Ipfs in the Offshore Wind Cumulative Impacts Scenario on the NA

Total Page:16

File Type:pdf, Size:1020Kb

Ipfs in the Offshore Wind Cumulative Impacts Scenario on the NA _____________ OCS Study BOEM 2019-036 National Environmental Policy Act Documentation for Impact-Producing Factors in the Offshore Wind Cumulative Impacts Scenario on the North Atlantic Outer Continental Shelf U.S. Department of the Interior Bureau of Ocean Energy Management Office Renewable Energy Programs www.boem.gov OCS Study BOEM 2019-036 National Environmental Policy Act Documentation for Impact-Producing Factors in the Offshore Wind Cumulative Impacts Scenario on the North Atlantic Outer Continental Shelf May 2019 Prepared under BOEM Contract 140M0118F0035 by Avanti Corporation Industrial Economics, Inc. Published by U.S. Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs DISCLAIMER Study concept, oversight, and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management (BOEM) under Contract Number140M0118F0035. This report has been technically reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management website at www.boem.gov/Environmental-Studies-EnvData/, click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2019-036. CITATION Bureau of Ocean Energy Management (BOEM). 2019. National Environmental Policy Act Documentation for Impact-Producing Factors in the Offshore Wind Cumulative Impacts Scenario on the North Atlantic Continental Shelf. US Dept. of the Interior, Bureau of Ocean Energy Management, Office of Renewable Energy Programs, Sterling, VA. OCS Study 2019- 036. ABOUT THE COVER Photo: Turbine at Block Island Wind Farm offshore Block Island, RI. EXECUTIVE SUMMARY This document is intended to be a living document that will be revised and adapted through its use to include updated information and to incorporate new activities or effects not currently identified. The Council on Environmental Quality (CEQ) regulations for implementing the National Environmental Policy Act (NEPA) define cumulative effects as, “the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (federal or non-federal) or person undertakes such other actions.” (40 CFR §1508.7) Accordingly, NEPA requires agencies to consider not only the incremental direct and indirect effects of a particular action on environmental resources, but also the cumulative effects of the action that occur in combination with other actions. The purpose of the cumulative effects analysis is to ensure that the decision maker fully considers the consequences of the proposed action (CEQ 1997). CEQ’s guidance for evaluating cumulative effects as part of NEPA analyses specifies the need to include all relevant past, present, and reasonably foreseeable future actions and to focus on truly meaningful effects. Agencies are charged with developing action- or activity-specific cumulative impacts scenarios in accordance with this general guidance. Considering expected growth in renewable energy projects offshore from Maine to Virginia, the purpose of this document is to establish a common cumulative impacts scenario framework for use in NEPA analyses for offshore wind activities on the North Atlantic Outer Continental Shelf (OCS). This will enable efficient and effective identification of relevant actions for the cumulative effects analyses, and the development of consistent, succinct NEPA documents that demonstrate sound logic for cumulative effects findings. This document provides the following guidance to establish cumulative impact scenarios for future renewable energy projects in the North Atlantic OCS: • Identifies the important cause-and-effect relationships between renewable energy projects and potentially affected resources. BOEM refers to these relationships in terms of the Impact Producing Factors (IPFs) generated by these activities that directly or indirectly affect physical, biological, economic, or cultural resources. Based on these IPFs, this document identifies the relevant affected resources that should be considered in the cumulative impacts analysis. • Identifies the types of actions and activities to include in the cumulative impacts scenario. This document identifies multiple types of actions and activities (including federal, non-federal and private actions) that may affect the same physical, biological, economic, or cultural resources as the renewable energy actions that should therefore be considered in terms of the collective effects. These “cumulative actions and activities” may generate the same IPFs as renewable energy or affect the same resources in other ways (i.e., via different IPFs). • Identifies past, present, and reasonably foreseeable actions and activities in the North Atlantic OCS to consider in future NEPA cumulative impact scenarios. Chapter 3 of this document provides activity-specific overviews of activity levels and locations, presenting information in tables and maps where possible. This information may be used as a starting point for cumulative effects analyses for future renewable energy projects. This information reflects the state of knowledge as of March 2019; future analyses will therefore require some additional research to ensure the cumulative impacts scenario is current. • Provides guidance on and information sources for identifying relevant past, present, and reasonably foreseeable actions for each action/activity. Cumulative impact scenarios for renewable energy projects will be location-specific and will therefore require some additional research regarding the specific actions and activities to be included (e.g., amount of vessel traffic or extent of dredging and presence of disposal sites). Chapter 2 of this document defines resource-specific spatial boundaries that identify the area over which relevant actions and i activities may affect a given resource. The action and activity-specific sections of Chapter 3 then direct analysts to the best available information sources to identify and quantify the relevant actions and activities. Chapter 1 of this document provides an overview of the categories of activities and affected resources relevant to cumulative impacts scenarios of renewable energy projects. Chapter 2 describes the logic for the guidance regarding which activities to include in future cumulative impacts scenarios. Chapter 3 links actions and activities to IPFs (which define cause-and-effect relationships between actions/activities and environmental resources). Chapter 4 links the IPFs to affected resources. While the document attempts to describe the full suite of potentially relevant activities, IPFs, and resources likely to be appropriate for NEPA reviews of offshore wind energy projects, it may not match every future project. As such, site- specific conditions need to be considered for each evaluation. ii Cumulative Impacts Scenario CONTENTS EXECUTIVE SUMMARY .......................................................................................................i 1. INTRODUCTION ..............................................................................................................1 2. METHODOLOGY FOR SELECTING PAST, PRESENT, AND REASONABLY FORESEEABLE FUTURE ACTIVITIES .......................................................................... 3 2.1 Definitions of Key Terms ...............................................................................................3 2.2 Conceptual Framework of Actions, IPFs, and Resource Interactions ............................ 3 2.3 Description of IPFs .......................................................................................................5 2.4 Guidelines for Spatial Boundaries for the Cumulative Impacts Scenario ..................... 15 3. CUMULATIVE IMPACTS SCENARIO ............................................................................ 22 3.1 Renewable Energy – Offshore Wind ........................................................................... 22 3.1.1 Description of Action and Activities .................................................................. 22 3.1.2 Current Activity ................................................................................................ 23 3.1.3 Reasonably Foreseeable Future Activities ....................................................... 24 3.1.4 Impact-Producing Factors Associated with Offshore Wind Energy................... 32 3.2 Renewable Energy – Other (Tidal/Wave/Hydrokinetic) ............................................... 36 3.2.1 Description of Action and Activities .................................................................. 36 3.2.2 Current Activity ................................................................................................ 36 3.2.3 Reasonably Foreseeable Future Activities ....................................................... 36 3.2.4 Impact-Producing Factors Associated with Tidal Energy ................................. 37 3.3 Marine Minerals .......................................................................................................... 37 3.3.1 Description of Actions and Activities
Recommended publications
  • Subsequent Initial Study of Environmental Impact
    Cayucos Sanitary District 200 Ash Avenue Cayucos CA 93430 www.cayucossd.org • 805-773-4658 Cayucos Sustainable Water Project (CSWP) Subsequent Mitigated Negative Declaration for the Estero Marine Terminal Ocean Outfall Project Component Subsequent Initial Study of Environmental Impact I. ENVIRONMENTAL DETERMINATION FORM 1. Project Title: Cayucos Sustainable Water Project Ocean Outfall 2. Lead Agency Name and Address: Cayucos Sanitary District 200 Ash Avenue / PO Box 333 Cayucos CA 93430 3. Contact Person and Phone Number: David Foote, c/o firma, (805) 781-9800 4. Project Location: Chevron Estero Marine Terminal 4000 Highway 1, Morro Bay, California 93442 5. Project Sponsor's Name and Address: Cayucos Sanitary District 200 Ash Avenue / PO Box 333 Cayucos CA 93430 6. General Plan Designation: The proposed pipeline tie-in site is designated Agriculture. The effluent pipeline conveyances are within public right-of-way (State Route 1) and Waters of the U.S. and State. 7. Zoning: Agriculture (County) and Open Area I/PD (City of Morro Bay west of State Route 1 and the mean high tide line) Cayucos Sustainable Water Project Ocean Outfall Initial Environmental Study Final January 2019 1 Cayucos Sanitary District 200 Ash Avenue Cayucos CA 93430 www.cayucossd.org • 805-773-4658 Cayucos Sustainable Water Project (CSWP) Subsequent Mitigated Negative Declaration for the Estero Marine Terminal Ocean Outfall Project Component 8. Project Description & Regulatory and Environmental setting LOCATION AND BACKGROUND The Project consists of the reuse of an existing ocean conveyance pipe for treated effluent disposal from the proposed and permitted Cayucos Sustainable Water Project’s (CSWP) Water Resource Recovery Facility (WRRF) by the Cayucos Sanitary District (CSD).
    [Show full text]
  • Subsea Pipelines Collaboration Cluster Advancing Our Knowledge of Subsea Pipeline Technology to Support the Oil and Gas Industry
    WEALTH FROM OCEANS www.csiro.au Subsea Pipelines Collaboration Cluster Advancing our knowledge of subsea pipeline technology to support the oil and gas industry Final report 2 Executive summary 17 Putting the Cluster’s research into practice 4 Introduction to the Subsea Pipelines Cluster 21 Commissioning experimental equipment 6 Training the offshore for ongoing pipeline pipeline engineers testing in Australia of the future 28 Publications and 10 Scientific and dissemination engineering challenges 34 Key papers 12 Scientific outcomes of the Flagship 46 Awards Collaborative Cluster 48 Keynote presentations, invited lectures and papers 49 Hosting international conference ISFOG 50 The Partners 51 Flagship Collaboration fund 1 Executive summary Offshore subsea pipelines are used to export oil and gas from the field to platform and then from the platform to the mainland. As they are the sole conduit for the hydrocarbons their stability and integrity are of critical economic and environmental importance. More than 80 per cent of Australia’s gas resources exist in deep, remote, offshore areas and being able to realise the full potential of these remote resources relies on the development of economically viable transportation solutions. Technical solutions for Australia’s offshore pipelines must maintain structural integrity and continuous supply of products across hundreds of kilometres of seabed. Such technology is also vital to Australia achieving the vision of “platform free fields”, a CSIRO Wealth from Oceans Flagship initiative. Platform free fields research investigates ways to replace traditional oil and gas platforms with subsea technologies for production of gas resources which may lie as far as 300 km offshore, at a depth greater than 1 km.
    [Show full text]
  • U.S. Offshore Wind Power Economic Impact Assessment
    U.S. Offshore Wind Power Economic Impact Assessment Issue Date | March 2020 Prepared By American Wind Energy Association Table of Contents Executive Summary ............................................................................................................................................................................. 1 Introduction .......................................................................................................................................................................................... 2 Current Status of U.S. Offshore Wind .......................................................................................................................................................... 2 Lessons from Land-based Wind ...................................................................................................................................................................... 3 Announced Investments in Domestic Infrastructure ............................................................................................................................ 5 Methodology ......................................................................................................................................................................................... 7 Input Assumptions ............................................................................................................................................................................................... 7 Modeling Tool ........................................................................................................................................................................................................
    [Show full text]
  • Schedule MPS-1 Page 1 of 9
    Grain Belt Express Clean Line Additional Information on Qualifications and Experience of Selected Clean Line Management Team Members and Employees Michael Skelly President and CEO Horizon Wind Energy – Chief Development Officer . Built and developed over 2,600 MW of electric projects, including: Blue Canyon V Wind Farm and Gen Tie, Pine Tree Wind Farm and Gen Tie, Rail Splitter Wind Farm and Gen Tie, Rattlesnake Road Wind Farm, Twin Groves II Wind Farm and Gen Tie, Meridian Way I & II Wind Farm and Gen Tie, Lone Star II Wind Farm, Pioneer Prairie I & II Wind Farm, Prairie Star Wind Farm and Gen Tie, Twin Groves I Wind Farm and Gen Tie, Lone Star I Wind Farm, Elkhorn Wind Farm, Maple Ridge I & II Wind Farm and Gen Tie, Wild Horse Wind Farm and Gen Tie, Blue Canyon I & II Wind Farm and Gen Tie, Mill Run Wind Farm, Somerset Wind Farm, Top of Iowa Wind Farm, Madison Wind Farm, Tierras Morenas Wind Farm. Participated in construction supervision, onsite inspections, the review of quality assurance/quality control procedures, the implementation of safety strategies, and resolving logistical issues of wind farms and generation tie lines. Responsible for purchasing equipment from wind turbine manufacturers. Responsible for negotiating EPC contracts for both equipment and construction, hiring construction supervision teams, negotiating balance of plant contracts for the turbine equipment, and performing development activities, including land acquisition, permitting, and turbine siting. Wayne Galli, Ph.D, P.E. Executive Vice President, Transmission and Technical Services NextEra Energy Resources – Director, Transmission Development ▪ Responsible for routing, siting and engineering for approximately 330 miles of new transmission lines, including HVDC lines for the CREZ Transmission Projects in Texas.
    [Show full text]
  • Ecological Monitoring and Mitigation Policies and Practices at Offshore Wind Installations in the United States and Europe
    Ecological Monitoring and Mitigation Policies and Practices at Offshore Wind Installations in the United States and Europe August 2020 Michael C. Allen, Ph.D., Postdoctoral Research Associate, Department of Ecology, Evolution, and Natural Resources, Rutgers University, Matthew Campo, Senior Research Specialist, Environmental Analysis & Communications Group, Rutgers University Prepared for the New Jersey Climate Change Alliance (https://njadapt.rutgers.edu/). Working Group Members: John Cecil, New Jersey Audubon Tim Dillingham, American Littoral Society Patty Doerr, The Nature Conservancy of New Jersey Russell Furnari, PSEG Kevin Hassell, New Jersey Department of Environmental Protection Anthony MacDonald, Urban Coast Institute at Monmouth University Martha Maxwell-Doyle, Barnegat Bay Partnership David Mizrahi, Ph.D., New Jersey Audubon Technical Reviews and Acknowledgments Joseph Brodie, Ph.D. Jeanne Herb Marjorie Kaplan, Dr.P.H. Josh Kohut, Ph.D. Richard Lathrop, Ph.D. Julie Lockwood, Ph.D. Douglas Zemeckis, Ph.D. https://doi.org/doi:10.7282/t3-wn1p-cz80 1 ABSTRACT Offshore wind energy is poised to expand dramatically along the eastern United States. However, the promise of sustainable energy also brings potential impacts on marine ecosystems from new turbines and transmission infrastructure. This whitepaper informs government officials, scientists, and stakeholders in New Jersey about the current policies and monitoring methods other jurisdictions use to monitor potential ecological impacts from offshore wind installations. We reviewed policy documents in the eastern U.S. and Europe, reviewed the scientific literature, and conducted stakeholder interviews in Spring 2020. We found: 1. Short-term (3-5 year) project-specific efforts dominate coordinated regional and project life duration ecological monitoring efforts at offshore wind farms in North America and Europe.
    [Show full text]
  • Deepwater Wind Plans Offshore Wind Farm to Serve Maryland
    FOR IMMEDIATE RELEASE MEDIA CONTACT: Meaghan Wims 401.278.4434, [email protected] Deepwater Wind Plans Offshore Wind Farm to Serve Maryland Skipjack Wind Farm Will Deliver Affordable Offshore Wind Energy Far Below State Estimates, Saving Ratepayers Millions of Dollars Ocean City, Md. – November 22, 2016 – America’s leading offshore wind company Deepwater Wind today announced plans for the Skipjack Wind Farm, a new offshore wind farm that will help Maryland meet its clean-energy goals at far lower prices than state law anticipates, saving Maryland ratepayers millions of dollars. The Skipjack Wind Farm will not only be the state’s largest renewable energy project, it would also be the right size for Maryland’s first offshore wind farm. At 120 megawatts, the Skipjack Wind Farm could be built in a single construction season, and developed more cost-effectively, and with considerably less risk, than a larger project. At more than 17 nautical miles northeast of Ocean City’s coastline, the project would be located so far away that it won’t impact views from Maryland’s shore. Deepwater Wind has secured the rights to acquire the site’s federal lease, subject to regulatory approval. “We’re bringing down the cost of American offshore wind energy in a big way,” said Deepwater Wind CEO Jeffrey Grybowski. “Ratepayers in Maryland will benefit from energy that is both clean and affordable. The Skipjack Wind Farm is the right clean energy solution for Maryland, and we’re ready to get to work.” The Skipjack Wind Farm is expected to generate well over $100 million dollars in economic benefits for Maryland.
    [Show full text]
  • Keys Sanctuary 25 Years of Marine Preservation National Parks Turn 100 Offbeat Keys Names Florida Keys Sunsets
    Keys TravelerThe Magazine Keys Sanctuary 25 Years of Marine Preservation National Parks Turn 100 Offbeat Keys Names Florida Keys Sunsets fla-keys.com Decompresssing at Bahia Honda State Park near Big Pine Key in the Lower Florida Keys. ANDY NEWMAN MARIA NEWMAN Keys Traveler 12 The Magazine Editor Andy Newman Managing Editor 8 4 Carol Shaughnessy ROB O’NEAL ROB Copy Editor Buck Banks Writers Julie Botteri We do! Briana Ciraulo Chloe Lykes TIM GROLLIMUND “Keys Traveler” is published by the Monroe County Tourist Development Contents Council, the official visitor marketing agency for the Florida Keys & Key West. 4 Sanctuary Protects Keys Marine Resources Director 8 Outdoor Art Enriches the Florida Keys Harold Wheeler 9 Epic Keys: Kiteboarding and Wakeboarding Director of Sales Stacey Mitchell 10 That Florida Keys Sunset! Florida Keys & Key West 12 Keys National Parks Join Centennial Celebration Visitor Information www.fla-keys.com 14 Florida Bay is a Must-Do Angling Experience www.fla-keys.co.uk 16 Race Over Water During Key Largo Bridge Run www.fla-keys.de www.fla-keys.it 17 What’s in a Name? In Marathon, Plenty! www.fla-keys.ie 18 Visit Indian and Lignumvitae Keys Splash or Relax at Keys Beaches www.fla-keys.fr New Arts District Enlivens Key West ach of the Florida Keys’ regions, from Key Largo Bahia Honda State Park, located in the Lower Keys www.fla-keys.nl www.fla-keys.be Stroll Back in Time at Crane Point to Key West, features sandy beaches for relaxing, between MMs 36 and 37. The beaches of Bahia Honda Toll-Free in the U.S.
    [Show full text]
  • Wind Powering America Fy08 Activities Summary
    WIND POWERING AMERICA FY08 ACTIVITIES SUMMARY Energy Efficiency & Renewable Energy Dear Wind Powering America Colleague, We are pleased to present the Wind Powering America FY08 Activities Summary, which reflects the accomplishments of our state Wind Working Groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. At the beginning of 2008, there were more than 16,500 megawatts (MW) of wind power installed across the United States, with an additional 7,000 MW projected by year end, bringing the U.S. installed capacity to more than 23,000 MW by the end of 2008. When our partnership was launched in 2000, there were 2,500 MW of installed wind capacity in the United States. At that time, only four states had more than 100 MW of installed wind capacity. Twenty-two states now have more than 100 MW installed, compared to 17 at the end of 2007. We anticipate that four or five additional states will join the 100-MW club in 2009, and by the end of the decade, more than 30 states will have passed the 100-MW milestone. WPA celebrates the 100-MW milestones because the first 100 megawatts are always the most difficult and lead to significant experience, recognition of the wind energy’s benefits, and expansion of the vision of a more economically and environmentally secure and sustainable future. Of course, the 20% Wind Energy by 2030 report (developed by AWEA, the U.S. Department of Energy, the National Renewable Energy Laboratory, and other stakeholders) indicates that 44 states may be in the 100-MW club by 2030, and 33 states will have more than 1,000 MW installed (at the end of 2008, there were six states in that category).
    [Show full text]
  • Empire Offshore Wind LLC Empire Wind 1 Project Article VII
    Empire Offshore Wind LLC Empire Wind 1 Project Article VII Application Pre-Filed Direct Testimony June 2021 PRE-FILED DIRECT TESTIMONY Pre-filed direct testimony in support of the Article VII Application for the Empire Wind 1 Project is presented by witnesses by subject area, as follows: Witness Exhibit(s) Sponsored Laura Morales Exhibit 1: General Information Regarding Application Laura Morales, Nathalie Schils Exhibit 2: Location of Facilities Laura Morales, Joel Stadell, Exhibit 3: Alternatives Sabrina Hepburn Laura Morales, Joel Stadell, Exhibit 4: Environmental Impact Sabrina Hepburn, Robert Jacoby, Katherine Miller, June Mire, Ryan Earley Joel Stadell Exhibit 5: Design Drawings Julia Bovey, Geir Miskov, Joel Exhibit 6: Economic Effects of Proposed Facility Stadell Laura Morales, Joel Stadell, Exhibit 7: Local Ordinances Sabrina Hepburn Laura Morales, Nathalie Schils Exhibit 8: Other Pending Filings Geir Miskov, Joel Stadell Exhibit 9: Cost of Proposed Facility Joel Stadell Exhibit E-1: Description of Proposed Transmission Facility Joel Stadell Exhibit E-2: Other Facilities Joel Stadell Exhibit E-3: Underground Construction Georges Charles, Joel Stadell Exhibit E-4: Engineering Justification Laura Morales, Sabrina Hepburn Exhibit E-5: Effect on Communications Laura Morales, Sabrina Hepburn, Exhibit E-6: Effect on Transportation Joel Stadell, Ryan Earley Laura Morales, Erin Lincoln Appendix B: Sediment Transport Analysis Empire Wind 1 Project Pre-Filed Direct Testimony Article VII Application Witness Exhibit(s) Sponsored Laura Morales, Katherine Miller Appendix C: Coastal Zone Management Consistency Statement Julia Bovey Appendix D: Public Involvement Plan Laura Morales, June Mire Appendix E: Benthic Resource Characterization Reports Benjamin R.T. Cotts and William Appendix F: Electric- and Magnetic-Field Assessment H.
    [Show full text]
  • Environmental, Health, and Safety Guidelines for Offshore Oil and Gas Development
    ENVIRONMENTAL, HEALTH, AND SAFETY GUIDELINES OFFSHORE OIL AND GAS DEVELOPMENT June 5, 2015 ENVIRONMENTAL, HEALTH, AND SAFETY GUIDELINES FOR OFFSHORE OIL AND GAS DEVELOPMENT INTRODUCTION 1. The Environmental, Health, and Safety (EHS) Guidelines are technical reference documents with general and industry-specific examples of Good International Industry Practice (GIIP).1 When one or more members of the World Bank Group are involved in a project, these EHS Guidelines are applied as required by their respective policies and standards. These industry sector EHS guidelines are designed to be used together with the General EHS Guidelines document, which provides guidance to users on common EHS issues potentially applicable to all industry sectors. For complex projects, use of multiple industry sector guidelines may be necessary. A complete list of industry sector guidelines can be found at: www.ifc.org/ehsguidelines. 2. The EHS Guidelines contain the performance levels and measures that are generally considered to be achievable in new facilities by existing technology at reasonable costs. Application of the EHS Guidelines to existing facilities may involve the establishment of site-specific targets, with an appropriate timetable for achieving them. 3. The applicability of the EHS Guidelines should be tailored to the hazards and risks established for each project on the basis of the results of an environmental assessment in which site-specific variables, such as host country context, assimilative capacity of the environment, and other project factors, are taken into account. The applicability of specific technical recommendations should be based on the professional opinion of qualified and experienced persons. 4. When host country regulations differ from the levels and measures presented in the EHS Guidelines, projects are expected to achieve whichever are more stringent.
    [Show full text]
  • 2019 Market Report
    US OFFSHORE WIND MARKET UPDATE & INSIGHTS US OFFSHORE WIND CAPACITY GENERATION The US Department of the Interior’s Bureau of Ocean and Energy Management (BOEM), has auctioned 16 US offshore wind energy areas (WEAs) designated in federal waters for offshore wind development. Each area has been leased to a qualified offshore wind developer. The ar- eas are located along the East Coast from North Carolina to Massachusetts and represent a total potential capacity of 21,000 Megawatts (MWs) of offshore wind power generation. HISTORY OF BOEM AUCTIONS AND LEASES YEAR LEASE # LESSEE STATE ACREAGE BID MW* NEXT 2012 0482 GSOE I DE 70,098 NA NA SAP *Reading volumes, some earlier estimates 2013 0486 Deepwater Wind NE RI/MA 97,498 $3,838,288 3400 TTL COP of capacity likely used 2013 0487 Deepwater Wind NE RI/MA 67,252 $3,838,288 3400 TTL FDR different calculations. 2013 0483 VA Electric & Power Co. VA 112,799 $1,600,000 2000 COP In all cases, capacity 2014 0490 US Wind MD 79,707 $8,701,098 1450 COP calculations should be considered estimates. 2015 0501 Vineyard Wind MA 166,886 $166,886 See Below FDR 2015 0500 Bay State Wind MA 187,523 $281,285 2000 TTL COP 2016 0498 Ocean Wind NJ 160,480 $880,715 See Below COP 2016 0499 EDFR Development NJ 183,353 $1,006,240 3400 TTL SAP 2017 0512 Equinor Wind US NY 79,350 $42,469,725 1000 COP 2017 0508 Avangrid Renewables NC 122,405 $9,066,650 1486 SAP 2018 0519 Skipjack Offshore Energy DE 26,332 Assigned NA SAP 2018 0520 Equinor Wind US MA 128,811 $135,000,000 1300 EXEC 2018 0521 Mayflower Wind Energy MA 127,388 $135,000,000 1300 EXEC 2018 0522 Vineyard Wind MA 132,370 $135,000,000 1500 EXEC EXEC—Lease Execution SAP—Site Assessment Plan COP—Construction & Operations Plan FDR—Facility Design Report @offshorewindus / BUSINESS NETWORK FOR OFFSHORE WIND / offshorewindus.org 1 STATE 2018 2019 MARKET GROWTH The US Offshore Wind market currently stands VIRGINIA 12 12 at 16,970 MWs and is a subset of the total US MARYLAND 366 366 potential generation capacity.
    [Show full text]
  • Stafftop Challenge for New US Sector
    Subsea Cable Solutions for offshore wind The Offshore Extensive experience in Wind Consultants complete projects owcltd.com 21 August 2020 @IPF20 LIVESTREAM Equinor puts floating TRENDING ON wind on its project menu Equinor is looking at floating wind Staff top challenge projects as part of its expansion in the US, IPF20 Livestream heard. p2 Vineyard and Mayflower Wind agree staging port leases Vineyard and Mayflower Wind have for new US sector signed lease agreements to use the The US offshore wind industry New Bedford Marine Commerce is primed to deliver on its Terminal as their primary staging and multi-gigawatt promise deployment base. despite confidence being Click here knocked by permitting delays, IPF20 Livestream heard. HOME ADVANTAGE (clockwise Philippe Kavafyan, CEO Orsted secures blessing to from top left): Martin Hansen of turbine manufacturer deploy Haliade-X at Skipjack of Siemens Gamesa, Orsted’s Grant van Wyngaarden, Matt MHI Vestas, told delegates The Maryland Public Service Sellers of Kiewit and sourcing on Thursday the necessary Commission has approved Orsted’s manager Senthil Baskaran elements are there for the turbine selection for its Skipjack wind Screengrab: Business Network for Offshore Wind sector to succeed. farm off the coast of Delaware. Consenting delays, caused BULLISH: Business Network for Offshore Wind CEO Liz Click here Secondary steel key to by the Bureau of Ocean Burdock and MHI Vestas chief Philippe Kavafyan Screengrab: reNEWS Orsted’s local content Energy Management’s Orsted is aiming to deliver significant decision last year to likely to collaborate, including involved if US developers Consortium unveils NY offshore local content levels across its near undertake a cumulative study turbine suppliers, in order to decide to use the next wind port upgrade 3GW US offshore wind portfolio by of all proposed east coast be able to access people with generation of turbines, A New York consortium has unveiled bringing tier two and three suppliers projects, have “calmed down” the required skills.
    [Show full text]