Advances in Entomopathogen Isolation: a Case of Bacteria and Fungi

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Entomopathogen Isolation: a Case of Bacteria and Fungi microorganisms Review Advances in Entomopathogen Isolation: A Case of Bacteria and Fungi Lav Sharma 1,*, Nitin Bohra 2 , Vishnu D. Rajput 3 , Francisco Roberto Quiroz-Figueroa 4, Rupesh Kumar Singh 5 and Guilhermina Marques 1 1 Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; [email protected] 2 Max Planck School Matter to Life, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany; [email protected] 3 Soil Science and Land Evaluation Department, Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; [email protected] 4 Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-IPN Unidad Sinaloa), Laboratorio de Fitomejoramiento Molecular, Blvd. Juan de Dios Bátiz Paredes no. 250, Col. San Joachín, C.P., Guasave 81101, Mexico; labfi[email protected] 5 Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-25-9350-2472 Abstract: Entomopathogenic bacteria and fungi are quite frequently found in soils and insect cadav- ers. The first step in utilizing these microbes as biopesticides is to isolate them, and several culture media and insect baiting procedures have been tested in this direction. In this work, the authors review the current techniques that have been developed so far, in the last five decades, and display brief protocols which can be adopted for the isolations of these entomopathogens. Among bacteria, this review focuses on Serratia spp. and bacteria from the class Bacilli. Among fungi, the review focuses those from the order Hypocreales, for example, genera Beauveria, Clonostachys, Lecanicillium, Metarhizium, and Purpureocillium. The authors chose these groups of entomopathogenic bacteria and fungi based on their importance in the microbial biopesticide market. Citation: Sharma, L.; Bohra, N.; Rajput, V.D.; Quiroz-Figueroa, F.R.; Keywords: Beauveria; Metarhizium; Hypocreales; Bacillus thuringiensis; Serratia Singh, R.K.; Marques, G. Advances in Entomopathogen Isolation: A Case of Bacteria and Fungi. Microorganisms 2021, 9, 16. https://dx.doi.org/ 1. Introduction 10.3390/microorganisms9010016 The global biopesticide market is expected to reach around USD 7.7 billion with a Received: 13 November 2020 compound annual growth rate of 14.1% [1]. It is also estimated that microbial biopesticides Accepted: 20 December 2020 will account for 3% of the total pesticide market [2]. The shift toward microbial biopesticides Published: 23 December 2020 is increasing as European legislation is continuously pressing to minimize the residue levels of synthetic chemical pesticides. Moreover, forthcoming directive (EC 91/414) demands Publisher’s Note: MDPI stays neu- a ban of chemical pesticides that are deemed to be the disruptors of human endocrine tral with regard to jurisdictional claims system. Microbial biocontrol agents are the new hope in this direction, and governments in published maps and institutional and scientists in Europe have simplified the European microbial pesticide registration affiliations. procedures outlined in the Regulation of Biological Control Agents (REBECA), with an objective to facilitate the development of microbial biocontrol agents [3]. Entomopathogenic bacteria (EPB) and entomopathogenic fungi (EPF) are the natural Copyright: © 2020 by the authors. Li- enemies of insect-pests. Hence, their importance in agriculture is quite high [4–8]. The ma- censee MDPI, Basel, Switzerland. This jority of the EPB belong to a few bacterial families, such as Bacillaceae, Enterobacteriaceae, article is an open access article distributed Micrococcaceae, Pseudomonadaceae, and Streptococcaceae. Bacillus thuringiensis (Bt) is under the terms and conditions of the arguably the most widely studied and used bacterial entomopathogen [9]. At present, Creative Commons Attribution (CC BY) there are over 40 Bt products for insect biological control, which account for 1% of the license (https://creativecommons.org/ total global insecticide market and approximately a market of USD 210 million per an- licenses/by/4.0/). Microorganisms 2021, 9, 16. https://dx.doi.org/10.3390/microorganisms9010016 https://www.mdpi.com/journal/microorganisms Microorganisms 2021, 9, 16 2 of 28 num [3,10,11]. Other bacterial biopesticides account for approximately USD 50 million per annum. A list of commercial EPB and their target insect groups is presented in the Table1. Table 1. Examples of common commercially available entomopathogenic bacteria (EPB) and their target insect groups. Bacteria Target Pest Crops PRODUCT (Company, Country) CRYMAX (Certis, USA) DELIVER (Certis, USA) JAVELIN WG (Certis, USA) COSTAR JARDIN; COSTAR WG (Mitsui AgriScience International NV, Belgium) LEPINOX PLUS (CBC, Europe) B. acillus thuringiensis Lepidoptera Row crops, forests, orchards, subsp. kurstaki forests turfs BACTOSPEINE JARDIN EC (Duphar BV, The Netherlands) DOLPHIN (Andermatt Biocontrol, Switzerland) BMP 123 (Becker, USA) DIPEL DF (Valent Biosciences, USA) LEAP (Valent Biosciences, USA) FORAY 48 B (Valent Biosciences, USA) CRYMAX (Certis, USA) AGREE 50 WG (Certis, USA) B. thuringiensis subsp. Lepidoptera Row crops, orchards aizawai XENTARI (Valent Biosciences, USA) FLORBAC (Bayer, Germany) B. thuringiensis subsp. Coleoptera: Potatoes, tomatoes, eggplant, TRIDENT (Certis USA) Chrysomelidae tenebrionis elm trees NOVODOR FC (Valent Biosciences, USA) AQUABAC DF3000, (Becker Microbial Products Inc, USA) VECTOPRIME (Valent Biosciences, USA) Diverse lentic and lotic B. thuringiensis subsp. Diptera TEKNAR (Valent Biosciences, USA) israelensis aquatic habitats VECTOBAC (Valent Biosciences, USA) BACTIMOS (Valent Biosciences, USA) SOLBAC (Andermatt Biocontrol, Switzerland) Lysinibacillus sphaericus Diptera: Culicidae Lentic aquatic habitats VECTOLEX (Valent Biosciences, USA) Coleoptera: BIOSHIELD GRASS GRUB Serratia entomophila Pastures Scarabaeidae (Biostart, New Zealand) Japanese beetle Lawns, flowers, mulch beds, MILKY SPORE POWDER (St. Gabriel Paenibacillus popilliae larvae/grub gardens Organics, USA) Similarly, over 170 biopesticides based on fungi have been developed since 1960, and 75% are either still in use or have been registered [10,11]. This accounts for at least USD 77 million annually [3,10,11]. Their popularity can be attributed to the fact that EPF pose lesser risks for nontarget arthropods, such as bees, predatory beetles, and parasitic wasps. Hypocrealean fungi such as Beauveria, Metarhizium, Cordyceps, and Lecanicillium are some of the well-known fungal entomopathogens [7]. A list of commercially available EPF along with their target insect groups is presented in the Table2. Microorganisms 2021, 9, 16 3 of 28 Table 2. Examples of common commercially available entomopathogenic fungi (EPF) and their target insect groups. Fungi Target Pest Crop Product and Company Psyllids, whiteflies, thrips, crops BOTE GHA (Certis, USA) aphids, mites Flies, mites, thrips, NATURALIS (Troy cotton, glasshouse crops leafhoppers, and weevils Biosciences, USA) CONIDIA (AgroEvo, Coffee berry borer coffee Germany) Whiteflies, aphids, thrips field crops MYCOTROL (Bioworks, USA) BOTANIGRAD (Bioworks, Whiteflies, aphids, thrips field crops Beauveria bassiana sensu lato USA) OSTRINIL (Arysta Lifescience, Corn borer maize France) Spotted mite, eucalyptus BOVERIL (Koppert, weevil, coffee borer, and crops The Netherlands) whitefly BALANCE (Rincon-Vitova Flies Insectaries, USA) BEAUVERIA BASSIANA As soil treatment crops PLUS, (BuildASoil, USA) peppers, tomatoes, potatoes, BEA-SIN (Agrobionsa, Whitefly eggplants Mexico) MELOCONT PILZGERSTE forests, vegetables, fruits, May beetle (Samen-schwarzenberger, grasslands Austria) BEAUPRO (Andermatt B. brongniartii Cockchafer larvae Fruits, Meadows Biocontrol, Switzerland) BETEL (Natural Plant Scarabs beetle larvae sugarcane Protection, France) BEAUVERIA-SCHWEIZER Cockchafer fruits, Meadows (Eric Schweizer, Switzerland) METARRIL WP Sugar cane root leafhopper sugarcane (Koppert, The Netherlands) Cockroaches houses BIO-PATH (EcoScience, USA) Vine weevils, sciarid flies, glasshouse, ornamental crops BIO 1020 (Bayer, Germany) wireworms and thrips pupae Metarhizium anisopliae sensu lato White grubs sugarcane BIOCANE (BASF, Australia) termites BIOBLAST (Paragon, USA) Black vine weevil, strawberry stored grains and crops MET-52 (Novozymes, USA) root weevil, thrips META-SIN (Agrobionsa, Pepper weevil chili and bell peppers Mexico) GREEN GUARD M. acridum Locusts and grasshoppers crops (BASF, Australia) M. frigidum Scarab larvae crops BIOGREEN (BASF, Australia) ATTRACAP (Biocare, M. brunneum Wireworms potato and asparagus crops Germany) Microorganisms 2021, 9, 16 4 of 28 Table 2. Cont. Fungi Target Pest Crop Product and Company PREFERAL WG Whiteflies glasshouse crops (Biobest, Belgium) Cordyceps fumosorosea Aphids, Citrus psyllid, spider PFR-97 20% WDG wide range of crops mite, thrips, whitefly (Certis, USA) Peppers, tomatoes, potatoes, BEA-SIN (Agrobionsa, Whitefly eggplants Mexico) Cotton bullworm, Citrus CHALLENGER (Koppert, Field crops psyllid The Netherlands) VERTALEC (Koppert, Aphids crops Lecanicillium longisporum The Netherlands) MYCOTAL (Koppert, Whiteflies, thrips crops The Netherlands) peppers, tomatoes, potatoes, VERTI-SIN (Agrobionsa,
Recommended publications
  • Natural Products for Managing Landscape and Garden Pests in Florida1 Matthew A
    ENY-350 Natural Products for Managing Landscape and Garden Pests in Florida1 Matthew A. Borden, Eileen A. Buss, Sydney G. Park Brown, and Adam G. Dale2 Pest control professionals and homeowners throughout Florida and the southeastern US are seeking effective options that are safer for people and the environment than some conventional synthetic pesticides. There is also rising interest in organic gardening, which relies on natural pesticides. See the Organic Materials Review Institute (OMRI) website (https://www.omri.org/omri-lists/ download) for products that are acceptable in organic plant production. Natural or biological pesticides, also called biopesticides, can be used by themselves or in combination with conventional pesticide programs as valuable rotation options, thus delaying or preventing onset of resistance caused by repeated use of the same chemical controls. Figure 1. A brown lacewing larva, Micromus posticus, feeding on aphid This publication describes natural products for use in pests of a rose bush. This soft-bodied predator would likely be killed residential landscapes and gardens. They are generally by natural insecticides intended for the aphids. Credits: Lyle Buss, UF/IFAS less toxic to nontarget organisms and the environment and, when used correctly, can be effective tools for plant There is a general lack of knowledge about natural or protection. These products are most effective when used in biological pesticides, including commercial availability and an integrated pest management (IPM) program along with effective use. All pesticides, whether natural or synthetic, sanitation, proper cultural practices, mechanical control carry inherent risks and require safe and responsible use by tactics, use of resistant plant varieties, and biological the applicator.
    [Show full text]
  • Potato Dextrose Agar with Lecithin and Tween 80 (7575)
    POTATO DEXTROSE AGAR w/ LECITHIN & TWEEN 80 (7575) Intended Use Potato Dextrose Agar w/ Lecithin & Tween 80 is used for the isolation of fungi from surfaces sanitized with quaternary ammonium compounds. Product Summary and Explanation Potato Dextrose Agar is a general purpose medium for yeasts and molds that can be supplemented with acid or antibiotics to inhibit bacterial growth. The nutritionally rich base (potato infusion) encourages mold sporulation and pigment production in some dermatophytes.1 Potato Dextrose Agar w/ Lecithin & Tween 80 is a modification of Potato Dextrose Agar. The addition of Lecithin and Tween 80 to Potato Dextrose Agar is used to neutralize antiseptics and disinfectants for environmental monitoring and other applications.2 Complete neutralization of disinfectants is important. Disinfectant carryover can cause a false no-growth test result. Principles of the Procedure Potato Infusion provides nitrogen and vitamin sources required for organism growth. Dextrose is included as a carbon source. Lecithin neutralizes quaternary ammonium compounds and ethanol, and Tween 80 neutralizes phenols, hexachlorophene, and formalin. Agar is the solidifying agent. Formula / Liter Potato Infusion (dehydrated) .................................................... 4 g Dextrose ................................................................................. 20 g Tween 80 .................................................................................. 5 g Lecithin..................................................................................
    [Show full text]
  • Spatial and Temporal Dynamics of a Fungal Pathogen Promote Pattern Formation in a Tropical Agroecosystem
    62 The Open Ecology Journal, 2009, 2, 62-73 Open Access Spatial and Temporal Dynamics of a Fungal Pathogen Promote Pattern Formation in a Tropical Agroecosystem Doug Jackson*,1, John Vandermeer1,2 and Ivette Perfecto2 1Department of Ecology and Evolutionary Biology, 2School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA Abstract: Recent studies have shown that the spatial pattern of nests of an arboreal ant, Azteca instabilis (Hymenoptera: Formicidae), in a tropical coffee agroecosystem may emerge through self-organization. The proposed self-organization process involves both local expansion and density-dependent mortality of the ant colonies. We explored a possible mechanism for the density-dependent mortality involving the entomopathogenic fungus Lecanicillium lecanii. L. lecanii attacks a scale insect, Coccus viridis (Coccidae, Hemiptera), which is tended by A. instabilis in a mutualistic association. By attacking C. viridis, L. lecanii may have an indirect, negative effect on ant colony survival. To explore this hypothesis, we conducted investigations into the spatial and temporal distributions of L. lecanii. We measured incidence and severity at 4 spatial scales: (1) throughout a 45 hectare study plot; (2) in two 40 X 50 meter plots; (3) on coffee bushes within 4 m of two ant nests; and (3) on individual branches in a single coffee bush. The plot-level censuses did not reveal a clear spatial pattern, but the finer scale surveys show distinct patterns in the spread of infection over time. We also developed a simple cellular automata model of the coupled ant nest-L. lecanii system which is able to produce spatial patterns qualitatively and quantitatively similar to that found in the field.
    [Show full text]
  • The Fungi of Slapton Ley National Nature Reserve and Environs
    THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546).
    [Show full text]
  • Natural* Pest Control in the Home Garden Why Go the Natural Route?
    Natural* Pest Control in the Home Garden Why go the natural route? • Safety • Sustainability • Insect resistance • Cost considerations • $ • Time • Health Natural Controls • At least some natural forces act on all organisms, causing populations to rise and fall • Be aware of the influence of natural forces and whether or not you can harness them to balance the scales in your favor • Climate • Natural enemies • Geography/Environment • Sustenance • Shelter Disease Triangle So I want to go more natural. What are my strategies? First Thing’s First: Document everything. Plant/Variety Selection • Right plant, right place (think of the disease triangle) • Stressed plants emit pheromones that attract insect pests • Some plants resist pest attacks better than others • Heirlooms vs hybrids Timing • Time plantings so that majority of crop will avoid peak pest infestations Cultural/Mechanical Control • Spacing • Plant strength • Airflow/circulation • Pathogen dispersal • Plant Strength Cultural/Mechanical Control • Weeds, grass around garden may harbor harmful pests • Gardens started on formerly turfed area may contain harmful larvae and formidable weeds Cultural/Mechanical Control • Crop Rotation/Cover Crop • Soil health • Weed control Cultural/Mechanical Control • Row Covers Cultural/Mechanical Control Sanitation • Removal of sick, dying, dead plant material • Mulch • Know when to call it quits Trapping • Very practical, just require a threshold • Traps for wide range of pests available commercially Scouting • Not just what you see – context is
    [Show full text]
  • Grubs / Scarab Beetles Know Thy Enemy: White Grubs / Scarab Beetles • Scarab Beetles (Scarabaeidae) Are Part of the Coleoptera Order (General Beetles)
    A Novel, Effective Approach to Grub Control That is Safe for Pollinators, People, Animals and the Environment with EPA Exemptions in CT Joe Magazzi, MS President Outline WHAT? WHY? HOW? Know Thy Enemy: White Grubs / Scarab Beetles Know Thy Enemy: White Grubs / Scarab Beetles • Scarab Beetles (Scarabaeidae) are part of the Coleoptera order (General Beetles). • There are about 30,000 scarab species comprising about 10 percent of all known beetles. The term “white grub” is the immature or larval form of the scarab beetle. • Most consume live plants, fruits and vegetable and are considered agricultural pests with a large negative economic impact. In Connecticut, the most prevalent and damaging species are: Japanese beetles, European chafers, Asiatic garden beetles, Oriental beetles, Northern masked chafer Know Thy Enemy: White Grubs / Scarab Beetles Economic Impact • “White grubs are the most damaging group of turf grass insect pests in our region”…Connecticut IPM Annual Report from UCONN in 2013. • According to a USDA/APHIS report in 2000, about $156 million is spent in the US annually renovating or replacing damaged turf or ornamental plants. • That same report from 2000 estimated that $460 million is spent each year to control the grubs and adults. • Today, the economic impact is likely higher than it was 16 years ago. • These numbers are only for the Japanese beetle – total white grub & adult beetle damage is likely in the billions. Know Thy Enemy: Beetle Life Cycles From Cornell University Integrated Pest Management Program (www.nysipm.cornell.edu/publications/grubs/life.asp) beetleGONE! & grubGONE! (Bacillus thuringiensis) & The Cry Proteins: An Introduction & Mode of Action Against Grubs & Beetles “The Enemy of My Enemy is My Friend” Bacillus thuringiensis (Bt) • Bacteria first isolated in 1901 by Ishiwatari from diseased silkworms and again by Berliner from diseased flour moth larvae in 1911.
    [Show full text]
  • Sub-Lethal Effects of Lecanicillium Lecanii
    agriculture Article Sub-Lethal Effects of Lecanicillium lecanii (Zimmermann)-Derived Partially Purified Protein and Its Potential Implication in Cotton (Gossypium hirsutum L.) Defense against Bemisia tabaci Gennadius (Aleyrodidae: Hemiptera) Yusuf Ali Abdulle 1,†, Talha Nazir 1,2,*,† , Samy Sayed 3 , Samy F. Mahmoud 4 , Muhammad Zeeshan Majeed 5 , Hafiz Muhammad Usman Aslam 6, Zubair Iqbal 7, Muhammad Shahid Nisar 2, Azhar Uddin Keerio 1, Habib Ali 8 and Dewen Qiu 1 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; [email protected] (Y.A.A.); [email protected] (A.U.K.); [email protected] (D.Q.) 2 Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan 32200, Pakistan; [email protected] 3 Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] Citation: Abdulle, Y.A.; Nazir, T.; 4 Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Sayed, S.; Mahmoud, S.F.; Majeed, [email protected] M.Z.; Aslam, H.M.U.; Iqbal, Z.; Nisar, 5 Department of Entomology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; M.S.; Keerio, A.U.; Ali, H.; et al. [email protected] 6 Sub-Lethal Effects of Lecanicillium Department of Plant Pathology, Institute of Plant Protection (IPP), MNS-University of Agriculture, lecanii (Zimmermann)-Derived
    [Show full text]
  • Common Commensals
    Common Commensals Actinobacterium meyeri Aerococcus urinaeequi Arthrobacter nicotinovorans Actinomyces Aerococcus urinaehominis Arthrobacter nitroguajacolicus Actinomyces bernardiae Aerococcus viridans Arthrobacter oryzae Actinomyces bovis Alpha‐hemolytic Streptococcus, not S pneumoniae Arthrobacter oxydans Actinomyces cardiffensis Arachnia propionica Arthrobacter pascens Actinomyces dentalis Arcanobacterium Arthrobacter polychromogenes Actinomyces dentocariosus Arcanobacterium bernardiae Arthrobacter protophormiae Actinomyces DO8 Arcanobacterium haemolyticum Arthrobacter psychrolactophilus Actinomyces europaeus Arcanobacterium pluranimalium Arthrobacter psychrophenolicus Actinomyces funkei Arcanobacterium pyogenes Arthrobacter ramosus Actinomyces georgiae Arthrobacter Arthrobacter rhombi Actinomyces gerencseriae Arthrobacter agilis Arthrobacter roseus Actinomyces gerenseriae Arthrobacter albus Arthrobacter russicus Actinomyces graevenitzii Arthrobacter arilaitensis Arthrobacter scleromae Actinomyces hongkongensis Arthrobacter astrocyaneus Arthrobacter sulfonivorans Actinomyces israelii Arthrobacter atrocyaneus Arthrobacter sulfureus Actinomyces israelii serotype II Arthrobacter aurescens Arthrobacter uratoxydans Actinomyces meyeri Arthrobacter bergerei Arthrobacter ureafaciens Actinomyces naeslundii Arthrobacter chlorophenolicus Arthrobacter variabilis Actinomyces nasicola Arthrobacter citreus Arthrobacter viscosus Actinomyces neuii Arthrobacter creatinolyticus Arthrobacter woluwensis Actinomyces odontolyticus Arthrobacter crystallopoietes
    [Show full text]
  • Paenibacillaceae Cover
    The Family Paenibacillaceae Strain Catalog and Reference • BGSC • Daniel R. Zeigler, Director The Family Paenibacillaceae Bacillus Genetic Stock Center Catalog of Strains Part 5 Daniel R. Zeigler, Ph.D. BGSC Director © 2013 Daniel R. Zeigler Bacillus Genetic Stock Center 484 West Twelfth Avenue Biological Sciences 556 Columbus OH 43210 USA www.bgsc.org The Bacillus Genetic Stock Center is supported in part by a grant from the National Sciences Foundation, Award Number: DBI-1349029 The author disclaims any conflict of interest. Description or mention of instrumentation, software, or other products in this book does not imply endorsement by the author or by the Ohio State University. Cover: Paenibacillus dendritiformus colony pattern formation. Color added for effect. Image courtesy of Eshel Ben Jacob. TABLE OF CONTENTS Table of Contents .......................................................................................................................................................... 1 Welcome to the Bacillus Genetic Stock Center ............................................................................................................. 2 What is the Bacillus Genetic Stock Center? ............................................................................................................... 2 What kinds of cultures are available from the BGSC? ............................................................................................... 2 What you can do to help the BGSC ...........................................................................................................................
    [Show full text]
  • Diversity of Facultatively Anaerobic Microscopic Mycelial Fungi in Soils A
    ISSN 0026-2617, Microbiology, 2008, Vol. 77, No. 1, pp. 90–98. © Pleiades Publishing, Ltd., 2008. Original Russian Text © A.V. Kurakov, R.B. Lavrent’ev, T.Yu. Nechitailo, P.N. Golyshin, D.G. Zvyagintsev, 2008, published in Mikrobiologiya, 2008, Vol. 77, No. 1, pp. 103–112. EXPERIMENTAL ARTICLES Diversity of Facultatively Anaerobic Microscopic Mycelial Fungi in Soils A. V. Kurakova,1, R. B. Lavrent’evb, T. Yu. Nechitailoc, P. N. Golyshinc, and D. G. Zvyagintsevb a International Biotechnology Center, Moscow State University, Moscow, 119992 Russia b Department of Soil Biology, Faculty of Soil Science, Moscow State University, Moscow, 119992 Russia c National Biotechnology Center, Mascheroder Weg 1, 38124 Braunschweig, Germany Received March 26, 2007 Abstract—The numbers of microscopic fungi isolated from soil samples after anaerobic incubation varied from tens to several hundreds of CFU per one gram of soil; a total of 30 species was found. This group is com- posed primarily of mitotic fungi of the ascomycete affinity belonging to the orders Hypocreales (Fusarium solani, F. oxysporum, Fusarium sp., Clonostachys grammicospora, C. rosea, Acremonium sp., Gliocladium penicilloides, Trichoderma aureoviride, T. harzianum, T. polysporum, T. viride, T. koningii, Lecanicillum leca- nii, and Tolypocladium inflatum) and Eurotiales (Aspergillus terreus, A. niger, and Paecilomyces lilacimus), as well as to the phylum Zygomycota, to the order Mucorales (Actinomucor elegans, Absidia glauca, Mucor cir- cinelloides, M. hiemalis, M. racemosus, Mucor sp., Rhizopus oryzae, Zygorrhynchus moelleri, Z. heterogamus, and Umbelopsis isabellina) and the order Mortierellales (Mortierella sp.). As much as 10–30% of the total amount of fungal mycelium remains viable for a long time (one month) under anaerobic conditions.
    [Show full text]
  • Ep 2434019 A1
    (19) & (11) EP 2 434 019 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 28.03.2012 Bulletin 2012/13 C12N 15/82 (2006.01) C07K 14/395 (2006.01) C12N 5/10 (2006.01) G01N 33/50 (2006.01) (2006.01) (2006.01) (21) Application number: 11160902.0 C07K 16/14 A01H 5/00 C07K 14/39 (2006.01) (22) Date of filing: 21.07.2004 (84) Designated Contracting States: • Kamlage, Beate AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 12161, Berlin (DE) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Taman-Chardonnens, Agnes A. 1611, DS Bovenkarspel (NL) (30) Priority: 01.08.2003 EP 03016672 • Shirley, Amber 15.04.2004 PCT/US2004/011887 Durham, NC 27703 (US) • Wang, Xi-Qing (62) Document number(s) of the earlier application(s) in Chapel Hill, NC 27516 (US) accordance with Art. 76 EPC: • Sarria-Millan, Rodrigo 04741185.5 / 1 654 368 West Lafayette, IN 47906 (US) • McKersie, Bryan D (27) Previously filed application: Cary, NC 27519 (US) 21.07.2004 PCT/EP2004/008136 • Chen, Ruoying Duluth, GA 30096 (US) (71) Applicant: BASF Plant Science GmbH 67056 Ludwigshafen (DE) (74) Representative: Heistracher, Elisabeth BASF SE (72) Inventors: Global Intellectual Property • Plesch, Gunnar GVX - C 6 14482, Potsdam (DE) Carl-Bosch-Strasse 38 • Puzio, Piotr 67056 Ludwigshafen (DE) 9030, Mariakerke (Gent) (BE) • Blau, Astrid Remarks: 14532, Stahnsdorf (DE) This application was filed on 01-04-2011 as a • Looser, Ralf divisional application to the application mentioned 13158, Berlin (DE) under INID code 62.
    [Show full text]
  • Food Microbiology
    Food Microbiology Food Water Dairy Beverage Online Ordering Available Food, Water, Dairy, & Beverage Microbiology Table of Contents 1 Environmental Monitoring Contact Plates 3 Petri Plates 3 Culture Media for Air Sampling 4 Environmental Sampling Boot Swabs 6 Environmental Testing Swabs 8 Surface Sanitizers 8 Hand Sanitation 9 Sample Preparation - Dilution Vials 10 Compact Dry™ 12 HardyCHROM™ Chromogenic Culture Media 15 Prepared Media 24 Agar Plates for Membrane Filtration 26 CRITERION™ Dehydrated Culture Media 28 Pathogen Detection Environmental With Monitoring Contact Plates Baird Parker Agar Friction Lid For the selective isolation and enumeration of coagulase-positive staphylococci (Staphylococcus aureus) on environmental surfaces. HardyCHROM™ ECC 15x60mm contact plate, A chromogenic medium for the detection, 10/pk ................................................................................ 89407-364 differentiation, and enumeration of Escherichia coli and other coliforms from environmental surfaces (E. coli D/E Neutralizing Agar turns blue, coliforms turn red). For the enumeration of environmental organisms. 15x60mm plate contact plate, The media is able to neutralize most antiseptics 10/pk ................................................................................ 89407-354 and disinfectants that may inhibit the growth of environmental organisms. Malt Extract 15x60mm contact plate, Malt Extract is recommended for the cultivation and 10/pk ................................................................................89407-482
    [Show full text]