidae • • DbOT105 HYGEN677-10 m 0.47 CyAn 93 JL Chalcidoidea Eulophidae • • DbOT105 HYGEN678-10 m 0.50 CyAn 94 JL Chalcidoidea Eulophidae • • DbOT105 HYGEN679-10 m 0.50 CyAn 95 JL Chalcidoidea Eulophidae • • DbOT106 HYGEN738-10 m 0.44 CyAn 96 BBCL Chalcidoidea Eulophidae • D. isaea DbOT107 ROSE642-08 f 0.23 Quanta 97 BBCL Chalcidoidea Eulophidae • D. isaea DbOT107 ROSE643-08 f 0.23 Quanta 98 JL Chalcidoidea Eulophidae • • DbOT108 HYGEN572-10 f 0.91 FACS 99 JL Chalcidoidea Eulophidae • • DbOT108 HYGEN898-10 m 0.91 CyAn 100 JL Chalcidoidea Eulophidae • • DbOT108 HYGEN899-10 m 0.88 CyAn 101 JL Chalcidoidea Eulophidae • • DbOT108 HYGEN900-10 m 0.88 CyAn 102 JL Chalcidoidea Eulophidae • • DbOT108 HYGEN901-10 m 0.91 CyAn 103 JL Chalcidoidea Eulophidae • • DbOT109 HYGEN931-10 f 0.92 CyAn 104 JL Chalcidoidea Eulophidae • • DbOT109 HYGEN932-10 f 0.93 CyAn Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 105 JL Chalcidoidea Eulophidae • • DbOT109 HYGEN933-10 f 0.95 CyAn 106 JL Chalcidoidea Eupelmidae • • DbOT 49 HYGEN462-10 f 0.71 FACS 107 JL Chalcidoidea Eupelmidae • • DbOT 49 HYGEN464-10 f 0.68 FACS 108 JL Chalcidoidea Eupelmidae • • DbOT 49 HYGEN458-10 f 0.65 FACS 109 JL Chalcidoidea Eupelmidae • • DbOT125 HYGEN795-10 f 0.46 CyAn 110 JL Chalcidoidea Eupelmidae • • DbOT125 HYGEN796-10 f 0.54 CyAn 111 JL Chalcidoidea Eupelmidae • • DbOT125 HYGEN797-10 f 0.53 CyAn 112 JL Chalcidoidea Eupelmidae • • DbOT125 HYGEN816-10 f 0.50 CyAn 113 JL Chalcidoidea Eupelmidae • • DbOT125 HYGEN817-10 f 0.51 CyAn 114 JL Chalcidoidea Eupelmidae • • DbOT125 HYGEN818-10 f 0.53 CyAn 115 JL Chalcidoidea Eupelmidae • • DbOT125 HYGEN937-10 f 0.56 CyAn 116 JL Chalcidoidea Eupelmidae • • DbOT126 HYGEN607-10 f 0.29 FACS 117 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI084-09 f 0.51 Quanta 118 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI072-09 f 0.56 Quanta 119 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI060-09 f 0.57 Quanta Chalcidoidea Eurytomidae • • DbOT 50 PIPI048-09 198 120 JL f 0.56 Quanta 121 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI036-09 f 0.55 Quanta 122 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI024-09 f 0.56 Quanta 123 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI001-09 f 0.52 Quanta 124 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI002-09 f 0.55 Quanta 125 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI014-09 f 0.51 Quanta 126 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI026-09 f 0.50 Quanta 127 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI038-09 f 0.55 Quanta 128 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI050-09 f 0.57 Quanta 129 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI064-09 f 0.53 Quanta 130 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI040-09 f 0.55 Quanta 131 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI028-09 f 0.51 Quanta 132 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI016-09 f 0.55 Quanta 133 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI005-09 f 0.57 Quanta 134 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI089-09 f 0.47 Quanta 135 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI077-09 f 0.53 Quanta 136 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI030-09 f 0.51 Quanta 137 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI079-09 f 0.49 Quanta 138 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI045-09 f 0.55 Quanta 139 JL Chalcidoidea Eurytomidae • • DbOT 50 PIPI033-09 f 0.50 Quanta Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 140 JL Chalcidoidea Eurytomidae •• DbOT 50 PIPI010-09 f 0.50 Quanta 141 JL Chalcidoidea Eurytomidae •• DbOT 50 PIPI082-09 f 0.50 Quanta 142 JL Chalcidoidea Eurytomidae •• DbOT 50 PIPI070-09 f 0.50 Quanta 143 JL Chalcidoidea Eurytomidae •• DbOT 50 HYGEN488-10 f 0.53 FACS 144 JL Chalcidoidea Eurytomidae •• DbOT 50 HYGEN489-10 f 0.50 FACS 145 JL Chalcidoidea Eurytomidae •• DbOT 50 PIPI057-09 m 0.52 Quanta 146 JL Chalcidoidea Eurytomidae •• DbOT 51 PIPI037-09 f 0.69 Quanta 147 JL Chalcidoidea Eurytomidae •• DbOT 51 PIPI003-09 f 0.71 Quanta 148 JL Chalcidoidea Eurytomidae •• DbOT 51 PIPI031-09 f 0.68 Quanta 149 JL Chalcidoidea Eurytomidae •• DbOT 51 PIPI044-09 f 0.72 Quanta 150 JL Chalcidoidea Eurytomidae •• DbOT 51 PIPI034-09 f 0.68 Quanta 151 JL Chalcidoidea Eurytomidae •• DbOT 51 HYGEN494-10 f 0.71 FACS 152 JL Chalcidoidea Eurytomidae •• DbOT 51 PIPI073-09 m 0.72 Quanta 153 JL Chalcidoidea Eurytomidae •• DbOT 51 PIPI061-09 m 0.72 Quanta 154 JL Chalcidoidea Eurytomidae •• DbOT 51 PIPI025-09 m 0.74 Quanta Chalcidoidea Eurytomidae •• DbOT 51 PIPI065-09 199 155 JL m 0.75 Quanta 156 JL Chalcidoidea Eurytomidae •• DbOT 51 PIPI029-09 m 0.76 Quanta 157 JL Chalcidoidea Eurytomidae •• DbOT 51 PIPI043-09 m 0.67 Quanta 158 JL Chalcidoidea Eurytomidae •• DbOT 51 PIPI056-09 m 0.69 Quanta 159 JL Chalcidoidea Eurytomidae •• DbOT 51 PIPI022-09 m 0.77 Quanta 160 JL Chalcidoidea Eurytomidae •• DbOT 52 PIPI018-09 f 0.53 Quanta 161 JL Chalcidoidea Eurytomidae •• DbOT 52 PIPI067-09 f 0.50 Quanta 162 JL Chalcidoidea Eurytomidae •• DbOT 52 PIPI093-09 f 0.49 Quanta 163 JL Chalcidoidea Eurytomidae •• DbOT 52 PIPI081-09 f 0.52 Quanta 164 JL Chalcidoidea Eurytomidae •• DbOT 52 PIPI007-09 m 0.50 Quanta 165 JL Chalcidoidea Eurytomidae •• DbOT 52 PIPI091-09 m 0.51 Quanta 166 JL Chalcidoidea Eurytomidae •• DbOT 52 PIPI055-09 m 0.53 Quanta 167 JL Chalcidoidea Eurytomidae •• DbOT 52 PIPI069-09 m 0.48 Quanta 168 JL Chalcidoidea Eurytomidae •• DbOT 52 PIPI021-09 m 0.49 Quanta 169 JL Chalcidoidea Eurytomidae •• DbOT 53 HYGEN486-10 f 0.77 FACS 170 JL Chalcidoidea Eurytomidae •• DbOT 54 PIPI051-09 f 0.55 Quanta 171 JL Chalcidoidea Eurytomidae •• DbOT 54 PIPI011-09 f 0.52 Quanta 172 JL Chalcidoidea Eurytomidae •• DbOT111 HYGEN274-10 f 0.55 FACS 173 JL Chalcidoidea Eurytomidae •• DbOT112 HYGEN839-10 f 0.67 CyAn 174 JL Chalcidoidea Eurytomidae •• DbOT113 HYGEN938-10 f 0.60 CyAn Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 175 JL Chalcidoidea Eurytomidae •• DbOT114 HYGEN939-10 f 0.57 CyAn 176 JL Chalcidoidea Eurytomidae •• DbOT115 HYGEN747-10 f 0.43 CyAn 177 JL Chalcidoidea Eurytomidae •• DbOT115 HYGEN802-10 f 0.41 CyAn 178 JL Chalcidoidea Eurytomidae •• DbOT115 HYGEN803-10 f 0.41 CyAn 179 JL Chalcidoidea Eurytomidae •• DbOT115 HYGEN804-10 f 0.40 CyAn 180 JL Chalcidoidea Eurytomidae •• DbOT116 HYGEN954-10 f 0.36 CyAn 181 JL Chalcidoidea Eurytomidae •• DbOT116 HYGEN973-10 f 0.36 CyAn 182 JL Chalcidoidea Eurytomidae •• DbOT117 HYGEN960-10 f 0.42 CyAn 183 JL Chalcidoidea Eurytomidae •• DbOT118 HYGEN909-10 f 0.47 CyAn 184 JL Chalcidoidea Mymaridae •• DbOT128 HYGEN799-10 f 1.31 CyAn 185 JL Chalcidoidea Mymaridae • • DbOT128 HYGEN800-10 f 1.42 CyAn 186 JL Chalcidoidea Mymaridae • • DbOT128 HYGEN801-10 f 1.40 CyAn 187 JL Chalcidoidea Mymaridae • • DbOT128 HYGEN819-10 f 1.22 CyAn 188 JL Chalcidoidea Mymaridae • • DbOT128 HYGEN820-10 f 1.26 CyAn 189 JL Chalcidoidea Mymaridae • • DbOT128 HYGEN821-10 f 1.26 CyAn Chalcidoidea Mymaridae • • DbOT128 HYGEN872-10 200 190 JL f 1.27 CyAn 191 JL Chalcidoidea Mymaridae • • DbOT128 HYGEN873-10 f 1.28 CyAn 192 JL Chalcidoidea Mymaridae • • DbOT128 HYGEN874-10 f 1.27 CyAn 193 JL Chalcidoidea Mymaridae • • DbOT129 HYGEN849-10 f 0.27 CyAn 194 JL Chalcidoidea Mymaridae • • DbOT129 HYGEN866-10 f 0.25 CyAn 195 JL Chalcidoidea Mymaridae • • DbOT129 HYGEN867-10 f 0.24 CyAn 196 JL Chalcidoidea Mymaridae • • DbOT129 HYGEN868-10 f 0.25 CyAn 197 JL Chalcidoidea Mymaridae • • DbOT129 HYGEN884-10 m 0.26 CyAn 198 JL Chalcidoidea Ormyridae • • DbOT 67 PIPI132-09 f 0.29 Quanta 199 JL Chalcidoidea Ormyridae • • DbOT 67 HYGEN475-10 f 0.25 FACS 200 JL Chalcidoidea Ormyridae • • DbOT 68 PIPI127-09 f 0.34 Quanta 201 JL Chalcidoidea Ormyridae • • DbOT 68 PIPI130-09 f 0.33 Quanta 202 JL Chalcidoidea Ormyridae • • DbOT 68 PIPI131-09 f 0.33 Quanta 203 JL Chalcidoidea Ormyridae • • DbOT 68 PIPI129-09 f 0.33 Quanta 204 JL Chalcidoidea Ormyridae • • DbOT 68 PIPI128-09 f 0.33 Quanta 205 JL Chalcidoidea Ormyridae • • DbOT 68 HYGEN474-10 f 0.31 FACS 206 JL Chalcidoidea Ormyridae • • DbOT 68 HYGEN467-10 f 0.31 FACS 207 JL Chalcidoidea Ormyridae • • DbOT 68 HYGEN471-10 f 0.30 FACS 208 JL Chalcidoidea Ormyridae • • DbOT 68 HYGEN469-10 f 0.30 FACS 209 JL Chalcidoidea Ormyridae • • DbOT 68 HYGEN472-10 f 0.32 FACS Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 210 JL Chalcidoidea Ormyridae • • DbOT 68 HYGEN468-10 f 0.34 FACS 211 JL Chalcidoidea Ormyridae • • DbOT 68 HYGEN465-10 f 0.35 FACS 212 JL Chalcidoidea Ormyridae • • DbOT 68 HYGEN470-10 f 0.33 FACS 213 JL Chalcidoidea Ormyridae • • DbOT 68 HYGEN476-10 f 0.33 FACS 214 JL Chalcidoidea Ormyridae • • DbOT 68 PIPI139-09 m 0.31 Quanta 215 JL Chalcidoidea Ormyridae • • DbOT130 HYGEN805-10 f 0.32 CyAn 216 JL Chalcidoidea Ormyridae • • DbOT131 HYGEN950-10 f 0.34 CyAn 217 JL Chalcidoidea Ormyridae • • DbOT131 HYGEN951-10 f 0.34 CyAn 218 JL Chalcidoidea Ormyridae • • DbOT131 HYGEN955-10 f 0.35 CyAn 219 JL Chalcidoidea Ormyridae • • DbOT132 HYGEN940-10 f 0.35 CyAn 220 JL Chalcidoidea Perilampidae • • DbOT 95 HYGEN596-10 f 0.37 FACS 221 JL Chalcidoidea Perilampidae • • DbOT 95 HYGEN617-10 f 0.37 FACS 222 JL Chalcidoidea Perilampidae • • DbOT 95 HYGEN645-10 f 0.36 FACS 223 JL Chalcidoidea Perilampidae • • DbOT 96 HYGEN616-10 f 0.36 FACS 224 JL Chalcidoidea Perilampidae • • DbOT 97 HYGEN792-10 m 0.25 CyAn Chalcidoidea Pteromalidae • • DbOT 62 HYGEN506-10 201 225 JL f 0.35 FACS 226 JL Chalcidoidea Pteromalidae • • DbOT 63 PIPI140-09 f 0.32 Quanta 227 JL Chalcidoidea Pteromalidae • • DbOT 64 HYGEN502-10 f 0.41 FACS 228 JL Chalcidoidea Pteromalidae • • DbOT 65 HYGEN499-10 f 0.40 FACS 229 JL Chalcidoidea Pteromalidae • • DbOT 65 HYGEN515-10 f 0.38 FACS 230 JL Chalcidoidea Pteromalidae • • DbOT 98 HYGEN273-10 f 0.31 FACS 231 JL Chalcidoidea Pteromalidae • • DbOT 99 HYGEN284-10 f 0.37 FACS 232 JL Chalcidoidea Pteromalidae • • DbOT 99 HYGEN547-10 m 0.34 FACS 233 JL Chalcidoidea Pteromalidae • • DbOT 99 HYGEN549-10 m 0.34 FACS 234 JL Chalcidoidea Pteromalidae • • DbOT100 HYGEN141-10 f 0.38 FACS 235 JL Chalcidoidea Pteromalidae • • DbOT100 HYGEN176-10 f 0.38 FACS 236 JL Chalcidoidea Pteromalidae • • DbOT101 HYGEN197-10 f 0.73 FACS 237 JL Chalcidoidea Pteromalidae • • DbOT101 HYGEN199-10 f 0.78 FACS 238 JL Chalcidoidea Pteromalidae • • DbOT101 HYGEN231-10 m 0.74 FACS 239 JL Chalcidoidea Pteromalidae • • DbOT103 HYGEN276-10 f 0.80 FACS 240 JL Chalcidoidea Pteromalidae • • DbOT104 HYGEN082-10 m 0.78 FACS 241 JL Chalcidoidea Pteromalidae • • DbOT110 HYGEN681-10 f 0.26 CyAn 242 JL Chalcidoidea Pteromalidae • • DbOT110 HYGEN682-10 f 0.26 CyAn 243 JL Chalcidoidea Pteromalidae • • DbOT110 HYGEN684-10 f 0.26 CyAn 244 JL Chalcidoidea Pteromalidae • • DbOT110 HYGEN685-10 f 0.28 CyAn Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 245 JL Chalcidoidea Pteromalidae • • DbOT110 HYGEN686-10 f 0.27 CyAn 246 JL Chalcidoidea Pteromalidae • • DbOT110 HYGEN716-10 f 0.26 CyAn 247 JL Chalcidoidea Pteromalidae • • DbOT110 HYGEN717-10 f 0.26 CyAn 248 JL Chalcidoidea Pteromalidae • • DbOT110 HYGEN718-10 f 0.26 CyAn 249 JL Chalcidoidea Torymidae • T . sp. DbOT 38 HYGEN402-10 f 0.99 FACS 250 JL Chalcidoidea Torymidae • T . sp. DbOT 38 HYGEN399-10 f 1.00 FACS 251 JL Chalcidoidea Torymidae • T . sp. DbOT 38 HYGEN404-10 f 0.94 FACS 252 JL Chalcidoidea Torymidae • T . sp. DbOT 38 HYGEN401-10 f 0.94 FACS 253 JL Chalcidoidea Torymidae • T . chrysochlorus DbOT 40 HYGEN398-10 m 0.91 FACS 254 JL Chalcidoidea Torymidae • T . chrysochlorus DbOT 40 HYGEN383-10 m 0.90 FACS 255 JL Chalcidoidea Torymidae • T . chrysochlorus DbOT 43 HYGEN439-10 f 0.70 FACS 256 JL Chalcidoidea Torymidae • T . chrysochlorus DbOT 43 HYGEN407-10 f 0.70 FACS 257 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 TORNA103-10 f 0.76 FACS 258 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN424-10 f 0.77 FACS 259 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN423-10 f 0.76 FACS Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN391-10 202 260 JL f 0.79 FACS 261 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN396-10 f 0.81 FACS 262 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN417-10 f 0.79 FACS 263 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN409-10 f 0.76 FACS 264 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN387-10 f 0.80 FACS 265 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN384-10 f 0.77 FACS 266 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN390-10 f 0.78 FACS 267 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN389-10 f 0.80 FACS 268 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN388-10 f 0.79 FACS 269 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN394-10 f 0.71 FACS 270 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN393-10 f 0.75 FACS 271 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN395-10 f 0.75 FACS 272 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN392-10 f 0.74 FACS 273 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN397-10 f 0.78 FACS 274 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN385-10 f 0.79 FACS 275 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN386-10 f 0.78 FACS 276 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 HYGEN381-10 f 0.75 FACS 277 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 PIPI179-09 m 0.78 Quanta 278 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 PIPI133-09 m 0.77 Quanta 279 JL Chalcidoidea Torymidae • T . bedeguaris DbOT 44 PIPI134-09 m 0.80 Quanta Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 280 JL Chalcidoidea Torymidae •T . bedeguaris DbOT 44 PIPI138-09 m 0.78 Quanta 281 JL Chalcidoidea Torymidae •T . bedeguaris DbOT 44 HYGEN421-10 m 0.73 FACS 282 JL Chalcidoidea Torymidae • T. bedeguaris /solitarius DbOT 45 HYGEN413-10 f 0.74 FACS 283 JL Chalcidoidea Torymidae •• DbOT136 HYGEN924-10 f 0.50 CyAn 284 JL Chalcidoidea Torymidae •• DbOT136 HYGEN923-10 m 0.51 CyAn 285 JL Chalcidoidea Torymidae •• DbOT137 HYGEN943-10 f 0.61 CyAn 286 JL Chalcidoidea Torymidae •• DbOT137 HYGEN976-10 f 0.58 CyAn 287 JL Chalcidoidea Torymidae •• DbOT137 HYGEN807-10 m 0.60 CyAn 288 JL Chalcidoidea Torymidae •• DbOT137 HYGEN828-10 m 0.55 CyAn 289 JL Chalcidoidea Torymidae •• DbOT138 HYGEN623-10 f 0.59 FACS 290 JL Chalcidoidea Torymidae •• DbOT139 HYGEN806-10 m 0.57 CyAn 291 BIC Chalcidoidea Trichogrammatidae • T. brassicae DbOT134 ROSE653-08 f 0.25 Quanta 292 BIC Chalcidoidea Trichogrammatidae • T. brassicae DbOT134 ROSE654-08 f 0.24 Quanta 293 BIC Chalcidoidea Trichogrammatidae • T. brassicae DbOT134 ROSE655-08 f 0.23 Quanta 294 BIC Chalcidoidea Trichogrammatidae • T. platneri DbOT135 ROSE656-08 f 0.20 Quanta Chalcidoidea Trichogrammatidae • T. platneri DbOT135 ROSE657-08 203 295 BIC f 0.20 Quanta 296 BIC Chalcidoidea Trichogrammatidae • T. platneri DbOT135 ROSE658-08 f 0.20 Quanta 297 JL Chrysidoidea Chrysididae •• DbOT140 HYGEN734-10 f 0.27 CyAn 298 JL Chrysidoidea Chrysididae •• DbOT141 HYGEN695-10 f 0.24 CyAn 299 JL Chrysidoidea Bethylidae •• •• f 0.29 CyAn 300 JL Chrysidoidea Dryinidae •• •• m 0.26 CyAn 301 JL Cynipoidea Cynipidae • D. eglanteriae DbOT 01 HYGEN980-10 f 0.48 CyAn 302 JL Cynipoidea Cynipidae • D. eglanteriae DbOT 01 HYGEN981-10 f 0.48 CyAn 303 JL Cynipoidea Cynipidae • D. eglanteriae DbOT 01 HYGEN982-10 f 0.48 CyAn 304 JL Cynipoidea Cynipidae • D. eglanteriae DbOT 01 HYGEN983-10 f 0.49 CyAn 305 JL Cynipoidea Cynipidae • D. bicolor •• f 0.62 Quanta 306 JL Cynipoidea Cynipidae • D. bassetti •• m 0.56 Quanta 307 JL Cynipoidea Cynipidae • D. bassetti •• m 0.72 Quanta 308 JL Cynipoidea Cynipidae • D. sp. DbOT 10 HYGEN339-10 f 0.61 Quanta 309 JL Cynipoidea Cynipidae • D. sp. DbOT 10 HYGEN340-10 f 0.63 Quanta 310 JL Cynipoidea Cynipidae • D. rosae DbOT 11 HYGEN343-10 f 0.62 Quanta 311 JL Cynipoidea Cynipidae • D. rosae DbOT 11 HYGEN348-10 f 0.62 Quanta 312 JL Cynipoidea Cynipidae • D. rosae DbOT 11 HYGEN341-10 f 0.66 Quanta 313 JL Cynipoidea Cynipidae • D. rosae DbOT 11 HYGEN347-10 f 0.67 Quanta 314 JL Cynipoidea Cynipidae • D. rosae DbOT 11 HYGEN342-10 f 0.67 Quanta Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 315 JL Cynipoidea Cynipidae • D. rosae DbOT 11 HYGEN344-10 f 0.63 Quanta 316 JL Cynipoidea Cynipidae • D. rosaefolii DbOT 13 PIPI158-09 f 0.42 Quanta 317 JL Cynipoidea Cynipidae • D. rosaefolii DbOT 13 HYGEN349-10 f 0.41 Quanta 318 JL Cynipoidea Cynipidae • D. rosaefolii DbOT 13 HYGEN350-10 f 0.42 Quanta 319 JL Cynipoidea Cynipidae • D. rosaefolii DbOT 13 HYGEN354-10 f 0.42 Quanta 320 JL Cynipoidea Cynipidae • D. rosaefolii DbOT 13 HYGEN351-10 f 0.43 FACS 321 JL Cynipoidea Cynipidae • D. rosaefolii DbOT 13 HYGEN355-10 f 0.40 FACS 322 JL Cynipoidea Cynipidae • D. rosaefolii DbOT 13 PIPI167-09 m 0.42 Quanta 323 JL Cynipoidea Cynipidae • D. rosaefolii DbOT 13 PIPI169-09 m 0.43 Quanta 324 JL Cynipoidea Cynipidae • D. fusiformans DbOT 14 HYGEN299-10 f 0.41 Quanta 325 JL Cynipoidea Cynipidae • D. fusiformans DbOT 14 HYGEN302-10 f 0.41 Quanta 326 JL Cynipoidea Cynipidae • D. ignota /nebulosa /variabilis DbOT 15 HYGEN322-10 f 0.61 Quanta 327 JL Cynipoidea Cynipidae • D. ignota /nebulosa /variabilis DbOT 15 HYGEN376-10 f 0.57 Quanta 328 JL Cynipoidea Cynipidae • D. ignota /nebulosa /variabilis DbOT 15 HYGEN317-10 f 0.58 Quanta 329 JL Cynipoidea Cynipidae • D. ignota /nebulosa /variabilis DbOT 15 HYGEN375-10 f 0.57 Quanta Cynipoidea Cynipidae • D. ignota /nebulosa /variabilis DbOT 15 HYGEN320-10 204 330 JL f 0.61 Quanta 331 JL Cynipoidea Cynipidae • D. ignota /nebulosa /variabilis DbOT 15 HYGEN377-10 f 0.59 Quanta 332 JL Cynipoidea Cynipidae • D. ignota /nebulosa /variabilis DbOT 15 HYGEN318-10 f 0.61 Quanta 333 JL Cynipoidea Cynipidae • D. ignota /nebulosa /variabilis DbOT 15 HYGEN310-10 f 0.57 FACS 334 JL Cynipoidea Cynipidae • D. ignota /nebulosa /variabilis DbOT 15 HYGEN378-10 m 0.59 Quanta 335 JL Cynipoidea Cynipidae • D. gracilis DbOT 16 HYGEN308-10 f 0.61 FACS 336 JL Cynipoidea Cynipidae • D. nodulosa •• f 0.63 Quanta 337 JL Cynipoidea Cynipidae • D. triforma DbOT 18 PIPI189-09 f 0.63 Quanta 338 JL Cynipoidea Cynipidae • D. triforma DbOT 18 PIPI181-09 f 0.63 Quanta 339 JL Cynipoidea Cynipidae • D. triforma DbOT 18 PIPI186-09 f 0.63 Quanta 340 JL Cynipoidea Cynipidae • D. triforma DbOT 18 PIPI187-09 f 0.63 Quanta 341 JL Cynipoidea Cynipidae • D. triforma DbOT 18 HYGEN327-10 f 0.63 Quanta 342 JL Cynipoidea Cynipidae • D. triforma DbOT 18 HYGEN326-10 f 0.63 Quanta 343 JL Cynipoidea Cynipidae • D. triforma DbOT 18 HYGEN323-10 f 0.65 Quanta 344 JL Cynipoidea Cynipidae • D. triforma DbOT 18 HYGEN324-10 f 0.65 Quanta 345 JL Cynipoidea Cynipidae • D. triforma DbOT 18 HYGEN984-10 f 0.62 CyAn 346 JL Cynipoidea Cynipidae • D. triforma DbOT 18 HYGEN989-10 f 0.63 CyAn 347 JL Cynipoidea Cynipidae • D. triforma DbOT 18 HYGEN991-10 f 0.65 CyAn 348 JL Cynipoidea Cynipidae • D. triforma DbOT 18 PIPI183-09 m 0.57 Quanta 349 JL Cynipoidea Cynipidae • D. triforma DbOT 18 PIPI185-09 m 0.62 Quanta Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 350 JL Cynipoidea Cynipidae • D. triforma DbOT 18 HYGEN987-10 m 0.66 CyAn 351 JL Cynipoidea Cynipidae • D. triforma DbOT 18 HYGEN992-10 m 0.64 CyAn 352 JL Cynipoidea Cynipidae • D. triforma DbOT 19 PIPI190-09 f 0.66 Quanta 353 JL Cynipoidea Cynipidae • D. triforma DbOT 19 HYGEN325-10 f 0.63 Quanta 354 JL Cynipoidea Cynipidae • D. spinosa DbOT 20 HYGEN430-10 f 0.64 Quanta 355 JL Cynipoidea Cynipidae • D. spinosa DbOT 20 HYGEN433-10 f 0.62 Quanta 356 JL Cynipoidea Cynipidae • D. spinosa DbOT 20 HYGEN428-10 f 0.64 Quanta 357 JL Cynipoidea Cynipidae • D. spinosa DbOT 20 HYGEN426-10 f 0.61 Quanta 358 JL Cynipoidea Cynipidae • D. spinosa DbOT 20 HYGEN434-10 f 0.63 Quanta 359 JL Cynipoidea Cynipidae • D. spinosa DbOT 20 HYGEN427-10 f 0.64 FACS 360 JL Cynipoidea Cynipidae • D. spinosa DbOT 20 HYGEN425-10 m 0.64 Quanta 361 JL Cynipoidea Cynipidae • D. spinosa DbOT 20 HYGEN985-10 m 0.66 CyAn 362 JL Cynipoidea Cynipidae • D. spinosa DbOT 20 HYGEN986-10 m 0.65 CyAn 363 JL Cynipoidea Cynipidae • D. spinosa DbOT 20 HYGEN988-10 m 0.68 CyAn 364 JL Cynipoidea Cynipidae • D. spinosa DbOT 20 HYGEN990-10 m 0.64 CyAn Cynipoidea Cynipidae • D. radicum DbOT 23 HYGEN363-10 205 365 JL f 0.62 Quanta 366 JL Cynipoidea Cynipidae • D. radicum DbOT 23 HYGEN364-10 f 0.60 Quanta 367 JL Cynipoidea Cynipidae •P . pirata DbOT 26 HYGEN331-10 f 0.25 Quanta 368 JL Cynipoidea Cynipidae •P . pirata DbOT 26 HYGEN334-10 f 0.24 Quanta 369 JL Cynipoidea Cynipidae •P . pirata DbOT 26 HYGEN332-10 f 0.26 Quanta 370 JL Cynipoidea Cynipidae •P . pirata DbOT 26 HYGEN438-10 m 0.21 Quanta 371 JL Cynipoidea Cynipidae •P . pirata DbOT 26 HYGEN435-10 m 0.27 Quanta 372 JL Cynipoidea Cynipidae •P . pirata DbOT 26 HYGEN437-10 m 0.26 Quanta 373 JL Cynipoidea Cynipidae •P . pirata DbOT 27 HYGEN436-10 f 0.23 Quanta 374 JL Cynipoidea Cynipidae •P . sp. DbOT 28 HYGEN373-10 m 0.26 Quanta 375 JL Cynipoidea Cynipidae •P . sp. DbOT 28 HYGEN371-10 m 0.21 FACS 376 JL Cynipoidea Cynipidae •P . sp. DbOT 28 HYGEN372-10 m 0.21 FACS 377 JL Cynipoidea Cynipidae • "P. weldi (nom . nud .)"‡ DbOT 30 PIPI175-09 f 0.23 Quanta 378 JL Cynipoidea Cynipidae • "P. weldi (nom . nud .)"‡ DbOT 30 HYGEN295-10 f 0.26 FACS 379 JL Cynipoidea Cynipidae • "P. weldi (nom . nud .)"‡ DbOT 30 PIPI172-09 m 0.26 Quanta 380 JL Cynipoidea Cynipidae • "P. weldi (nom . nud .)"‡ DbOT 30 PIPI178-09 m 0.27 Quanta 381 JL Cynipoidea Cynipidae • "P. weldi (nom . nud .)"‡ DbOT 30 PIPI176-09 m 0.25 Quanta 382 JL Cynipoidea Cynipidae • "P. weldi (nom . nud .)"‡ DbOT 30 PIPI174-09 m 0.24 Quanta 383 JL Cynipoidea Cynipidae • "P. weldi (nom . nud .)"‡ DbOT 30 HYGEN294-10 m 0.22 FACS 384 JL Cynipoidea Cynipidae • "P. weldi (nom . nud .)"‡ DbOT 30 HYGEN370-10 m 0.26 FACS Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 385 JL Cynipoidea Cynipidae • "P. weldi (nom . nud .)"‡ DbOT 30 HYGEN366-10 m 0.24 FACS 386 JL Cynipoidea Cynipidae • "P. ashmeadi/ cataractans (nom . nud .)"‡ DbOT 32 PIPI162-09 f 0.25 Quanta 387 JL Cynipoidea Cynipidae • "P. ashmeadi/ cataractans (nom . nud .)"‡ DbOT 32 PIPI170-09 f 0.25 Quanta 388 JL Cynipoidea Cynipidae • "P. ashmeadi/ cataractans (nom . nud .)"‡ DbOT 32 PIPI163-09 f 0.25 Quanta 389 JL Cynipoidea Cynipidae • "P. ashmeadi/ cataractans (nom . nud .)"‡ DbOT 32 PIPI168-09 f 0.24 Quanta 390 JL Cynipoidea Cynipidae • "P. ashmeadi/ cataractans (nom . nud .)"‡ DbOT 32 PIPI160-09 f 0.22 Quanta 391 JL Cynipoidea Cynipidae • "P. ashmeadi/ cataractans (nom . nud .)"‡ DbOT 32 HYGEN356-10 f 0.23 Quanta 392 JL Cynipoidea Cynipidae • "P. ashmeadi/ cataractans (nom . nud .)"‡ DbOT 32 HYGEN358-10 f 0.23 FACS 393 JL Cynipoidea Cynipidae • "P. ashmeadi/ cataractans (nom . nud .)"‡ DbOT 32 PIPI177-09 m 0.23 Quanta 394 JL Cynipoidea Cynipidae • "P. ashmeadi/ cataractans (nom . nud .)"‡ DbOT 32 PIPI173-09 m 0.23 Quanta 395 JL Cynipoidea Cynipidae • "P. ashmeadi/ cataractans (nom . nud .)"‡ DbOT 32 PIPI165-09 m 0.19 Quanta 396 JL Cynipoidea Cynipidae • "P. ashmeadi/ cataractans (nom . nud .)"‡ DbOT 32 HYGEN367-10 m 0.22 FACS 397 JL Cynipoidea Cynipidae •P . sp. DbOT 33 HYGEN312-10 f 0.24 Quanta 398 JL Cynipoidea Cynipidae •P . sp. DbOT 33 HYGEN314-10 f 0.23 Quanta 399 JL Cynipoidea Cynipidae •P . sp. DbOT 33 HYGEN316-10 f 0.23 Quanta Cynipoidea Cynipidae •P . sp. DbOT 36 HYGEN306-10 206 400 JL f 0.25 Quanta 401 JL Cynipoidea Cynipidae •P . sp. DbOT 36 HYGEN288-10 m 0.23 FACS 402 JL Cynipoidea Cynipidae •P . sp. DbOT 36 HYGEN368-10 m 0.24 FACS 403 JL Cynipoidea Cynipidae •• DbOT142 HYGEN748-10 f 1.86 CyAn 404 JL Cynipoidea Cynipidae •• DbOT142 HYGEN699-10 m 1.99 CyAn 405 JL Cynipoidea Cynipidae •• DbOT142 HYGEN730-10 m 1.91 CyAn 406 JL Cynipoidea Cynipidae •• DbOT142 HYGEN808-10 m 1.94 CyAn 407 JL Cynipoidea Cynipidae •• DbOT142 HYGEN809-10 m 1.96 CyAn 408 JL Cynipoidea Cynipidae •• DbOT142 HYGEN810-10 m 2.08 CyAn 409 JL Cynipoidea Cynipidae •• DbOT142 HYGEN811-10 m 2.07 CyAn 410 JL Cynipoidea Cynipidae •• DbOT143 NJCGS1166-11 f 1.36 Cytomics 411 JL Cynipoidea Cynipidae •• DbOT143 NJCGS1167-11 f 1.34 Cytomics 412 JL Cynipoidea Cynipidae •• DbOT144 HYGEN974-10 f 1.94 CyAn 413 JL Cynipoidea Cynipidae •• DbOT144 HYGEN978-10 f 1.94 CyAn 414 JL Cynipoidea Cynipidae •• DbOT145 HYGEN979-10 f 1.74 CyAn 415 JL Cynipoidea Cynipidae •• DbOT146 HYGEN956-10 f 0.38 CyAn 416 JL Cynipoidea Cynipidae •• DbOT146 HYGEN957-10 f 0.38 CyAn 417 JL Cynipoidea Cynipidae •• DbOT146 NJCGS1164-11 f 0.36 Cytomics 418 JL Cynipoidea Cynipidae •• DbOT147 HYGEN942-10 f 0.33 CyAn 419 JL Cynipoidea Cynipidae •• DbOT147 HYGEN945-10 f 0.33 CyAn Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 420 JL Cynipoidea Cynipidae • • DbOT147 HYGEN947-10 f 0.34 CyAn 421 JL Cynipoidea Cynipidae • • DbOT147 HYGEN948-10 f 0.34 CyAn 422 JL Cynipoidea Cynipidae • • DbOT147 HYGEN952-10 f 0.31 CyAn 423 JL Cynipoidea Cynipidae • • DbOT147 HYGEN963-10 f 0.32 CyAn 424 JL Cynipoidea Cynipidae • • DbOT147 HYGEN964-10 f 0.34 CyAn 425 JL Cynipoidea Cynipidae • • DbOT147 HYGEN965-10 f 0.33 CyAn 426 JL Cynipoidea Cynipidae • • DbOT147 HYGEN966-10 f 0.30 CyAn 427 JL Cynipoidea Cynipidae • • DbOT147 HYGEN967-10 f 0.27 CyAn 428 JL Cynipoidea Cynipidae • • DbOT147 HYGEN968-10 f 0.29 CyAn 429 JL Cynipoidea Cynipidae • • DbOT147 HYGEN969-10 f 0.29 CyAn 430 JL Cynipoidea Cynipidae • • DbOT147 HYGEN831-10 m 0.30 CyAn 431 JL Cynipoidea Cynipidae • • DbOT155 HYGEN972-10 f 0.27 CyAn 432 JL Cynipoidea Cynipidae • • DbOT155 HYGEN975-10 f 0.28 CyAn 433 JL Cynipoidea Cynipidae • • DbOT155 HYGEN977-10 f 0.28 CyAn 434 JL Cynipoidea Cynipidae • • DbOT156 HYGEN958-10 f 0.36 CyAn Cynipoidea Cynipidae • • DbOT156 HYGEN959-10 207 435 JL f 0.36 CyAn 436 JL Cynipoidea Cynipidae • • DbOT157 HYGEN970-10 f 0.36 CyAn 437 JL Cynipoidea Cynipidae • • DbOT157 HYGEN971-10 f 0.37 CyAn 438 JL Cynipoidea Figitidae • • DbOT148 HYGEN993-10 f 0.47 Quanta 439 JL Cynipoidea Figitidae • • DbOT148 HYGEN994-10 f 0.37 Quanta 440 JL Cynipoidea Figitidae • • DbOT149 HYGEN540-10 f 0.59 FACS 441 JL Cynipoidea Figitidae • • DbOT150 HYGEN735-10 f 0.42 CyAn 442 JL Cynipoidea Figitidae • • DbOT151 HYGEN691-10 f 0.33 CyAn 443 JL Cynipoidea Figitidae • • DbOT152 HYGEN754-10 f 0.43 CyAn 444 JL Cynipoidea Figitidae • • DbOT153 HYGEN745-10 f 0.53 CyAn 445 JL Cynipoidea Figitidae • • DbOT154 HYGEN815-10 f 0.78 CyAn 446 JL Diaprioidea Diapriidae • • DbOT158 HYGEN757-10 f 0.70 CyAn 447 JL Diaprioidea Diapriidae • • DbOT158 HYGEN755-10 m 0.64 CyAn 448 JL Diaprioidea Diapriidae • • DbOT158 HYGEN759-10 m 0.70 CyAn 449 JL Diaprioidea Diapriidae • • DbOT158 HYGEN760-10 m 0.77 CyAn 450 JL Diaprioidea Diapriidae • • DbOT158 HYGEN771-10 m 0.61 CyAn 451 JL Diaprioidea Diapriidae • • DbOT158 HYGEN772-10 m 0.82 CyAn 452 JL Diaprioidea Diapriidae • • DbOT159 HYGEN751-10 m 0.60 CyAn 453 JL Diaprioidea Diapriidae • • DbOT161 HYGEN756-10 f 0.79 CyAn 454 JL Diaprioidea Diapriidae • • DbOT161 HYGEN758-10 f 0.71 CyAn Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 455 JL Evanioidea Gasteruptiidae • • DbOT162 HYGEN698-10 f 0.29 CyAn 456 JL Ichneumonoidea Braconidae Brachistinae • DbOT172 HYGEN921-10 m 0.15 CyAn 457 JL Ichneumonoidea Braconidae Helconinae W. ligator DbOT173 HYGEN624-10 f 0.13 FACS 458 JL Ichneumonoidea Braconidae Macrocentrinae • DbOT174 HYGEN912-10 f 0.14 CyAn 459 JL Ichneumonoidea Braconidae Macrocentrinae • DbOT174 HYGEN913-10 f 0.15 CyAn 460 JL Ichneumonoidea Braconidae Macrocentrinae • DbOT174 HYGEN914-10 f 0.14 CyAn 461 JL Ichneumonoidea Braconidae Macrocentrinae • DbOT175 HYGEN925-10 f 0.14 CyAn 462 JL Ichneumonoidea Braconidae Macrocentrinae • DbOT175 HYGEN926-10 f 0.15 CyAn 463 JL Ichneumonoidea Braconidae Macrocentrinae • DbOT175 HYGEN927-10 f 0.15 CyAn 464 JL Ichneumonoidea Braconidae Euphorinae P. braynae DbOT176 HYGEN195-10 f 0.18 FACS 465 JL Ichneumonoidea Braconidae Euphorinae P. braynae DbOT176 HYGEN207-10 f 0.18 FACS 466 JL Ichneumonoidea Braconidae Meteorinae • DbOT177 HYGEN918-10 m 0.16 CyAn 467 JL Ichneumonoidea Braconidae Meteorinae • DbOT178 HYGEN263-10 f 0.13 FACS 468 JL Ichneumonoidea Braconidae Meteorinae • DbOT179 HYGEN562-10 f 0.14 FACS 469 JL Ichneumonoidea Braconidae Meteorinae • DbOT180 HYGEN582-10 f 0.13 FACS Ichneumonoidea Braconidae Aphidiinae • DbOT181 HYGEN528-10 208 470 JL f 0.15 FACS 471 JL Ichneumonoidea Braconidae Aphidiinae • DbOT181 HYGEN527-10 m 0.13 FACS 472 BBCL Ichneumonoidea Braconidae Aphidiinae A. colemani DbOT182 ROSE633-08 f 0.11 Quanta 473 BBCL Ichneumonoidea Braconidae Aphidiinae A. colemani DbOT182 ROSE634-08 f 0.11 Quanta 474 BBCL Ichneumonoidea Braconidae Aphidiinae A. ervi DbOT183 ROSE635-08 m 0.16 Quanta 475 BBCL Ichneumonoidea Braconidae Aphidiinae A. ervi DbOT183 ROSE636-08 m 0.16 Quanta 476 BBCL Ichneumonoidea Braconidae Aphidiinae A. ervi DbOT183 ROSE637-08 m 0.14 Quanta 477 JL Ichneumonoidea Braconidae Rhyssalinae • DbOT184 HYGEN072-10 f 0.13 FACS 478 JL Ichneumonoidea Braconidae Rhyssalinae • DbOT185 HYGEN903-10 f 0.12 CyAn 479 JL Ichneumonoidea Braconidae Rhyssalinae • DbOT185 HYGEN904-10 f 0.12 CyAn 480 JL Ichneumonoidea Braconidae Rhyssalinae • DbOT185 HYGEN905-10 f 0.12 CyAn 481 JL Ichneumonoidea Braconidae Rhyssalinae • DbOT185 HYGEN906-10 f 0.12 CyAn 482 JL Ichneumonoidea Braconidae Hormiinae • DbOT186 HYGEN229-10 m 0.17 FACS 483 JL Ichneumonoidea Braconidae Rogadinae • DbOT187 HYGEN673-10 f 0.27 CyAn 484 JL Ichneumonoidea Braconidae Rogadinae • DbOT187 HYGEN693-10 f 0.27 CyAn 485 JL Ichneumonoidea Braconidae Rogadinae • DbOT187 HYGEN710-10 f 0.27 CyAn 486 JL Ichneumonoidea Braconidae Rogadinae • DbOT187 HYGEN711-10 f 0.27 CyAn 487 JL Ichneumonoidea Braconidae Rogadinae • DbOT188 HYGEN587-10 f 0.26 FACS 488 JL Ichneumonoidea Braconidae Rogadinae C. fumiferanae DbOT189 HYGEN887-10 m 0.20 CyAn 489 JL Ichneumonoidea Braconidae Braconinae • DbOT190 HYGEN220-10 f 0.23 FACS Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 490 JL Ichneumonoidea Braconidae Alysiinae • DbOT191 HYGEN200-10 f 0.18 FACS 491 JL Ichneumonoidea Braconidae Alysiinae • DbOT191 HYGEN223-10 m 0.18 FACS 492 JL Ichneumonoidea Braconidae Alysiinae • DbOT192 HYGEN196-10 f 0.35 FACS 493 JL Ichneumonoidea Braconidae Alysiinae • DbOT193 HYGEN222-10 f 0.40 FACS 494 JL Ichneumonoidea Braconidae Alysiinae • DbOT194 HYGEN583-10 f 0.57 FACS 495 JL Ichneumonoidea Braconidae Alysiinae • DbOT195 HYGEN618-10 f 0.47 FACS 496 JL Ichneumonoidea Braconidae Alysiinae • DbOT196 HYGEN598-10 f 0.13 FACS 497 JL Ichneumonoidea Braconidae Alysiinae • DbOT197 HYGEN275-10 f 0.28 FACS 498 JL Ichneumonoidea Braconidae Alysiinae • DbOT197 HYGEN278-10 f 0.29 FACS 499 JL Ichneumonoidea Braconidae Alysiinae • DbOT198 HYGEN561-10 f 0.20 FACS 500 JL Ichneumonoidea Braconidae Alysiinae • DbOT198 HYGEN563-10 m 0.19 FACS 501 JL Ichneumonoidea Braconidae Alysiinae • DbOT199 HYGEN568-10 f 0.13 FACS 502 BBCL Ichneumonoidea Braconidae Alysiinae D. sibirica DbOT200 ROSE639-08 f 0.16 Quanta 503 BBCL Ichneumonoidea Braconidae Alysiinae D. sibirica DbOT200 ROSE638-08 m 0.17 Quanta 504 BBCL Ichneumonoidea Braconidae Alysiinae D. sibirica DbOT200 ROSE640-08 m 0.17 Quanta Ichneumonoidea Braconidae Microgastrinae • DbOT202 HYGEN023-10 209 505 JL m 0.17 FACS 506 JL Ichneumonoidea Braconidae Microgastrinae • DbOT203 HYGEN185-10 f 0.51 FACS 507 JL Ichneumonoidea Braconidae Microgastrinae • DbOT204 HYGEN136-10 f 0.27 FACS 508 JL Ichneumonoidea Braconidae Microgastrinae • DbOT205 HYGEN860-10 f 0.23 CyAn 509 JL Ichneumonoidea Braconidae Microgastrinae • DbOT205 HYGEN882-10 f 0.23 CyAn 510 JL Ichneumonoidea Braconidae Microgastrinae • DbOT206 HYGEN936-10 f 0.24 CyAn 511 JL Ichneumonoidea Braconidae Microgastrinae • DbOT207 HYGEN895-10 f 0.23 CyAn 512 JL Ichneumonoidea Braconidae Microgastrinae • DbOT207 HYGEN869-10 m 0.22 CyAn 513 JL Ichneumonoidea Braconidae Meteorinae M. trachynotus DbOT208 HYGEN891-10 f 0.14 CyAn 514 JL Ichneumonoidea Braconidae Meteorinae M. trachynotus DbOT208 HYGEN893-10 f 0.14 CyAn 515 JL Ichneumonoidea Braconidae Meteorinae M. trachynotus DbOT208 HYGEN870-10 m 0.14 CyAn 516 JL Ichneumonoidea Braconidae Cheloninae C. inanitus DbOT209 HYGEN017-10 f 0.15 FACS 517 JL Ichneumonoidea Braconidae Cheloninae C. inanitus DbOT209 HYGEN020-10 f 0.15 FACS 518 JL Ichneumonoidea Braconidae Cheloninae C. inanitus DbOT209 HYGEN021-10 f 0.15 FACS 519 JL Ichneumonoidea Braconidae Cheloninae C. inanitus DbOT209 HYGEN035-10 f 0.15 FACS 520 JL Ichneumonoidea Braconidae Ichneutinae • DbOT210 HYGEN045-10 f 0.18 FACS 521 JL Ichneumonoidea Braconidae Ichneutinae • DbOT210 HYGEN075-10 f 0.18 FACS 522 JL Ichneumonoidea Braconidae Ichneutinae • DbOT210 HYGEN127-10 f 0.18 FACS 523 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 69 HYGEN456-10 f 0.42 FACS 524 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 69 HYGEN457-10 f 0.43 FACS Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 525 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 69 HYGEN446-10 m 0.44 FACS 526 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 70 HYGEN452-10 m 0.44 FACS 527 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 70 HYGEN453-10 m 0.38 FACS 528 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 71 HYGEN454-10 f 0.47 FACS 529 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 71 HYGEN455-10 f 0.48 FACS 530 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 71 HYGEN451-10 f 0.45 FACS 531 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI119-09 f 0.41 Quanta 532 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI118-09 f 0.40 Quanta 533 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI117-09 f 0.41 Quanta 534 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI116-09 f 0.41 Quanta 535 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI115-09 f 0.41 Quanta 536 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI109-09 f 0.43 Quanta 537 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI108-09 f 0.40 Quanta 538 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI106-09 f 0.39 Quanta 539 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI105-09 f 0.42 Quanta Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI103-09 210 540 JL f 0.35 Quanta 541 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI102-09 f 0.41 Quanta 542 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI100-09 f 0.38 Quanta 543 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI101-09 f 0.43 Quanta 544 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI123-09 f 0.40 Quanta 545 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI124-09 f 0.40 Quanta 546 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 HYGEN448-10 f 0.38 FACS 547 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 HYGEN449-10 f 0.43 FACS 548 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 HYGEN440-10 f 0.42 FACS 549 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 HYGEN441-10 f 0.40 FACS 550 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 HYGEN450-10 f 0.42 FACS 551 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 HYGEN442-10 f 0.41 FACS 552 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 HYGEN445-10 f 0.42 FACS 553 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI097-09 m 0.46 Quanta 554 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI098-09 m 0.45 Quanta 555 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI126-09 m 0.40 Quanta 556 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 PIPI125-09 m 0.40 Quanta 557 JL Ichneumonoidea Ichneumonidae Orthopelmatinae • DbOT 72 HYGEN443-10 m 0.41 FACS 558 JL Ichneumonoidea Ichneumonidae • • DbOT211 HYGEN019-10 f 0.27 FACS 559 JL Ichneumonoidea Ichneumonidae • • DbOT212 HYGEN175-10 f 0.42 FACS Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 560 JL Ichneumonoidea Ichneumonidae Ichneumoninae • DbOT213 HYGEN272-10 m 0.42 FACS 561 JL Ichneumonoidea Ichneumonidae Ichneumoninae • DbOT213 HYGEN281-10 m 0.43 FACS 562 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT214 HYGEN090-10 m 0.29 FACS 563 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT215 HYGEN727-10 f 0.34 CyAn 564 JL Ichneumonoidea Ichneumonidae Ichneumoninae • DbOT217 HYGEN078-10 f 0.37 FACS 565 JL Ichneumonoidea Ichneumonidae Ichneumoninae • DbOT218 HYGEN059-10 f 0.40 FACS 566 JL Ichneumonoidea Ichneumonidae Ichneumoninae • DbOT219 HYGEN057-10 m 0.36 FACS 567 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT220 HYGEN186-10 m 0.30 FACS 568 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT220 HYGEN203-10 m 0.29 FACS 569 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT221 HYGEN091-10 m 0.30 FACS 570 JL Ichneumonoidea Ichneumonidae Campopleginae V. canescens DbOT222 HYGEN608-10 f 0.29 FACS 571 JL Ichneumonoidea Ichneumonidae Campopleginae V. canescens DbOT222 HYGEN610-10 f 0.30 FACS 572 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT223 HYGEN262-10 m 0.24 FACS 573 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT223 HYGEN611-10 m 0.24 FACS 574 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT224 HYGEN221-10 f 0.28 FACS Ichneumonoidea Ichneumonidae Campopleginae • DbOT225 HYGEN858-10 211 575 JL f 0.21 CyAn 576 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT225 HYGEN935-10 m 0.20 CyAn 577 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT226 HYGEN270-10 f 0.24 FACS 578 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT227 HYGEN148-10 f 0.26 FACS 579 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT228 HYGEN032-10 m 0.22 FACS 580 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT228 HYGEN033-10 m 0.21 FACS 581 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT229 HYGEN159-10 m 0.24 FACS 582 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT230 HYGEN174-10 m 0.23 FACS 583 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT231 HYGEN092-10 m 0.22 FACS 584 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT232 HYGEN131-10 m 0.22 FACS 585 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT233 HYGEN215-10 m 0.23 FACS 586 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT234 HYGEN146-10 f 0.28 FACS 587 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT234 HYGEN147-10 m 0.25 FACS 588 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT234 HYGEN149-10 m 0.24 FACS 589 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT234 HYGEN156-10 m 0.24 FACS 590 JL Ichneumonoidea Ichneumonidae Campopleginae • DbOT235 HYGEN050-10 f 0.23 FACS 591 JL Ichneumonoidea Ichneumonidae Anomaloninae • DbOT236 HYGEN120-10 f 0.33 FACS 592 JL Ichneumonoidea Ichneumonidae Anomaloninae • DbOT237 HYGEN922-10 f 0.26 CyAn 593 JL Ichneumonoidea Ichneumonidae • • DbOT238 HYGEN934-10 f 0.28 CyAn 594 JL Ichneumonoidea Ichneumonidae • • DbOT238 HYGEN883-10 m 0.28 CyAn Identification† Genome Flow n DbOT ID Process ID sex Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 595 JL Ichneumonoidea Ichneumonidae • • DbOT238 HYGEN892-10 m 0.27 CyAn 596 JL Ichneumonoidea Ichneumonidae • • DbOT239 HYGEN871-10 m 0.27 CyAn 597 JL Ichneumonoidea Ichneumonidae • • DbOT239 HYGEN890-10 m 0.25 CyAn 598 JL Ichneumonoidea Ichneumonidae • • DbOT239 HYGEN897-10 m 0.25 CyAn 599 JL Ichneumonoidea Ichneumonidae • • DbOT239 HYGEN902-10 m 0.25 CyAn 600 JL Ichneumonoidea Ichneumonidae • • DbOT240 HYGEN863-10 f 0.27 CyAn 601 JL Ichneumonoidea Ichneumonidae • • DbOT240 HYGEN879-10 m 0.27 CyAn 602 JL Ichneumonoidea Ichneumonidae • • DbOT240 HYGEN880-10 m 0.27 CyAn 603 JL Ichneumonoidea Ichneumonidae Orthocentrinae • DbOT241 HYGEN047-10 f 0.41 FACS 604 JL Ichneumonoidea Ichneumonidae Orthocentrinae • DbOT242 HYGEN079-10 m 0.36 FACS 605 JL Ichneumonoidea Ichneumonidae Mesochorinae • DbOT243 HYGEN851-10 f 0.25 CyAn 606 JL Ichneumonoidea Ichneumonidae Mesochorinae • DbOT243 HYGEN855-10 f 0.23 CyAn 607 JL Ichneumonoidea Ichneumonidae Mesochorinae • DbOT243 HYGEN875-10 f 0.23 CyAn 608 JL Ichneumonoidea Ichneumonidae Mesochorinae • DbOT243 HYGEN876-10 f 0.24 CyAn 609 JL Ichneumonoidea Ichneumonidae Mesochorinae • DbOT243 HYGEN920-10 f 0.25 CyAn Ichneumonoidea Ichneumonidae Mesochorinae • DbOT243 HYGEN929-10 212 610 JL f 0.24 CyAn 611 JL Ichneumonoidea Ichneumonidae Mesochorinae • DbOT243 HYGEN266-10 m 0.22 FACS 612 JL Ichneumonoidea Ichneumonidae Mesochorinae • DbOT243 HYGEN853-10 m 0.24 CyAn 613 JL Ichneumonoidea Ichneumonidae Mesochorinae • DbOT243 HYGEN854-10 m 0.26 CyAn 614 JL Ichneumonoidea Ichneumonidae Tryphoninae • DbOT244 HYGEN051-10 f 0.28 FACS 615 JL Ichneumonoidea Ichneumonidae Tryphoninae • DbOT245 HYGEN253-10 f 0.70 FACS 616 JL Ichneumonoidea Ichneumonidae • • DbOT246 HYGEN155-10 f 0.18 FACS 617 JL Ichneumonoidea Ichneumonidae • • DbOT247 HYGEN888-10 m 0.21 CyAn 618 JL Ichneumonoidea Ichneumonidae • • DbOT247 HYGEN889-10 m 0.21 CyAn 619 JL Ichneumonoidea Ichneumonidae • • DbOT247 HYGEN894-10 m 0.21 CyAn 620 JL Ichneumonoidea Ichneumonidae • • DbOT248 HYGEN205-10 f 0.26 FACS 621 JL Ichneumonoidea Ichneumonidae • • DbOT249 HYGEN034-10 m 0.26 FACS 622 JL Ichneumonoidea Ichneumonidae • • DbOT250 HYGEN213-10 f 0.14 FACS 623 JL Ichneumonoidea Ichneumonidae • • DbOT251 HYGEN069-10 f 0.26 FACS 624 JL Ichneumonoidea Ichneumonidae • • DbOT251 HYGEN191-10 f 0.27 FACS 625 JL Ichneumonoidea Ichneumonidae • • DbOT251 HYGEN187-10 m 0.26 FACS 626 JL Ichneumonoidea Ichneumonidae • • DbOT252 HYGEN168-10 f 0.44 FACS 627 JL Ichneumonoidea Ichneumonidae • • DbOT253 HYGEN254-10 f 0.30 FACS 628 JL Ichneumonoidea Ichneumonidae • • DbOT253 HYGEN225-10 m 0.29 FACS 629 JL Ichneumonoidea Ichneumonidae • • DbOT254 HYGEN063-10 f 0.36 FACS Identification† Genome Flow n DbOT ID P sexrocess ID Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 630 JL Ichneumonoidea Ichneumonidae • • DbOT254 HYGEN073-10 f 0.37 FACS 631 JL Ichneumonoidea Ichneumonidae Diplazontinae P. sulcator DbOT255 HYGEN116-10 f 0.31 FACS 632 JL Ichneumonoidea Ichneumonidae Tryphoninae T. seminiger DbOT256 HYGEN534-10 m 0.23 FACS 633 JL Ichneumonoidea Ichneumonidae Tryphoninae • DbOT257 HYGEN532-10 m 0.22 FACS 634 JL Ichneumonoidea Ichneumonidae Tryphoninae • DbOT257 HYGEN533-10 m 0.22 FACS 635 JL Ichneumonoidea Ichneumonidae Diplazontinae D. laetorius DbOT258 HYGEN588-10 f 0.45 FACS 636 JL Ichneumonoidea Ichneumonidae Diplazontinae • DbOT259 HYGEN173-10 f 0.37 FACS 637 JL Ichneumonoidea Ichneumonidae Diplazontinae • DbOT260 HYGEN134-10 f 0.36 FACS 638 JL Ichneumonoidea Ichneumonidae Diplazontinae • DbOT260 HYGEN138-10 f 0.33 FACS 639 JL Ichneumonoidea Ichneumonidae Pimplinae I. conquisitor DbOT261 HYGEN714-10 f 0.28 CyAn 640 JL Ichneumonoidea Ichneumonidae Pimplinae I. conquisitor DbOT261 HYGEN862-10 m 0.29 CyAn 641 JL Ichneumonoidea Ichneumonidae Pimplinae I. conquisitor DbOT261 HYGEN896-10 m 0.28 CyAn 642 JL Ichneumonoidea Ichneumonidae Pimplinae • DbOT262 HYGEN031-10 m 0.46 FACS 643 JL Ichneumonoidea Ichneumonidae Pimplinae • DbOT263 HYGEN881-10 f 0.39 CyAn 644 JL Ichneumonoidea Ichneumonidae Pimplinae • DbOT263 HYGEN885-10 m 0.37 CyAn Ichneumonoidea Ichneumonidae Pimplinae • DbOT264 HYGEN859-10 213 645 JL f 0.45 CyAn 646 JL Ichneumonoidea Ichneumonidae Pimplinae • DbOT264 HYGEN864-10 f 0.44 CyAn 647 JL Ichneumonoidea Ichneumonidae Pimplinae • DbOT264 HYGEN878-10 m 0.45 CyAn 648 JL Ichneumonoidea Ichneumonidae Pimplinae A. ontario DbOT265 HYGEN619-10 f 0.38 FACS 649 JL Ichneumonoidea Ichneumonidae Pimplinae A. annulicornis DbOT266 HYGEN627-10 m 0.30 FACS 650 JL Ichneumonoidea Ichneumonidae Orthocentrinae • DbOT267 HYGEN061-10 f 0.28 FACS 651 JL Ichneumonoidea Ichneumonidae • • DbOT268 HYGEN680-10 f 0.28 CyAn 652 JL Ichneumonoidea Ichneumonidae • • DbOT268 HYGEN712-10 f 0.28 CyAn 653 JL Ichneumonoidea Ichneumonidae • • DbOT268 HYGEN713-10 f 0.28 CyAn 654 JL Ichneumonoidea Ichneumonidae • • DbOT268 HYGEN715-10 f 0.29 CyAn 655 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT269 HYGEN597-10 m 0.24 FACS 656 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT269 HYGEN609-10 m 0.23 FACS 657 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT270 HYGEN829-10 f 0.21 CyAn 658 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT271 HYGEN739-10 f 0.26 CyAn 659 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT271 HYGEN741-10 f 0.25 CyAn 660 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT271 HYGEN750-10 f 0.27 CyAn 661 JL Ichneumonoidea Ichneumonidae • • DbOT272 HYGEN152-10 m 0.36 FACS 662 JL Ichneumonoidea Ichneumonidae Ctenopelmatinae • DbOT273 HYGEN530-10 f 0.35 FACS 663 JL Ichneumonoidea Ichneumonidae Ctenopelmatinae • DbOT273 HYGEN531-10 f 0.35 FACS 664 JL Ichneumonoidea Ichneumonidae Ctenopelmatinae • DbOT274 HYGEN163-10 m 0.36 FACS Identification† Genome Flow n DbOT ID P sexrocess ID Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 665 JL Ichneumonoidea Ichneumonidae • • DbOT275 HYGEN018-10 f 0.90 FACS 666 JL Ichneumonoidea Ichneumonidae Anomaloninae • DbOT276 HYGEN559-10 f 0.20 FACS 667 JL Ichneumonoidea Ichneumonidae Ophioninae • DbOT277 HYGEN726-10 m 0.65 CyAn 668 JL Ichneumonoidea Ichneumonidae Banchinae • DbOT278 HYGEN857-10 f 0.41 CyAn 669 JL Ichneumonoidea Ichneumonidae Banchinae • DbOT279 HYGEN209-10 f 0.51 FACS 670 JL Ichneumonoidea Ichneumonidae Banchinae • DbOT279 HYGEN135-10 m 0.50 FACS 671 JL Ichneumonoidea Ichneumonidae Banchinae • DbOT279 HYGEN227-10 m 0.52 FACS 672 JL Ichneumonoidea Ichneumonidae Banchinae • DbOT280 HYGEN182-10 m 0.57 FACS 673 JL Ichneumonoidea Ichneumonidae Banchinae • DbOT280 HYGEN183-10 m 0.57 FACS 674 JL Ichneumonoidea Ichneumonidae Banchinae • DbOT280 HYGEN192-10 m 0.56 FACS 675 JL Ichneumonoidea Ichneumonidae Banchinae • DbOT281 HYGEN193-10 m 0.36 FACS 676 JL Ichneumonoidea Ichneumonidae Banchinae G. fumiferanae DbOT282 HYGEN602-10 f 0.46 FACS 677 JL Ichneumonoidea Ichneumonidae Banchinae • DbOT283 HYGEN081-10 m 0.47 FACS 678 JL Ichneumonoidea Ichneumonidae Banchinae • DbOT284 HYGEN208-10 f 0.48 FACS 679 JL Ichneumonoidea Ichneumonidae Banchinae • DbOT284 HYGEN062-10 m 0.47 FACS Ichneumonoidea Ichneumonidae Banchinae • DbOT284 HYGEN144-10 214 680 JL m 0.43 FACS 681 JL Ichneumonoidea Ichneumonidae Banchinae • DbOT284 HYGEN217-10 m 0.48 FACS 682 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT285 HYGEN077-10 m 0.26 FACS 683 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT286 HYGEN184-10 f 0.27 FACS 684 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT287 HYGEN058-10 m 0.24 FACS 685 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT288 HYGEN201-10 m 0.36 FACS 686 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT289 HYGEN150-10 m 0.29 FACS 687 JL Ichneumonoidea Ichneumonidae • • DbOT290 HYGEN605-10 f 0.32 FACS 688 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT291 HYGEN595-10 f 0.21 FACS 689 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT292 HYGEN164-10 m 0.36 FACS 690 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT293 HYGEN271-10 f 0.27 FACS 691 JL Ichneumonoidea Ichneumonidae Cryptinae • DbOT294 HYGEN060-10 m 0.36 FACS 692 JL Ichneumonoidea Ichneumonidae Tryphoninae • DbOT295 HYGEN886-10 m 0.50 CyAn 693 JL Ichneumonoidea Ichneumonidae Tryphoninae • DbOT296 HYGEN852-10 f 0.48 CyAn 694 JL Ichneumonoidea Ichneumonidae Tryphoninae • DbOT297 HYGEN850-10 f 0.48 CyAn 695 JL Ichneumonoidea Ichneumonidae Tryphoninae • DbOT297 HYGEN877-10 f 0.50 CyAn 696 JL Ichneumonoidea Ichneumonidae Tryphoninae • DbOT297 HYGEN944-10 f 0.50 CyAn 697 JL Ichneumonoidea Ichneumonidae Tryphoninae • DbOT297 HYGEN865-10 m 0.52 CyAn 698 JL Ichneumonoidea Ichneumonidae Ichneumoninae • DbOT352 HYGEN257-10 f 0.39 FACS 699 JL Platygastroidea Platygastridae • • DbOT163 HYGEN110-10 f 0.21 FACS Identification† Genome Flow n DbOT ID P sexrocess ID Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 700 JL Platygastroidea Platygastridae • • DbOT164 HYGEN824-10 f 0.27 CyAn 701 JL Platygastroidea Platygastridae • • DbOT164 HYGEN825-10 f 0.30 CyAn 702 JL Platygastroidea Platygastridae • • DbOT164 HYGEN826-10 f 0.30 CyAn 703 JL Platygastroidea Platygastridae • • DbOT164 HYGEN823-10 m 0.28 CyAn 704 JL Platygastroidea Platygastridae • • DbOT165 HYGEN822-10 f 0.22 CyAn 705 JL Platygastroidea Platygastridae • • DbOT166 HYGEN827-10 m 0.29 CyAn 706 JL Platygastroidea Platygastridae • • DbOT167 HYGEN728-10 f 0.32 CyAn 707 JL Platygastroidea Platygastridae • • DbOT167 HYGEN790-10 f 0.35 CyAn 708 JL Platygastroidea Platygastridae • • DbOT167 HYGEN791-10 f 0.36 CyAn 709 JL Platygastroidea Platygastridae • • DbOT168 HYGEN669-10 f 0.19 FACS 710 JL Platygastroidea Platygastridae • • DbOT168 HYGEN670-10 f 0.19 FACS 711 JL Platygastroidea Platygastridae • • DbOT168 HYGEN671-10 f 0.20 FACS 712 JL Platygastroidea Platygastridae • • DbOT168 HYGEN672-10 f 0.20 FACS 713 JL Platygastroidea Platygastridae • • DbOT169 HYGEN696-10 f 0.15 CyAn 714 JL Platygastroidea Platygastridae • • DbOT169 HYGEN723-10 f 0.14 CyAn Platygastroidea Platygastridae • • DbOT169 HYGEN724-10 215 715 JL f 0.15 CyAn 716 JL Platygastroidea Platygastridae • • DbOT169 HYGEN722-10 m 0.14 CyAn 717 JL Platygastroidea Platygastridae • • DbOT170 HYGEN697-10 f 0.15 CyAn 718 JL Platygastroidea Platygastridae • • DbOT170 HYGEN719-10 f 0.15 CyAn 719 JL Platygastroidea Platygastridae • • DbOT170 HYGEN720-10 m 0.15 CyAn 720 JL Platygastroidea Platygastridae • • DbOT170 HYGEN721-10 m 0.14 CyAn 721 JL Platygastroidea Platygastridae • • DbOT170 HYGEN928-10 m 0.16 CyAn 722 JL Platygastroidea Platygastridae • • DbOT171 HYGEN674-10 f 0.24 CyAn 723 JL Platygastroidea Platygastridae • • DbOT171 HYGEN675-10 f 0.24 CyAn 724 JL Platygastroidea Platygastridae • • DbOT171 HYGEN676-10 f 0.24 CyAn 725 JL Platygastroidea Platygastridae • • DbOT171 HYGEN705-10 f 0.26 CyAn 726 JL Platygastroidea Platygastridae • • DbOT171 HYGEN706-10 f 0.25 CyAn 727 JL Proctotrupoidea Proctotrupidae • • • • f 0.50 FACS 728 JL Tenthredinoidea Argidae • • DbOT328 HYGEN526-10 f 0.41 FACS 729 JL Tenthredinoidea Tenthredinidae • • DbOT298 HYGEN277-10 f 0.38 FACS 730 JL Tenthredinoidea Tenthredinidae • • DbOT299 HYGEN189-10 f 0.29 FACS 731 JL Tenthredinoidea Tenthredinidae • • DbOT300 HYGEN551-10 f 0.24 FACS 732 JL Tenthredinoidea Tenthredinidae • • DbOT301 HYGEN840-10 f 0.22 CyAn 733 JL Tenthredinoidea Tenthredinidae • • DbOT302 HYGEN181-10 f 0.32 FACS 734 JL Tenthredinoidea Tenthredinidae • • DbOT303 HYGEN013-10 f 0.31 FACS Identification† Genome Flow n DbOT ID P sexrocess ID Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 735 JL Tenthredinoidea Tenthredinidae •• DbOT304 HYGEN218-10 f 0.22 FACS 736 JL Tenthredinoidea Tenthredinidae •• DbOT305 HYGEN834-10 f 0.22 CyAn 737 JL Tenthredinoidea Tenthredinidae •• DbOT305 HYGEN837-10 f 0.23 CyAn 738 JL Tenthredinoidea Tenthredinidae •• DbOT306 HYGEN151-10 m 0.24 FACS 739 JL Tenthredinoidea Tenthredinidae •• DbOT307 HYGEN523-10 f 0.27 FACS 740 JL Tenthredinoidea Tenthredinidae •• DbOT308 HYGEN524-10 f 0.28 FACS 741 JL Tenthredinoidea Tenthredinidae •• DbOT308 HYGEN544-10 f 0.32 FACS 742 JL Tenthredinoidea Tenthredinidae •• DbOT308 HYGEN545-10 f 0.30 FACS 743 JL Tenthredinoidea Tenthredinidae •• DbOT309 HYGEN039-10 m 0.26 FACS 744 JL Tenthredinoidea Tenthredinidae •• DbOT310 HYGEN832-10 f 0.29 CyAn 745 JL Tenthredinoidea Tenthredinidae •• DbOT310 HYGEN835-10 f 0.29 CyAn 746 JL Tenthredinoidea Tenthredinidae •• DbOT310 HYGEN838-10 f 0.29 CyAn 747 JL Tenthredinoidea Tenthredinidae •• DbOT311 HYGEN128-10 f 0.61 FACS 748 JL Tenthredinoidea Tenthredinidae •• DbOT311 HYGEN154-10 f 0.57 FACS 749 JL Tenthredinoidea Tenthredinidae •• DbOT311 HYGEN211-10 f 0.58 FACS Tenthredinoidea Tenthredinidae •• DbOT311 HYGEN219-10 216 750 JL f 0.59 FACS 751 JL Tenthredinoidea Tenthredinidae •• DbOT311 HYGEN162-10 m 0.56 FACS 752 JL Tenthredinoidea Tenthredinidae •• DbOT312 HYGEN521-10 f 0.23 FACS 753 JL Tenthredinoidea Tenthredinidae •• DbOT312 HYGEN522-10 f 0.22 FACS 754 JL Tenthredinoidea Tenthredinidae •• DbOT312 HYGEN529-10 f 0.23 FACS 755 JL Tenthredinoidea Tenthredinidae •• DbOT312 HYGEN535-10 f 0.23 FACS 756 JL Tenthredinoidea Tenthredinidae •• DbOT312 HYGEN536-10 f 0.23 FACS 757 JL Tenthredinoidea Tenthredinidae •• DbOT312 HYGEN537-10 f 0.23 FACS 758 JL Tenthredinoidea Tenthredinidae •• DbOT312 HYGEN538-10 f 0.23 FACS 759 JL Tenthredinoidea Tenthredinidae •• DbOT312 HYGEN539-10 f 0.23 FACS 760 JL Tenthredinoidea Tenthredinidae •• DbOT313 HYGEN010-10 f 0.49 FACS 761 JL Tenthredinoidea Tenthredinidae •• DbOT313 HYGEN180-10 f 0.51 FACS 762 JL Tenthredinoidea Tenthredinidae •• DbOT314 HYGEN167-10 m 0.36 FACS 763 JL Tenthredinoidea Tenthredinidae •• DbOT315 HYGEN655-10 f 0.39 FACS 764 JL Tenthredinoidea Tenthredinidae •• DbOT316 HYGEN620-10 m 0.22 FACS 765 JL Tenthredinoidea Tenthredinidae •• DbOT317 HYGEN055-10 f 0.21 FACS 766 JL Tenthredinoidea Tenthredinidae •• DbOT317 HYGEN096-10 f 0.21 FACS 767 JL Tenthredinoidea Tenthredinidae •• DbOT317 HYGEN157-10 f 0.22 FACS 768 JL Tenthredinoidea Tenthredinidae •• DbOT317 HYGEN206-10 f 0.19 FACS 769 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN143-10 f 0.24 FACS Identification† Genome Flow n DbOT ID P sexrocess ID Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 770 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN132-10 m 0.23 FACS 771 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN170-10 m 0.24 FACS 772 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN171-10 m 0.24 FACS 773 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN172-10 m 0.23 FACS 774 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN178-10 m 0.23 FACS 775 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN179-10 m 0.23 FACS 776 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN210-10 m 0.23 FACS 777 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN224-10 m 0.23 FACS 778 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN228-10 m 0.24 FACS 779 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN235-10 m 0.22 FACS 780 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN238-10 m 0.23 FACS 781 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN239-10 m 0.24 FACS 782 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN240-10 m 0.23 FACS 783 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN241-10 m 0.20 FACS 784 JL Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN243-10 m 0.24 FACS Tenthredinoidea Tenthredinidae •• DbOT318 HYGEN246-10 217 785 JL m 0.24 FACS 786 JL Tenthredinoidea Tenthredinidae •• DbOT319 HYGEN520-10 f 0.28 FACS 787 JL Tenthredinoidea Tenthredinidae •• DbOT320 HYGEN247-10 m 0.27 FACS 788 JL Tenthredinoidea Tenthredinidae •• DbOT321 HYGEN105-10 f 0.29 FACS 789 JL Tenthredinoidea Tenthredinidae •• DbOT322 HYGEN543-10 f 0.25 FACS 790 JL Tenthredinoidea Tenthredinidae •• DbOT323 HYGEN916-10 f 0.30 CyAn 791 JL Tenthredinoidea Tenthredinidae •• DbOT323 HYGEN919-10 m 0.29 CyAn 792 JL Tenthredinoidea Tenthredinidae •• DbOT324 HYGEN843-10 f 0.24 CyAn 793 JL Tenthredinoidea Tenthredinidae •• DbOT326 HYGEN083-10 m 0.36 FACS 794 JL Tenthredinoidea Tenthredinidae •• DbOT327 HYGEN165-10 f 0.30 FACS 795 JL Tenthredinoidea Tenthredinidae •• DbOT327 HYGEN166-10 f 0.29 FACS 796 JL Tenthredinoidea Tenthredinidae •• DbOT327 HYGEN249-10 f 0.28 FACS 797 JL Tenthredinoidea Tenthredinidae •• DbOT327 HYGEN145-10 m 0.26 FACS 798 JL Vespoidea Formicidae • • DbOT341 HYGEN628-10 f 0.48 FACS 799 JL Vespoidea Formicidae • • DbOT342 HYGEN577-10 f 0.51 FACS 800 JL Vespoidea Formicidae • • DbOT342 HYGEN658-10 f 0.48 FACS 801 JL Vespoidea Formicidae • • DbOT342 HYGEN666-10 f 0.48 FACS 802 JL Vespoidea Formicidae • • DbOT343 HYGEN660-10 f 0.36 FACS 803 JL Vespoidea Formicidae • • DbOT344 HYGEN593-10 f 0.32 FACS 804 JL Vespoidea Formicidae • • DbOT344 HYGEN667-10 f 0.31 FACS Identification† Genome Flow n DbOT ID P sexrocess ID Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 805 JL Vespoidea Formicidae • • DbOT345 HYGEN006-10 f 0.36 FACS 806 JL Vespoidea Formicidae • • DbOT345 HYGEN007-10 f 0.36 FACS 807 JL Vespoidea Formicidae • • DbOT345 HYGEN052-10 f 0.37 FACS 808 JL Vespoidea Formicidae • • DbOT345 HYGEN098-10 f 0.36 FACS 809 JL Vespoidea Formicidae • • DbOT345 HYGEN258-10 f 0.36 FACS 810 JL Vespoidea Formicidae • • DbOT345 HYGEN259-10 f 0.35 FACS 811 JL Vespoidea Formicidae • • DbOT345 HYGEN260-10 f 0.35 FACS 812 JL Vespoidea Formicidae • • DbOT345 HYGEN261-10 f 0.35 FACS 813 JL Vespoidea Formicidae • • DbOT346 HYGEN571-10 f 0.64 FACS 814 JL Vespoidea Formicidae • • DbOT346 HYGEN578-10 f 0.65 FACS 815 JL Vespoidea Formicidae • • DbOT346 HYGEN579-10 f 0.65 FACS 816 JL Vespoidea Formicidae • • DbOT346 HYGEN584-10 f 0.70 FACS 817 JL Vespoidea Formicidae • • DbOT346 HYGEN657-10 f 0.66 FACS 818 JL Vespoidea Formicidae • • DbOT346 HYGEN663-10 f 0.70 FACS 819 JL Vespoidea Formicidae • • DbOT346 HYGEN665-10 f 0.67 FACS Vespoidea Formicidae • • DbOT346 HYGEN668-10 218 820 JL f 0.65 FACS 821 JL Vespoidea Formicidae • • DbOT347 HYGEN664-10 f 0.30 FACS 822 JL Vespoidea Formicidae • • DbOT348 HYGEN044-10 f 0.31 FACS 823 JL Vespoidea Formicidae • • DbOT348 HYGEN056-10 f 0.30 FACS 824 JL Vespoidea Formicidae • • DbOT348 HYGEN113-10 f 0.29 FACS 825 JL Vespoidea Formicidae • • DbOT349 HYGEN564-10 f 0.34 FACS 826 JL Vespoidea Vespidae • • DbOT329 HYGEN569-10 f 0.27 FACS 827 JL Vespoidea Vespidae • • DbOT329 HYGEN573-10 f 0.29 FACS 828 JL Vespoidea Vespidae • • DbOT329 HYGEN591-10 f 0.28 FACS 829 JL Vespoidea Vespidae • • DbOT330 HYGEN581-10 f 0.38 FACS 830 JL Vespoidea Vespidae • • DbOT331 HYGEN265-10 m 0.24 FACS 831 JL Vespoidea Vespidae • • DbOT333 HYGEN848-10 f 0.11 CyAn 832 JL Vespoidea Vespidae • • DbOT334 HYGEN594-10 f 0.29 FACS 833 JL Vespoidea Vespidae • • DbOT334 HYGEN556-10 m 0.27 FACS 834 JL Vespoidea Vespidae • • DbOT334 HYGEN590-10 m 0.29 FACS 835 JL Vespoidea Vespidae • • DbOT334 HYGEN629-10 m 0.28 FACS 836 JL Vespoidea Vespidae • • DbOT334 HYGEN630-10 m 0.28 FACS 837 JL Vespoidea Vespidae • • DbOT334 HYGEN631-10 m 0.27 FACS 838 JL Vespoidea Vespidae • • DbOT334 HYGEN632-10 m 0.27 FACS 839 JL Vespoidea Vespidae • • DbOT334 HYGEN633-10 m 0.27 FACS Identification† Genome Flow n DbOT ID P sexrocess ID Verified Superfamily Family Subfamily Species size (pg)∆ Cytometer§ 840 JL Vespoidea Vespidae • • DbOT335 HYGEN566-10 f 0.28 FACS 841 JL Vespoidea Vespidae • • DbOT335 HYGEN555-10 m 0.27 FACS 842 JL Vespoidea Vespidae • • DbOT336 HYGEN654-10 f 0.19 FACS 843 JL Vespoidea Vespidae • • DbOT337 HYGEN574-10 f 0.19 FACS 844 JL Vespoidea Vespidae • • DbOT337 HYGEN589-10 f 0.22 FACS 845 JL Vespoidea Vespidae • • DbOT337 HYGEN662-10 f 0.19 FACS 846 JL Vespoidea Vespidae • • DbOT338 HYGEN122-10 f 0.26 FACS 847 JL Vespoidea Vespidae • • DbOT339 HYGEN557-10 m 0.23 FACS 848 JL Vespoidea Vespidae • • DbOT340 HYGEN558-10 f 0.27 FACS 849 JL Vespoidea Vespidae • • DbOT340 HYGEN570-10 m 0.27 FACS 850 JL Vespoidea Vespidae • • DbOT340 HYGEN652-10 m 0.27 FACS 851 JL Vespoidea Vespidae • • DbOT340 HYGEN653-10 m 0.26 FACS 852 JL Vespoidea Vespidae • • DbOT340 HYGEN656-10 m 0.27 FACS 853 JL Vespoidea Vespidae • • DbOT340 HYGEN661-10 m 0.26 FACS

219 † Identification verified: acronyms of names are as follows: BBCL = BioBest Canada Limited, BIC = Beneficial Insectary Canada, JL = Lima J. Family identifications by JL (n = 830).

‡ Species names of Ritchie (1984) are considered nomina nuda (nom . nud .). However, those species names are retained in this thesis for comparison.

∆ Genome size estimation values of haploid males has been multiplied by two.

§ Flow cytometer: acronyms of model of flow cytometer are as follows: CyAn = CyAn ADP, Cytomics = Cytomics FC 500, FACS = BD FACSCalibur flow cytometer, Quanta = Beckman Coulter Cell Lab Quanta SC MPL flow cytometer. Appendix 3. Genome size estimation of Hymenoptera with information on specimen collection and biology. ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 1 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 2 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 3 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 4 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 5 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 6 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 7 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 8 2009-07 Churchill (MB) JL 2 Phyto • • • • 9 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 10 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 11 2009-07 Churchill (MB) JL 2 Phyto • • • • 12 2009-07 Churchill (MB) JL 2 Phyto • • • • 13 2009-07 Churchill (MB) JL 2 Phyto • • • • 14 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 15 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 16 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 17 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 18 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 19 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 20 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 21 2009-05 Sudbury (ON) JL 2 Clepto eCto iDio Hym Egg 22 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 23 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 24 2010-08 Guelph (ON) GL, JL, TE 2 Phyto • • • • 25 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 26 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 27 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 28 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 29 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 30 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 31 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 32 2010-08 Guelph (ON) GL, JL, TE 2 Pred • • • • 33 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 34 2010-08 Guelph (ON) GL, JL, TE 2 Pred • • • • 35 2010-08 Guelph (ON) GL, JL, TE 2 Pred • • • • 36 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino • • 37 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio • • 38 2008-06 Leamington (ON) BBCL 2 Par Endo iDio Hemi Nym, Ad 39 2008-06 Leamington (ON) BBCL 2 Par Endo iDio Hemi Nym, Ad 40 2008-06 Leamington (ON) BBCL 2 Par Endo iDio Hemi Nym, Ad 41 2008-06 Leamington (ON) BBCL 2 Par Endo iDio Hemi Nym, Ad 42 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 43 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 44 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 45 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 46 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 47 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 48 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 49 2008-06 Leamington (ON) BBCL 2 Par • • • •

220 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 50 2008-06 Leamington (ON) BBCL 2 Par • • • • 51 2008-06 Leamington (ON) BBCL 2 Par • • • • 52 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 53 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 54 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 55 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 56 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 57 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 58 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 59 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 60 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 61 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 62 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 63 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 64 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 65 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 66 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep E-L 67 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep E-L 68 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep E-L 69 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep E-L 70 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep E-L 71 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep E-L 72 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 73 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 74 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 75 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 76 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 77 2010-08 Guelph (ON) GL, JL, TE 2 Par • • Hemi Nym, Ad 78 2010-08 Guelph (ON) GL, JL, TE 2 Par • Koino Hym Larva 79 2009-05 Fort Macleod (AB) JDS 2 Par Endo Koino Hym Larva 80 2009-05 Fort Macleod (AB) JDS 2 Par Endo Koino Hym Larva 81 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 82 2009-05 Peachland (BC) RGL 2 Par Endo Koino Hym Larva 83 2009-05 Peachland (BC) RGL 2 Par Endo Koino Hym Larva 84 2009-05 Mantoulin I (ON) JDR, JDS 2 Par Endo Koino Hym Larva 85 2009-05 Mantoulin I (ON) JDR, JDS 2 Par Endo Koino Hym Larva 86 2009-05 Mantoulin I (ON) JDR, JDS 2 Par Endo Koino Hym Larva 87 2009-05 Mantoulin I (ON) JDR, JDS 2 Par Endo Koino Hym Larva 88 2009-05 Mantoulin I (ON) JDR, JDS 2 Par Endo Koino Hym Larva 89 2009-05 Mantoulin I (ON) JDR, JDS 2 Par Endo Koino Hym Larva 90 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 91 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 92 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 93 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 94 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 95 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 96 2008-06 Leamington (ON) BBCL 2 Par eCto iDio Dip Larva 97 2008-06 Leamington (ON) BBCL 2 Par eCto iDio Dip Larva 98 2009-08 Guelph (ON) GL, JL, JJW 2 Par eCto iDio Lep Larva 99 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Larva

221 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 100 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Larva 101 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Larva 102 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Larva 103 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Larva 104 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Larva 105 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Larva 106 2009-05 Lethbridge (AB) JDS 2 Par eCto iDio Hym Larva 107 2009-05 Lethbridge (AB) JDS 2 Par eCto iDio Hym Larva 108 2009-05 Fort Macleod (AB) JDS 2 Par eCto iDio Hym Larva 109 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio • • 110 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio • • 111 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio • • 112 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio • • 113 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio • • 114 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio • • 115 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio • • 116 2009-08 Guelph (ON) GL, JL, JJW 2 Par eCto iDio • • 117 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 118 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 119 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 120 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 121 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 122 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 123 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 124 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 125 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 126 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 127 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 128 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 129 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 130 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 131 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 132 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 133 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 134 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 135 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 136 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 137 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 138 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 139 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 140 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 141 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 142 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 143 2009-05 Chelmsford (ON) JDS 2 Par eCto iDio Hym Larva 144 2009-05 Timmins (ON) ADR, JDS 2 Par eCto iDio Hym Larva 145 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 146 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 147 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 148 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 149 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva

222 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 150 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 151 2008-09 Timmins (ON) GL, JL 2 Par eCto iDio Hym Larva 152 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 153 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 154 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 155 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 156 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 157 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 158 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 159 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 160 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 161 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 162 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 163 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 164 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 165 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 166 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 167 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 168 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 169 2009-05 Chelmsford (ON) JL 2 Par eCto iDio Hym Larva 170 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 171 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 172 2009-08 Guelph (ON) GL, JL, JJW 2 Par eCto iDio • • 173 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 174 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 175 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 176 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 177 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 178 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 179 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 180 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 181 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 182 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 183 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 184 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 185 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 186 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 187 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 188 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 189 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 190 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 191 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 192 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 193 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 194 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 195 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 196 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 197 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Egg 198 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 199 2008-09 Timmins (ON) GL, JL 2 Par eCto iDio Hym Larva

223 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 200 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 201 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 202 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 203 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 204 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 205 2008-09 Timmins (ON) GL, JL 2 Par eCto iDio Hym Larva 206 2009-04 Renfrew (ON) MRS, JDS 2 Par eCto iDio Hym Larva 207 2008-09 Timmins (ON) GL, JL 2 Par eCto iDio Hym Larva 208 2008-09 Timmins (ON) GL, JL 2 Par eCto iDio Hym Larva 209 2009-05 Chelmsford (ON) JDS 2 Par eCto iDio Hym Larva 210 2009-04 Renfrew (ON) MRS, JDS 2 Par eCto iDio Hym Larva 211 2009-04 Renfrew (ON) MRS, JDS 2 Par eCto iDio Hym Larva 212 2008-09 Timmins (ON) GL, JL 2 Par eCto iDio Hym Larva 213 2008-09 Timmins (ON) GL, JL 2 Par eCto iDio Hym Larva 214 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 215 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 216 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 217 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 218 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 219 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 220 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Hym Larva 221 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Hym Larva 222 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Hym Larva 223 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Hym Larva 224 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Hym Larva 225 2009-05 Timmins (ON) ADR, JDS 2 Par eCto iDio Hym Larva 226 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 227 2009-05 Waterton L N P (AB) JDS 2 Par eCto iDio Hym Larva 228 2009-05 Lethbridge (AB) JDS 2 Par eCto iDio Hym Larva 229 2009-05 Chelmsford (ON) JDS 2 Par eCto iDio Hym Larva 230 2009-08 Guelph (ON) GL, JL, JJW 2 Par eCto iDio Hym Larva 231 2009-08 Guelph (ON) GL, JL, JJW 2 Par eCto iDio Hym Larva 232 2009-05 Sudbury (ON) JL 2 Par eCto iDio Hym Larva 233 2009-05 Sudbury (ON) JL 2 Par eCto iDio Hym Larva 234 2009-07 Churchill (MB) JL 2 Par eCto iDio • • 235 2009-07 Churchill (MB) JL 2 Par eCto iDio • • 236 2009-07 Churchill (MB) JL 2 Par eCto iDio • • 237 2009-07 Churchill (MB) JL 2 Par eCto iDio • • 238 2009-07 Churchill (MB) JL 2 Par eCto iDio • • 239 2009-08 Guelph (ON) GL, JL, JJW 2 Par eCto iDio Hym • 240 2009-07 Churchill (MB) JL 2 Par eCto iDio • • 241 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hym Pupa 242 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hym Pupa 243 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hym Pupa 244 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hym Pupa 245 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hym Pupa 246 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hym Pupa 247 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hym Pupa 248 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hym Pupa 249 2009-05 Chelmsford (ON) JL 2 Par eCto iDio Hym Larva

224 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 250 2009-05 Chelmsford (ON) JL 2 Par eCto iDio Hym Larva 251 2009-05 Chelmsford (ON) JL 2 Par eCto iDio Hym Larva 252 2009-05 Chelmsford (ON) JL 2 Par eCto iDio Hym Larva 253 2009-10 Sudbury (ON) JDS 2 Par eCto iDio Hym Larva 254 2009-09 Deux Rivieres (ON) JDS 2 Par eCto iDio Hym Larva 255 2009-05 Chelmsford (ON) JDS 2 Par eCto iDio Hym Larva 256 2009-05 Timmins (ON) ADR, JDS 2 Par eCto iDio Hym Larva 257 2009-05 Sudbury (ON) JDS 2 Par eCto iDio Hym Larva 258 2009-05 Peachland (BC) RGL 2 Par eCto iDio Hym Larva 259 2009-05 Peachland (BC) RGL 2 Par eCto iDio Hym Larva 260 2009-04 Picton (ON) JDS 2 Par eCto iDio Hym Larva 261 2009-04 Picton (ON) JDS 2 Par eCto iDio Hym Larva 262 2009-05 Timmins (ON) ADR, JDS 2 Par eCto iDio Hym Larva 263 2009-05 Timmins (ON) ADR, JDS 2 Par eCto iDio Hym Larva 264 2009-05 Coaldale (AB) JDS 2 Par eCto iDio Hym Larva 265 2006-05 Coaldale (AB) JDS 2 Par eCto iDio Hym Larva 266 2006-05 Coaldale (AB) JDS 2 Par eCto iDio Hym Larva 267 2006-05 Coaldale (AB) JDS 2 Par eCto iDio Hym Larva 268 2009-05 Coaldale (AB) JDS 2 Par eCto iDio Hym Larva 269 2009-04 Picton (ON) JDS 2 Par eCto iDio Hym Larva 270 2009-04 Picton (ON) JDS 2 Par eCto iDio Hym Larva 271 2009-04 Picton (ON) JDS 2 Par eCto iDio Hym Larva 272 2009-04 Picton (ON) JDS 2 Par eCto iDio Hym Larva 273 2009-04 Picton (ON) JDS 2 Par eCto iDio Hym Larva 274 2009-05 Coaldale (AB) JDS 2 Par eCto iDio Hym Larva 275 2009-05 Coaldale (AB) JDS 2 Par eCto iDio Hym Larva 276 2009-05 Sudbury (ON) JDS 2 Par eCto iDio Hym Larva 277 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 278 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 279 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 280 2008-09 Sudbury (ON) GL, JL 2 Par eCto iDio Hym Larva 281 2009-05 Peachland (BC) RGL 2 Par eCto iDio Hym Larva 282 2009-05 Fort Macleod (AB) JDS 2 Par eCto iDio Hym Larva 283 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Pupa 284 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Pupa 285 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 286 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 287 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 288 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 289 2009-08 Guelph (ON) GL, JL, JJW 2 Par eCto iDio Hym Larva 290 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hym Larva 291 2008-06 Guelph (ON) BIC 2 Par Endo iDio • Egg 292 2008-06 Guelph (ON) BIC 2 Par Endo iDio • Egg 293 2008-06 Guelph (ON) BIC 2 Par Endo iDio • Egg 294 2008-06 Guelph (ON) BIC 2 Par Endo iDio • Egg 295 2008-06 Guelph (ON) BIC 2 Par Endo iDio • Egg 296 2008-06 Guelph (ON) BIC 2 Par Endo iDio • Egg 297 2010-08 Guelph (ON) GL, JL, TE 2 Clepto eCto iDio Hym Egg 298 2010-08 Guelph (ON) GL, JL, TE 2 Clepto eCto iDio Hym Egg 299 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio • •

225 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 300 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Hemi Nym, Ad 301 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 302 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 303 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 304 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 305 2009-05 Timmins (ON) ADR, JDS 2 Induc • • • • 306 2009-05 Waterton L N P (AB) JDS 2 Induc • • • • 307 2009-05 Waterton L N P (AB) JDS 2 Induc • • • • 308 2009-04 Picton (ON) JDS 2 Induc • • • • 309 2009-04 Picton (ON) JDS 2 Induc • • • • 310 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 311 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 312 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 313 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 314 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 315 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 316 2008-09 Sudbury (ON) GL, JL 2 Induc • • • • 317 2008-09 Timmins (AB) GL, JL 2 Induc • • • • 318 2008-09 Timmins (AB) GL, JL 2 Induc • • • • 319 2008-09 Timmins (AB) GL, JL 2 Induc • • • • 320 2009-05 Timmins (ON) ADR, JDS 2 Induc • • • • 321 2009-05 Timmins (ON) ADR, JDS 2 Induc • • • • 322 2008-09 Sudbury (ON) GL, JL 2 Induc • • • • 323 2008-09 Sudbury (ON) GL, JL 2 Induc • • • • 324 2009-05 Chelmsford (ON) JDS 2 Induc • • • • 325 2009-04 Renfrew (ON) MRS, JDS 2 Induc • • • • 326 2009-05 Fort Macleod (AB) JDS 2 Induc • • • • 327 2009-05 Peachland (BC) RGL 2 Induc • • • • 328 2009-05 Fort Macleod (AB) JDS 2 Induc • • • • 329 2009-05 Peachland (BC) RGL 2 Induc • • • • 330 2009-05 Fort Macleod (AB) JDS 2 Induc • • • • 331 2009-05 Peachland (BC) RGL 2 Induc • • • • 332 2009-05 Fort Macleod (AB) JDS 2 Induc • • • • 333 2009-10 Sudbury (ON) JDS 2 Induc • • • • 334 2009-05 Peachland (BC) RGL 2 Induc • • • • 335 2009-09 Deux Rivieres (ON) JDS 2 Induc • • • • 336 2009-05 Mantoulin I (ON) JDS 2 Induc • • • • 337 2008-09 Sudbury (ON) GL, JL 2 Induc • • • • 338 2008-09 Sudbury (ON) GL, JL 2 Induc • • • • 339 2008-09 Sudbury (ON) GL, JL 2 Induc • • • • 340 2008-09 Sudbury (ON) GL, JL 2 Induc • • • • 341 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 342 2008-09 Timmins (AB) GL, JL 2 Induc • • • • 343 2009-05 Chelmsford (ON) JDS 2 Induc • • • • 344 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 345 2008-09 Timmins (AB) GL, JL 2 Induc • • • • 346 2008-09 Timmins (AB) GL, JL 2 Induc • • • • 347 2008-09 Timmins (AB) GL, JL 2 Induc • • • • 348 2008-09 Sudbury (ON) GL, JL 2 Induc • • • • 349 2008-09 Sudbury (ON) GL, JL 2 Induc • • • •

226 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 350 2008-09 Timmins (AB) GL, JL 2 Induc • • • • 351 2008-09 Timmins (AB) GL, JL 2 Induc • • • • 352 2008-09 Sudbury (ON) GL, JL 2 Induc • • • • 353 2009-05 Sudbury (ON) JDS 2 Induc • • • • 354 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 355 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 356 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 357 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 358 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 359 2009-05 Mantoulin I (ON) JDR, JDS 2 Induc • • • • 360 2009-05 Sudbury (ON) JDS 2 Induc • • • • 361 2009-05 Chelmsford (ON) JDS 2 Induc • • • • 362 2009-05 Chelmsford (ON) JDS 2 Induc • • • • 363 2009-05 Chelmsford (ON) JDS 2 Induc • • • • 364 2009-05 Chelmsford (ON) JDS 2 Induc • • • • 365 2009-05 Chelmsford (ON) JL 2 Induc • • • • 366 2009-05 Chelmsford (ON) JL 2 Induc • • • • 367 2009-04 Renfrew (ON) MRS, JDS 2 InQ • • • • 368 2009-05 Sudbury (ON) JDS 2 InQ • • • • 369 2009-05 Sudbury (ON) JDS 2 InQ • • • • 370 2009-05 Sudbury (ON) JDS 2 InQ • • • • 371 2009-05 Sudbury (ON) JDS 2 InQ • • • • 372 2009-05 Sudbury (ON) JDS 2 InQ • • • • 373 2009-05 Sudbury (ON) JDS 2 InQ • • • • 374 2009-05 Peachland (BC) RGL 2 InQ • • • • 375 2009-05 Peachland (BC) RGL 2 InQ • • • • 376 2009-05 Peachland (BC) RGL 2 InQ • • • • 377 2008-09 Sudbury (ON) GL, JL 2 InQ • • • • 378 2009-05 Fort Macleod (AB) JDS 2 InQ • • • • 379 2008-09 Sudbury (ON) GL, JL 2 InQ • • • • 380 2008-09 Sudbury (ON) GL, JL 2 InQ • • • • 381 2008-09 Sudbury (ON) GL, JL 2 InQ • • • • 382 2008-09 Sudbury (ON) GL, JL 2 InQ • • • • 383 2009-05 Fort Macleod (AB) JDS 2 InQ • • • • 384 2008-09 Timmins (AB) GL, JL 2 InQ • • • • 385 2008-09 Timmins (AB) GL, JL 2 InQ • • • • 386 2008-09 Sudbury (ON) GL, JL 2 InQ • • • • 387 2008-09 Sudbury (ON) GL, JL 2 InQ • • • • 388 2008-09 Sudbury (ON) GL, JL 2 InQ • • • • 389 2008-09 Sudbury (ON) GL, JL 2 InQ • • • • 390 2008-09 Sudbury (ON) GL, JL 2 InQ • • • • 391 2009-05 Chelmsford (ON) JDS 2 InQ • • • • 392 2008-09 Timmins (AB) GL, JL 2 InQ • • • • 393 2008-09 Sudbury (ON) GL, JL 2 InQ • • • • 394 2008-09 Sudbury (ON) GL, JL 2 InQ • • • • 395 2008-09 Sudbury (ON) GL, JL 2 InQ • • • • 396 2008-09 Timmins (AB) GL, JL 2 InQ • • • • 397 2009-05 Fort Macleod (AB) JDS 2 InQ • • • • 398 2009-05 Sudbury (ON) JDS 2 InQ • • • • 399 2009-05 Fort Macleod (AB) JDS 2 InQ • • • •

227 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 400 2009-04 Renfrew (ON) MRS, JDS 2 InQ • • • • 401 2009-05 Waterton L N P (AB) JDS 2 InQ • • • • 402 2009-05 Waterton L N P (AB) JDS 2 InQ • • • • 403 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 404 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 405 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 406 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 407 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 408 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 409 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 410 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 411 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 412 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 413 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 414 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 415 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 416 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 417 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 418 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 419 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 420 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 421 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 422 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 423 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 424 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 425 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 426 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 427 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 428 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 429 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 430 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 431 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 432 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 433 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 434 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 435 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 436 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 437 2010-08 Guelph (ON) GL, JL, TE 2 InQ • • • • 438 2008-08 Guelph (ON) JL 2 Par Endo Koino Dip L-P 439 2008-08 Guelph (ON) JL 2 Par Endo Koino Dip L-P 440 2009-05 Sudbury (ON) JL 2 Par Endo Koino Dip L-P 441 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Dip L-P 442 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Dip L-P 443 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Dip L-P 444 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Dip L-P 445 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Dip L-P 446 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Pupa 447 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Pupa 448 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Pupa 449 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Pupa

228 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 450 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Pupa 451 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Pupa 452 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Pupa 453 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Pupa 454 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio • Pupa 455 2010-08 Guelph (ON) GL, JL, TE 2 Clepto eCto iDio Hym Egg 456 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Coleo E-L 457 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Coleo Larva 458 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 459 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 460 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 461 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 462 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 463 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 464 2009-07 Churchill (MB) JL 2 Par Endo iDio Hemi Nym, Ad 465 2009-07 Churchill (MB) JL 2 Par Endo iDio Hemi Nym, Ad 466 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 467 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Lep Larva 468 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Lep Larva 469 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Lep Larva 470 2009-05 Sudbury (ON) JL 2 Par Endo iDio Hemi Nym, Ad 471 2009-05 Sudbury (ON) JL 2 Par Endo iDio Hemi Nym, Ad 472 2008-06 Leamington (ON) BBCL 2 Par Endo iDio Hemi Nym, Ad 473 2008-06 Leamington (ON) BBCL 2 Par Endo iDio Hemi Nym, Ad 474 2008-06 Leamington (ON) BBCL 2 Par Endo iDio Hemi Nym, Ad 475 2008-06 Leamington (ON) BBCL 2 Par Endo iDio Hemi Nym, Ad 476 2008-06 Leamington (ON) BBCL 2 Par Endo iDio Hemi Nym, Ad 477 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Larva 478 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Larva 479 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Larva 480 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Larva 481 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Larva 482 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Larva 483 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 484 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 485 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 486 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 487 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Lep Larva 488 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 489 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Larva 490 2009-07 Churchill (MB) JL 2 Par Endo Koino Dip L-P 491 2009-07 Churchill (MB) JL 2 Par Endo Koino Dip L-P 492 2009-07 Churchill (MB) JL 2 Par Endo Koino Dip L-P 493 2009-07 Churchill (MB) JL 2 Par Endo Koino Dip L-P 494 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Dip L-P 495 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Dip L-P 496 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Dip L-P 497 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Dip L-P 498 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Dip L-P 499 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Dip L-P

229 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 500 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Dip L-P 501 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Dip L-P 502 2008-06 Leamington (ON) BBCL 2 Par Endo Koino Dip L-P 503 2008-06 Leamington (ON) BBCL 2 Par Endo Koino Dip L-P 504 2008-06 Leamington (ON) BBCL 2 Par Endo Koino Dip L-P 505 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 506 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 507 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 508 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 509 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 510 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 511 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 512 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 513 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 514 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 515 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 516 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep E-L 517 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep E-L 518 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep E-L 519 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep E-L 520 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep E-L 521 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep E-L 522 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep E-L 523 2009-05 Waterton L N P (AB) JDS 2 Par Endo Koino Hym Larva 524 2009-05 Waterton L N P (AB) JDS 2 Par Endo Koino Hym Larva 525 2008-09 Timmins (ON) GL, JL 2 Par Endo Koino Hym Larva 526 2009-05 Chelmsford (ON) JL 2 Par Endo Koino Hym Larva 527 2009-05 Chelmsford (ON) JL 2 Par Endo Koino Hym Larva 528 2009-05 Mantoulin I (ON) JDR, JDS 2 Par Endo Koino Hym Larva 529 2009-05 Mantoulin I (ON) JDR, JDS 2 Par Endo Koino Hym Larva 530 2009-04 Picton (ON) JDS 2 Par Endo Koino Hym Larva 531 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 532 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 533 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 534 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 535 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 536 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 537 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 538 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 539 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 540 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 541 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 542 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 543 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 544 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 545 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 546 2009-05 Coaldale (AB) JDS 2 Par Endo Koino Hym Larva 547 2009-05 Coaldale (AB) JDS 2 Par Endo Koino Hym Larva 548 2008-09 Timmins (ON) GL, JL 2 Par Endo Koino Hym Larva 549 2008-09 Timmins (ON) GL, JL 2 Par Endo Koino Hym Larva

230 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 550 2009-04 Picton (ON) JDS 2 Par Endo Koino Hym Larva 551 2009-05 Chelmsford (ON) JDS 2 Par Endo Koino Hym Larva 552 2009-05 Peachland (BC) RGL 2 Par Endo Koino Hym Larva 553 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 554 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 555 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 556 2008-09 Sudbury (ON) GL, JL 2 Par Endo Koino Hym Larva 557 2008-09 Timmins (ON) GL, JL 2 Par Endo Koino Hym Larva 558 2009-07 Churchill (MB) JL 2 Par • • • • 559 2009-07 Churchill (MB) JL 2 Par • • • • 560 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo iDio Lep Pupa 561 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo iDio Lep Pupa 562 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Pupa 563 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Pupa 564 2009-07 Churchill (MB) JL 2 Par Endo iDio Lep Pupa 565 2009-07 Churchill (MB) JL 2 Par Endo iDio Lep Pupa 566 2009-07 Churchill (MB) JL 2 Par Endo iDio Lep Pupa 567 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Pupa 568 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Pupa 569 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Pupa 570 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Lep Larva 571 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Lep Larva 572 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Lep Larva 573 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Lep Larva 574 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 575 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 576 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 577 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Lep Larva 578 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 579 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 580 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 581 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 582 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 583 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 584 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 585 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 586 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 587 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 588 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 589 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 590 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 591 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep L-P 592 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep L-P 593 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 594 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 595 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 596 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 597 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 598 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 599 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • •

231 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 600 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 601 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 602 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 603 2009-07 Churchill (MB) JL 2 Par Endo Koino Dip L-P 604 2009-07 Churchill (MB) JL 2 Par Endo Koino Dip L-P 605 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Hym Larva 606 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Hym Larva 607 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Hym Larva 608 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Hym Larva 609 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Hym Larva 610 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Hym Larva 611 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Hym Larva 612 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Hym Larva 613 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Hym Larva 614 2009-07 Churchill (MB) JL 2 Par eCto Koino Hym Larva 615 2009-07 Churchill (MB) JL 2 Par eCto Koino Hym Larva 616 2009-07 Churchill (MB) JL 2 Par • • • • 617 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 618 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 619 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 620 2009-07 Churchill (MB) JL 2 Par • • • • 621 2009-07 Churchill (MB) JL 2 Par • • • • 622 2009-07 Churchill (MB) JL 2 Par • • • • 623 2009-07 Churchill (MB) JL 2 Par • • • • 624 2009-07 Churchill (MB) JL 2 Par • • • • 625 2009-07 Churchill (MB) JL 2 Par • • • • 626 2009-07 Churchill (MB) JL 2 Par • • • • 627 2009-07 Churchill (MB) JL 2 Par • • • • 628 2009-07 Churchill (MB) JL 2 Par • • • • 629 2009-07 Churchill (MB) JL 2 Par • • • • 630 2009-07 Churchill (MB) JL 2 Par • • • • 631 2009-07 Churchill (MB) JL 2 Par Endo Koino Dip L-P 632 2009-05 Sudbury (ON) JL 2 Par eCto Koino Hym Larva 633 2009-05 Sudbury (ON) JL 2 Par eCto Koino Hym Larva 634 2009-05 Sudbury (ON) JL 2 Par eCto Koino Hym Larva 635 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Dip L-P 636 2009-07 Churchill (MB) JL 2 Par Endo Koino Dip L-P 637 2009-07 Churchill (MB) JL 2 Par Endo Koino Dip L-P 638 2009-07 Churchill (MB) JL 2 Par Endo Koino Dip L-P 639 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Pupa 640 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Pupa 641 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Pupa 642 2009-07 Churchill (MB) JL 2 Par • iDio Lep Pupa 643 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Pupa 644 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Pupa 645 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Pupa 646 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Pupa 647 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Pupa 648 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo iDio Lep Pupa 649 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo iDio Lep Pupa

232 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 650 2009-07 Churchill (MB) JL 2 Par Endo Koino Dip L-P 651 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 652 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 653 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 654 2010-08 Guelph (ON) GL, JL, TE 2 Par • • • • 655 2009-08 Guelph (ON) GL, JL, JJW 2 Par eCto iDio Lep Pupa 656 2009-08 Guelph (ON) GL, JL, JJW 2 Par eCto iDio Lep Pupa 657 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Pupa 658 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Pupa 659 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Pupa 660 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto iDio Lep Pupa 661 2009-07 Churchill (MB) JL 2 Par • • • • 662 2009-05 Sudbury (ON) JL 2 Par Endo Koino Hym Larva 663 2009-05 Sudbury (ON) JL 2 Par Endo Koino Hym Larva 664 2009-07 Churchill (MB) JL 2 Par Endo Koino Hym Larva 665 2009-07 Churchill (MB) JL 2 Par • • • • 666 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Lep L-P 667 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Hym Larva 668 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Lep Larva 669 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 670 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 671 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 672 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 673 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 674 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 675 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 676 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Lep Larva 677 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 678 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 679 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 680 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 681 2009-07 Churchill (MB) JL 2 Par Endo Koino Lep Larva 682 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Pupa 683 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Pupa 684 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Pupa 685 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Pupa 686 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Pupa 687 2009-08 Guelph (ON) GL, JL, JJW 2 Par • • • • 688 2009-08 Guelph (ON) GL, JL, JJW 2 Par eCto iDio Lep Pupa 689 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Pupa 690 2009-08 Guelph (ON) GL, JL, JJW 2 Par eCto iDio Lep Pupa 691 2009-07 Churchill (MB) JL 2 Par eCto iDio Lep Pupa 692 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto Koino Hym Larva 693 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto Koino Hym Larva 694 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto Koino Hym Larva 695 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto Koino Hym Larva 696 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto Koino Hym Larva 697 2010-08 Guelph (ON) GL, JL, TE 2 Par eCto Koino Hym Larva 698 2009-07 Churchill (MB) JL 2 Par Endo iDio Lep Pupa 699 2009-07 Churchill (MB) JL 2 Par Endo Koino Dip E-L

233 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 700 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Dip E-L 701 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Dip E-L 702 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Dip E-L 703 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Dip E-L 704 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Dip E-L 705 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo Koino Dip E-L 706 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hemi Egg 707 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hemi Egg 708 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hemi Egg 709 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hemi Egg 710 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hemi Egg 711 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hemi Egg 712 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Hemi Egg 713 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Dip Egg 714 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Dip Egg 715 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Dip Egg 716 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Dip Egg 717 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 718 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 719 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 720 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 721 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 722 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 723 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 724 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 725 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 726 2010-08 Guelph (ON) GL, JL, TE 2 Par Endo iDio Lep Egg 727 2009-08 Guelph (ON) GL, JL, JJW 2 Par Endo Koino Coleo Larva 728 2009-05 Sudbury (ON) JL 2 Phyto • • • • 729 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 730 2009-07 Churchill (MB) JL 2 Phyto • • • • 731 2009-05 Sudbury (ON) JL 2 Phyto • • • • 732 2010-08 Guelph (ON) GL, JL, TE 2 Phyto • • • • 733 2009-07 Churchill (MB) JL 2 Phyto • • • • 734 2009-07 Churchill (MB) JL 2 Phyto • • • • 735 2009-07 Churchill (MB) JL 2 Phyto • • • • 736 2010-08 Guelph (ON) GL, JL, TE 2 Phyto • • • • 737 2010-08 Guelph (ON) GL, JL, TE 2 Phyto • • • • 738 2009-07 Churchill (MB) JL 2 Phyto • • • • 739 2009-05 Sudbury (ON) JL 2 Phyto • • • • 740 2009-05 Sudbury (ON) JL 2 Phyto • • • • 741 2009-05 Sudbury (ON) JL 2 Phyto • • • • 742 2009-05 Sudbury (ON) JL 2 Phyto • • • • 743 2009-07 Churchill (MB) JL 2 Phyto • • • • 744 2010-08 Guelph (ON) GL, JL, TE 2 Phyto • • • • 745 2010-08 Guelph (ON) GL, JL, TE 2 Phyto • • • • 746 2010-08 Guelph (ON) GL, JL, TE 2 Phyto • • • • 747 2009-07 Churchill (MB) JL 2 Phyto • • • • 748 2009-07 Churchill (MB) JL 2 Phyto • • • • 749 2009-07 Churchill (MB) JL 2 Phyto • • • •

234 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 750 2009-07 Churchill (MB) JL 2 Phyto • • • • 751 2009-07 Churchill (MB) JL 2 Phyto • • • • 752 2009-05 Sudbury (ON) JL 2 Miner • • • • 753 2009-05 Sudbury (ON) JL 2 Miner • • • • 754 2009-05 Sudbury (ON) JL 2 Miner • • • • 755 2009-05 Sudbury (ON) JL 2 Miner • • • • 756 2009-05 Sudbury (ON) JL 2 Miner • • • • 757 2009-05 Sudbury (ON) JL 2 Miner • • • • 758 2009-05 Sudbury (ON) JL 2 Miner • • • • 759 2009-05 Sudbury (ON) JL 2 Miner • • • • 760 2009-07 Churchill (MB) JL 2 Phyto • • • • 761 2009-07 Churchill (MB) JL 2 Phyto • • • • 762 2009-07 Churchill (MB) JL 2 Phyto • • • • 763 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 764 2009-08 Guelph (ON) GL, JL, JJW 2 Phyto • • • • 765 2009-07 Churchill (MB) JL 2 Phyto • • • • 766 2009-07 Churchill (MB) JL 2 Phyto • • • • 767 2009-07 Churchill (MB) JL 2 Phyto • • • • 768 2009-07 Churchill (MB) JL 2 Phyto • • • • 769 2009-07 Churchill (MB) JL 2 Phyto • • • • 770 2009-07 Churchill (MB) JL 2 Phyto • • • • 771 2009-07 Churchill (MB) JL 2 Phyto • • • • 772 2009-07 Churchill (MB) JL 2 Phyto • • • • 773 2009-07 Churchill (MB) JL 2 Phyto • • • • 774 2009-07 Churchill (MB) JL 2 Phyto • • • • 775 2009-07 Churchill (MB) JL 2 Phyto • • • • 776 2009-07 Churchill (MB) JL 2 Phyto • • • • 777 2009-07 Churchill (MB) JL 2 Phyto • • • • 778 2009-07 Churchill (MB) JL 2 Phyto • • • • 779 2009-07 Churchill (MB) JL 2 Phyto • • • • 780 2009-07 Churchill (MB) JL 2 Phyto • • • • 781 2009-07 Churchill (MB) JL 2 Phyto • • • • 782 2009-07 Churchill (MB) JL 2 Phyto • • • • 783 2009-07 Churchill (MB) JL 2 Phyto • • • • 784 2009-07 Churchill (MB) JL 2 Phyto • • • • 785 2009-07 Churchill (MB) JL 2 Phyto • • • • 786 2009-05 Sudbury (ON) JL 2 Phyto • • • • 787 2009-07 Churchill (MB) JL 2 • • • • • 788 2009-07 Churchill (MB) JL 2 • • • • • 789 2009-05 Sudbury (ON) JL 2 Induc • • • • 790 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 791 2010-08 Guelph (ON) GL, JL, TE 2 Induc • • • • 792 2010-08 Guelph (ON) GL, JL, TE 2 Phyto • • • • 793 2009-07 Churchill (MB) JL 2 Phyto • • • • 794 2009-07 Churchill (MB) JL 2 Phyto • • • • 795 2009-07 Churchill (MB) JL 2 Phyto • • • • 796 2009-07 Churchill (MB) JL 2 Phyto • • • • 797 2009-07 Churchill (MB) JL 2 Phyto • • • • 798 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 799 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • •

235 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 800 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 801 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 802 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 803 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 804 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 805 2009-07 Churchill (MB) JL 2 Pred • • • • 806 2009-07 Churchill (MB) JL 2 Pred • • • • 807 2009-07 Churchill (MB) JL 2 Pred • • • • 808 2009-07 Churchill (MB) JL 2 Pred • • • • 809 2009-07 Churchill (MB) JL 2 Pred • • • • 810 2009-07 Churchill (MB) JL 2 Pred • • • • 811 2009-07 Churchill (MB) JL 2 Pred • • • • 812 2009-07 Churchill (MB) JL 2 Pred • • • • 813 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 814 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 815 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 816 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 817 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 818 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 819 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 820 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 821 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 822 2009-07 Churchill (MB) JL 2 Pred • • • • 823 2009-07 Churchill (MB) JL 2 Pred • • • • 824 2009-07 Churchill (MB) JL 2 Pred • • • • 825 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 826 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 827 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 828 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 829 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 830 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 831 2010-08 (BC) NJ 2 Pred • • • • 832 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 833 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 834 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 835 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 836 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 837 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 838 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 839 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 840 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 841 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 842 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 843 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 844 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 845 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 846 2009-07 Churchill (MB) JL 2 Pred • • • • 847 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 848 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 849 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • •

236 ‡ ¶ Collection # Parasitoid n Guild Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage 850 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 851 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 852 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • • 853 2009-08 Guelph (ON) GL, JL, JJW 2 Pred • • • •

‡ Collection team: acronyms of names are as follows: BBCL = BioBest Canada Limited, BIC = Beneficial Insectary Canada, TE = Elliott T, NJ = Jeffery N, RGL = Lalonde RG, GL = Lima G, JL = Lima J, ADR = Renelli AD, JDR = Renelli JD, JDS = Shorthouse JD, MRS = Shorthouse MR, JJW = Wilson JJ.

Collection voucher: acronym of location is as follows: 2 = JLima collection (University of Guelph). curator = JL. volunteers: TE, NJ, GL and JJW.

# Guild: acronyms of guilds are as follows: Clepto = cleptoparasite, Induc = inducer, InQ = inquiline, Miner = leaf miner, Par = parasitoid, Phyto = phytophagous, Pred = predator.

¶ Parasitoid placement: acronyms of placement are as follows: eCto = ectoparasitoid, Endo = endoparasitoid.

Parasitoid syndrome: acronyms of syndrome are as follows: iDio = idiobiont, Koino = koinobiont.

Parasitoid host taxa: acronyms of taxa are as follows: Coleo = Coleoptera, Dip = Diptera, Hemi = Hemiptera, Hym = Hymenoptera, Lep = Lepidoptera.

Parasitoid host stgae: acronyms of host stage are as follows: Ad = Adult, E-L = egg-larva, L-P = larva-pupa, Nym = nymph.

237 Appendix 4. Published studies of genome size estimation of Hymenoptera with information on biology. Identification Genome Parasitoid¶ Guild# Study† Superfamily Family Subfamily Species size (pg) Placement Syndrome Host taxa Host stage 6 Apoidea Apidae Andreninae Andrena dunningi 0.50 Phyto • • • • JL, 6, 11 Apoidea Apidae Apinae Apis mellifera 0.25 Phyto • • • • 6 Apoidea Apidae Apinae Bombus bimaculatus 0.34 Phyto • • • • JL, 6, 10 Apoidea Apidae Apinae Bombus impatiens 0.50 Phyto • • • • 10 Apoidea Apidae Apinae Bombus occidentalis 0.46 Phyto • • • • 1 Apoidea Apidae Apinae Bombus terrestris 0.53 Phyto • • • • 8 Apoidea Apidae Apinae Lestrimelitta sp 0.46 Phyto • • • • 7 Apoidea Apidae Apinae Melipona asilvai 0.29 Phyto • • • • 7 Apoidea Apidae Apinae Melipona bicolor 0.28 Phyto • • • • 7 Apoidea Apidae Apinae Melipona capixaba 1.38 Phyto • • • • 7 Apoidea Apidae Apinae Melipona compressipes 0.78 Phyto • • • • 7 Apoidea Apidae Apinae Melipona crinita 0.73 Phyto • • • • 7 Apoidea Apidae Apinae Melipona eburnea 1.11 Phyto • • • • 7 Apoidea Apidae Apinae Melipona fuscopilosa 1.10 Phyto • • • • 7 Apoidea Apidae Apinae Melipona grandis 0.95 Phyto • • • • 7 Apoidea Apidae Apinae Melipona mandacaia 0.35 Phyto • • • • 238 7 Apoidea Apidae Apinae Melipona marginata 0.28 Phyto • • • • 5, 7 Apoidea Apidae Apinae Melipona mondury 0.95 Phyto • • • • 7 Apoidea Apidae Apinae Melipona quadrifasciata 0.27 Phyto • • • • 7 Apoidea Apidae Apinae Melipona quinquefasciata 0.70 Phyto • • • • 5, 7 Apoidea Apidae Apinae Melipona rufiventris 0.93 Phyto • • • • 7 Apoidea Apidae Apinae Melipona scutellaris 1.08 Phyto • • • • 7 Apoidea Apidae Apinae Melipona seminigra 0.85 Phyto • • • • 7 Apoidea Apidae Apinae Melipona subnitida 0.27 Phyto • • • • 5 Apoidea Apidae Apinae Scaptotrigona xantotricha 0.43 Phyto • • • • JL, 6 Apoidea Apidae Apinae Melissodes desponsa 0.52 Phyto • • • • 6 Apoidea Apidae Apinae Melissodes illata 0.37 Phyto • • • • 6 Apoidea Apidae Apinae Ceratina calcarata 0.68 Phyto • • • • 6 Apoidea Apidae Apinae Ceratina dupla dupla 0.59 Phyto • • • • JL, 6 Apoidea Apidae Colletinae Hylaeus affinis 0.64 Phyto • • • • 6 Apoidea Apidae Halictinae Augochloropsis metallica 0.90 Phyto • • • • 6 Apoidea Apidae Halictinae Halictus ligatus 0.60 Phyto • • • • 6 Apoidea Apidae Megachilinae Megachile rotundata 0.83 Phyto • • • • 6 Apoidea Crabronidae Bembicinae Gorytes atricornis 0.48 Pred • • • • 6 Apoidea Crabronidae Crabroninae Ectemnius continuus 0.38 Pred • • • • 6 Apoidea Crabronidae Crabroninae Larra bicolor 0.19 Pred • • • • JL, 6 Apoidea Sphecidae Sceliphrinae Chalybion californicus 0.54 Pred • • • • Identification Genome Parasitoid¶ Guild# Study† Superfamily Family Subfamily Species size (pg) Placement Syndrome Host taxa Host stage JL, 6 Apoidea Sphecidae Sceliphrinae Sceliphron caementarium 1.15 Pred • • • • 10 Cephoidea Cephidae • Cephus cinctus 0.21 Phyto • • • • 6 Chalcidoidea Aphelinidae Aphelininae Aphelinus abdominalis 0.65 Par Endo iDio Hemi Nym, Ad JL, 6 Chalcidoidea Aphelinidae Coccophaginae Encarsia formosa 0.42 Par Endo iDio Hemi Nym, Ad JL, 6 Chalcidoidea Aphelinidae Eretmocerinae Eretmocerus eremicus 0.55 Par Endo iDio Hemi Nym, Ad 6 Chalcidoidea Aphelinidae Eretmocerinae Eretmocerus mundus 0.75 Par Endo iDio Hemi Nym, Ad JL, 6 Chalcidoidea Encyrtidae Tetracneminae Leptomastix dactylopii 0.56 Par • • • • JL, 6 Chalcidoidea Eulophidae Eulophinae Diglyphus isaea 0.23 Par eCto iDio Dip Larva 3 Chalcidoidea Pteromalidae Pteromalinae Catolaccus grandis 0.47 Par • • • • JL, 2, 6 Chalcidoidea Trichogrammatidae Trichogrammatinae Trichogramma brassicae 0.24 Par Endo iDio • Egg JL, 6 Chalcidoidea Trichogrammatidae Trichogrammatinae Trichogramma platneri 0.18 Par Endo iDio • Egg 6 Chalcidoidea Trichogrammatidae Trichogrammatinae Trichogramma pretiosum 0.19 Par Endo iDio • Egg 9 Cynipoidea Figitidae • Ganaspis xanthopoda 0.99 Par Endo Koino Dip L-P 9 Cynipoidea Figitidae • Leptopilina boulardi 0.37 Par Endo Koino Dip L-P 9 Cynipoidea Figitidae • Leptopilina heterotoma 0.47 Par Endo Koino Dip L-P 9 Cynipoidea Figitidae • Leptopilina victoriae 0.53 Par Endo Koino Dip L-P JL, 6 Ichneumonoidea Braconidae Alysiinae Dacnusa sibirica 0.16 Par Endo Koino Dip L-P 239 JL, 6 Ichneumonoidea Braconidae Aphidiinae Aphidius colemani 0.10 Par Endo iDio Hemi Nym, Ad JL, 6, 10 Ichneumonoidea Braconidae Aphidiinae Aphidius ervi 0.15 Par Endo iDio Hemi Nym, Ad 10 Ichneumonoidea Braconidae Microgastrinae Cotesia flavipes 0.18 Par Endo Koino Lep Larva 6, 4 Vespoidea Formicidae Amblyoponinae Amblyopone pallipes 0.36 Pred • • • • 4 Vespoidea Formicidae Cerapachyinae Cerapachys edentata 0.22 Pred • • • • 6 Vespoidea Formicidae Dolichoderinae Dolichoderus mariae 0.18 Pred • • • • 6 Vespoidea Formicidae Dolichoderinae Dolichoderus taschenbergi 0.23 Pred • • • • 4 Vespoidea Formicidae Dolichoderinae Dormyrmex bicolor 0.25 Pred • • • • 4 Vespoidea Formicidae Dolichoderinae Linepithema humile 0.26 Pred • • • • 4 Vespoidea Formicidae Dolichoderinae Liometopum occidentale 0.29 Pred • • • • 4, 6 Vespoidea Formicidae Dolichoderinae Tapinoma sessile A 0.38 Pred • • • • 4 Vespoidea Formicidae Dolichoderinae Tapinoma sessile B 0.61 Pred • • • • 4 Vespoidea Formicidae Ecitoninae Eciton burchelli 0.27 Pred • • • • 4 Vespoidea Formicidae Ecitoninae Labidus coecus 0.37 Pred • • • • 4 Vespoidea Formicidae Ectatomminae Ectatomma tuberculatum 0.71 Pred • • • • 4 Vespoidea Formicidae Formicinae Camponotus castaneus 0.31 Pred • • • • 4 Vespoidea Formicidae Formicinae Camponotus pennsylvanicus 0.33 Pred • • • • 4 Vespoidea Formicidae Formicinae Formica pallidifulva 0.39 Pred • • • • 4 Vespoidea Formicidae Formicinae Lasius alienus 0.31 Pred • • • • 6 Vespoidea Formicidae Formicinae Lasius latipes 0.27 Pred • • • • 6 Vespoidea Formicidae Formicinae Lasius minutus 0.23 Pred • • • • Identification Genome Parasitoid¶ Guild# Study† Superfamily Family Subfamily Species size (pg) Placement Syndrome Host taxa Host stage 4 Vespoidea Formicidae Formicinae Prenolepis imparis 0.30 Pred • • • • 4 Vespoidea Formicidae Myrmicinae Apterostigma dentigerum 0.62 Pred • • • • 4 Vespoidea Formicidae Myrmicinae Atta cephalotes 0.31 Phyto • • • • 4 Vespoidea Formicidae Myrmicinae Atta columbica 0.31 Phyto • • • • 6 Vespoidea Formicidae Myrmicinae Atta texana 0.27 Phyto • • • • 4 Vespoidea Formicidae Myrmicinae Sericomyrmex amabilis 0.45 Phyto • • • • 4 Vespoidea Formicidae Myrmicinae Crematogaster hespera 0.28 Pred • • • • 4 Vespoidea Formicidae Myrmicinae Basiceros procera 0.39 Pred • • • • 4 Vespoidea Formicidae Myrmicinae Strumigenys rostrata 0.28 Pred • • • • 6 Vespoidea Formicidae Myrmicinae Temnothorax ambiguus 0.31 Pred • • • • 6 Vespoidea Formicidae Myrmicinae Temnothorax texanus 0.32 Pred • • • • 4 Vespoidea Formicidae Myrmicinae Myrmecia varians 0.28 Pred • • • • 4 Vespoidea Formicidae Myrmicinae Myrmecina americana A 0.26 Pred • • • • 4 Vespoidea Formicidae Myrmicinae Myrmecina americana B 0.31 Pred • • • • 4 Vespoidea Formicidae Myrmicinae Pogonomyrmex badius 0.27 Pred • • • • 4 Vespoidea Formicidae Myrmicinae Pogonomyrmex californicus 0.25 Pred • • • • 4 Vespoidea Formicidae Myrmicinae Pogonomyrmex coarctatus 0.29 Pred • • • • 240 6 Vespoidea Formicidae Myrmicinae Aphaenogaster fulva 0.42 Pred • • • • 6 Vespoidea Formicidae Myrmicinae Aphaenogaster rudis-texana, N16 0.43 Pred • • • • 6 Vespoidea Formicidae Myrmicinae Aphaenogaster rudis-texana, N17 0.46 Pred • • • • 6 Vespoidea Formicidae Myrmicinae Aphaenogaster rudis-texana, N22b 0.44 Pred • • • • 6 Vespoidea Formicidae Myrmicinae Aphaenogaster treatae 0.50 Pred • • • • 4 Vespoidea Formicidae Myrmicinae Messor andrei 0.26 Pred • • • • 4 Vespoidea Formicidae Myrmicinae Pheidole hyatti 0.33 Pred • • • • 2 Vespoidea Formicidae Myrmicinae Solenopsis invicta 0.77 Pred • • • • 6 Vespoidea Formicidae Myrmicinae Solenopsis molesta 0.38 Pred • • • • 4 Vespoidea Formicidae Myrmicinae Solenopsis xyloni 0.48 Pred • • • • 6, 4 Vespoidea Formicidae Myrmicinae Tetramorium caespitum 0.27 Pred • • • • 4 Vespoidea Formicidae Ponerinae Dinoponera australis 0.57 Pred • • • • 4 Vespoidea Formicidae Ponerinae Odontomachus bauri 0.49 Pred • • • • 4 Vespoidea Formicidae Ponerinae Odontomachus brunneus 0.44 Pred • • • • 4 Vespoidea Formicidae Ponerinae Odontomachus cephalotes 0.43 Pred • • • • 4 Vespoidea Formicidae Ponerinae Odontomachus chelifer 0.54 Pred • • • • 4 Vespoidea Formicidae Ponerinae Odontomachus clarus 0.42 Pred • • • • 4 Vespoidea Formicidae Ponerinae Odontomachus haematodus 0.51 Pred • • • • 6, 4 Vespoidea Formicidae Ponerinae Ponera pennsylvanica 0.58 Pred • • • • 6, 4 Vespoidea Formicidae Pseudomyrmecinae Pseudomyrmex gracilis 0.38 Pred • • • • 10 Vespoidea Mutillidae • Dasymutilla occidentalis 0.67 Par eCto iDio Hym Pupa Identification Genome Parasitoid¶ Guild# Study† Superfamily Family Subfamily Species size (pg) Placement Syndrome Host taxa Host stage 10 Vespoidea Mutillidae • Spherophthalma pennsylvanica 0.54 Par eCto iDio Hym Pupa 6 Vespoidea Vespidae Eumeninae Symmorphus canadensis 0.23 Pred • • • • 10 Vespoidea Vespidae Polistinae Polistes carolina 0.38 Pred • • • • 2, 6 Vespoidea Vespidae Polistinae Polistes dominulus 0.29 Pred • • • • 10 Vespoidea Vespidae Polistinae Polistes exclamans 0.55 Pred • • • • 6 Vespoidea Vespidae Polistinae Polistes fuscatus 0.41 Pred • • • • 6 Vespoidea Vespidae Vespinae Dolichovespula arenaria 0.32 Pred • • • • 6, 10 Vespoidea Vespidae Vespinae Vespula germanica 0.23 Pred • • • • 6 Vespoidea Vespidae Vespinae Vespula maculifrons 0.22 Pred • • • • 6, 10 Vespoidea Vespidae Vespinae Vespula squamosa 0.24 Pred • • • • 6, 10 Vespoidea Vespidae Vespinae Vespula vulgaris 0.20 Pred • • • •

# Guild: acronym of guilds is as follows: Par = parasitoid, Phyto = phytophagous, Pred = predator.

¶ Parasitoid placement: acronym of placement is as follows: eCto = ectoparasitoid, Endo = endoparasitoid. Parasitoid syndrome: acronym of syndrome is as follows: iDio = idiobiont, Koino = koinobiont.

241 Parasitoid host taxa: acronym of taxa is as follows: Coleo = Coleoptera, Dip = Diptera, Hemi = Hemiptera, Hym = Hymenoptera, Lep = Lepidoptera. Parasitoid host stgae: acronym of host stage is as follows: Ad = Adult, E-L = egg-larva, L-P = larva-pupa, Nym = nymph. References: 1 = Gadau J, Gerloffs CU, Krugers N, Chan H, Schmid-Hempel P, Wille A, Page Jr RE (2001) A linkage analysis of sex determination in Bombus terrestris (L.) (Hymenoptera: Apidae). Heredity 87: 234-242.

2 = Johnston JS, Ross LD, Beani L, Hughes DP, Kathirithamby (2004) Tiny genomes and endoreduplication in Strepsiptera. Insect Molecular Biology 13: 581-585.

3 = Barcenas NM, Thompson NJ, Gomez-Tovar V, Morales-Ramos JA, Johnston JS (2008) Sex determination and genome size in Catolaccus grandis (Burks, 1954) (Hymenoptera: Pteromalidae). Journal of Hymenoptera Research 17: 201-209.

4 =Tsutsui ND, Suarez AV, Spagna JC, Johnston JS (2008) The evolution of genome size in ants. BMC Evolutionary Biology 8: 64.

5 = Lopes DM, de Carvalho CR, Clarindo WR, Praça MW, Tavares MG (2009) Genome size estimation of three stingless bee species (Hymenoptera, Meliponinae) by flow cytometry. Apidologie 40: 517-523.

6 = Ardila-Garcia AM, Umphrey GJ and Gregory TR (2010)

242 An expansion of the genome size dataset for the insect order Hymenoptera, with a first test of parasitism and eusociality as possible constraints. Insect Molecular Biology 19: 337-346.

7 = Tavares MG, Carvalho CR, Soares FAF (2010) Genome size variation in Melipona species (Hymenoptera: Apidae) and sub-grouping by their DNA content. Apidologie 41: 636 - 642.

8 = Tavares MG, Carvalho CR, Soares FAF, Fernandes A (2010) Detection of diploid males in a natural colony of the cleptobiotic bee Lestrimelitta sp ( Hymenoptera , Apidae ). Genetics and Molecular Biology 33: 491-493.

9 = Gokhman VE, Johnston JS, Small C,Rajwani R, Hanrahan SJ, Govind S (2011) Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae). Comparative Cytogenenetics 5: 211-221.

10 = Hanrahan SJ, Johnston JS (2011) New genome size estimates of 134 species of arthropods. Chromosome Research 19: 809-823.

11 = Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera . Nature 443: 931-949.

JL = Unpublished genome size estimate also in Appendix 2 by Lima J.