43 Annual Meeting of the Society for Invertebrate

Total Page:16

File Type:pdf, Size:1020Kb

43 Annual Meeting of the Society for Invertebrate 43rd ANNUAL MEETING OF THE SOCIETY FOR INVERTEBRATE PATHOLOGY and 10 th International Colloquium on Invertebrate Pathology The Final Meeting of COST862 Action: Bacterial Toxins for Insect Control PROGRAM and ABSTRACTS 11-15 July 2010 Karadeniz Technical University, Trabzon, Turkey - 1 - - 2 - TABLE OF CONTENTS Page Table of Contents ...................................................................................... 1 SIP Officers ............................................................................................... 3 SIP Committees ........................................................................................ 4 PROGRAM ................................................................................................. Sunday-Monday ................................................................................. Tuesday .............................................................................................. Wednesday ......................................................................................... POSTERS-1 .............................................................................. Thursday ............................................................................................ POSTERS-2 ............................................................................... ABSTRACTS ............................................................................................. Sunday-Monday ................................................................................. Tuesday .............................................................................................. Wednesday ......................................................................................... POSTERS-1 .............................................................................. Thursday ............................................................................................ POSTERS-2 .............................................................................. Author Index ............................................................................................... Pages Your Notes ........................................................................................ Maps of Meeting Site .................................................................................. - 3 - - 4 - SOCIETY FOR INVERTEBRATE PATHOLOGY President Mark Goettel Lethbridge Res Ctr, Agriculture and Agri-Food Canada, P.O. Box 3000, Lethbridge, AB, T1J 4B1, Canada Phone: (403) 317-2264 / Fax: (403) 382-3156 Email: [email protected] Vice President Leellen Solter Illinois Natural History Survey, Ecological Entomology, 140 NSRC, Box 18, 1101 W. Peabody Dr., Urbana, IL, 61801, USA Phone: (217) 244-5047 / Fax: (217) 333-4949 Email: [email protected] Treasurer Ann Hajek Cornell University, Department of Entomology, Ithaca, NY, 14853- 0901, USA Phone: (607) 254-4902 or 4992 / FAX: (607) 255-0939 Email: [email protected] Secretary Johannes Jehle Agricultural Service Center Palatinate, Phytopathology and Plant Protection, Breitenweg 71, Neustadt /WSTR, 67435, Germany Phone: +49 (6321) 671-482 / Fax: +49 (6321) 671-387 Email: [email protected] Past President Wendy Gelernter Pace Consulting, 1267 Diamond St, San Diego, CA, 92109, USA Phone: (858) 272-9897 / FAX: (858) 483-6349 Email: [email protected] Trustees Jorgen Eilenberg Zhihong (Rose) Hu Jeffrey Lord Christina Nielsen-Le Roux Division of Bacteria Division of Microsporidia Hyun-Woo Park, Chair David Oi, Chair Juan Luis Jurat-Fuentes, Vice-Chair Dörte Goertz, Chair Elect Baltasar Escriche, Secretary / Treasurer Susan Bjornson, Secretary / Treasurer Dennis Bideshi, Member at Large Liu Jiping, Trustee Jie Zhang, Member at Large, Steven Valles, Trustee Sabrina Hayes, Student representative Nils Cordes, Student Representative Division of Fungi Division of Nematodes Rosalind James, Chair Albrecht Koppenhöfer, Chair Helen Roy, Chair Elect Ed Lewis, Chair Elect Helen Hesketh, Secretary-Treasurer Christine Griffin, Secretary/Treasurer Nicolai Vitt Meyling, Member at Large Barton Slatko, Member at Large Tariq Butt, Member at Large Claudia Dolinski, Member at Large Sastia Prama Putri, Student Representative Division of Microbial Control Division of Viruses Surendra Dara, Chair Bryony Bonning, Chair Stefan Jaronski, Chair Elect Monique Van Oers, Chair Elect Sue MacIntosh, Secretary/Treasurer Kelli Hoover, Secretary / Treasurer Nina Jenkins, Member at Large Karyn Johnson, Member at Large Steven Arthurs, Member at Large Nor Chejanovsky, Member at Large Jerry Ericsson, Student representative Ikbal Agah Ince, Student Representative Jondavid de Jong, Student Representative - 5 - SIP COMMITTEES Nominating Committee Founders Lecture Committee Meetings Committee Wendy Gelernter (Chair) James Becnel (Chair) Lerry Lacey (Chair) Madoka Nakai Neil Crickmore Dave Chandler Harry Kaya Zhihong (Rose) Hu Brian Federici Just Vlak Harry Kaya Kelli Hoover Publications Committee Membership Committee Awards and Student Contest Committee David Shapiro Ilan, (Chair) Helen Roy (Chair) Andreas Linde (Chair) Hisanori Bando Robert Anderson Bryony Bonning Brian Federici Susan Bornstein-Forst Nguya (Jean) Maniania Aaron Gassmann Nor Chajanovsky Patricia Stock Mark Goettel Sunday Ekesi Steven Wraight Ann Hajek Ann Hajek Harry Kaya Nina Jenkins Student Affairs Committee Albrecht Koppenhöfer Liu Jiping Vitalis Wekesa (Chair) Cecilia Schmitt Kerstin Jung Fungi: Vitalis W. Wekesa (Kenya) Paresh Shah Juan Jurat-Fuentes Mic. Con.: Jerry Ericsson (Canada) Lee Solter Yasuhisa Kunimi Nematoda: Hao Yu (China) Just Vlak Andreas Linde Virus: Ikbal Agah Ince (Turkey) History Committee Endowment and Financial Support Committee Elizabeth Davidson (Chair) Kelli Hoover (Chair) Wayne Brooks Michael Brownbridge Jim Harper Mike Dimock Juerg Huber Roma Gwynn Harry Kaya Jim Harper Don Roberts Ann Hajek (ex officio) 2010 ANNUAL MEETING ORGANIZING COMMITTEE, TRABZON, TURKEY Chair: Zihni Demirbag Secretary: Remziye Nalçacioglu Mehtap Yakupoglu Programmer: Basil Arif Cihan Gokce Lillian Pavlik Treasury: Emine Demir Hacer Muratoglu Accommodation: Kazim Sezen Merve Kongur Social Activities: Ismail Demir Elif Tanyeli Program Book: Yesim Akturk Dizman Web Site: Serkan Altuntas SIP CONTRIBUTING CORPORATE SPONSORS Agra Quest Marrone Bio Innovations Bayer CropScience Monsanto Imagine Becker Underwood Novozymes Becker Microbial Products, Inc. Pace Turf Biocontrol, Brazil Pioneer BioLogic Company Syngenta Certis, USA, LLC Taylor and Francis Group Dow Agroscience - 6 - PROGRAM SIP 2010 IMPORTANT NOTES: These abstracts should not be considered to be publications and should not be cited in print without the author‟s permission. STU indicates papers being judged for graduate student presentation awards 136 indicates abstract number for ORAL presentation N-05 indicates abstract number for POSTER presentation - 7 - - 8 - ATTENTION:Photography of Scientific Presentations 10:00-10:30 COFFEE BREAK is not permitted. 10:00-10:30 Posters Up: Diseases of Beneficial Sunday July 11, 2010 Invertebrates, Microbial Control, Osman Turan Congress Center Microsporidia, Nematodes Plenary Symposium 07:30 Bus pick up at hotels Monday, 10:30-12:30 Hasan Turan Senate Hall Biology of the Tsetse fly: Interactions with 8:00-17:00 SIP Council Meeting Parasites, Pathogens and Symbionts Lunch and refreshments served Convener: Dr. Adly Abd-Alla, FAO/IAEA Agriculture and Biotechnology, Vienna, Austria. Sunday, 9:00-16:00 KTU UZEM, Department of Electrical Engineering 10:30 1 Tsetse distribution and biology, and options Bioinformatics Workshop and strategies for vector control. Udo Feldmann, 8000 Genomes at Your Fingertips: Insect Pest Control Section, Joint FAO/IAEA Comparative Genomics using CoGe Division, Vienna, Austria. Dr. Eric Lyons, University of California, Berkeley, US 11:00 2 Tsetse-transmitted trypanosomes - their biology and disease impact. Peter Holmes, Lunch and refreshments served University of Glasgow Veterinary School, Scotland, Congress Centre GB. 11:30 3 Influences of the Symbiotic Fauna on Host 9:00-18:00 Registration Physiology. Serap Aksoy, Yale University School of Public Health, New Haven, CT 06525, US. 9:00-18:00 Posters up 12:00 4 Salivary Gland Hypertrophy Virus (SGHV): Diseases of Beneficial Invertebrates, Microbial Control, Impact on tsetse rearing and potential virus Microsporidia, , Nematodes management strategies. Adly Abd-Alla, Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, 18:30 Bus pick up at hotels Vienna, Austria Congress Centre 12:30-14:00 LUNCH at KTU SAHIL 19:00-21:30 Mixer Senate Hall 21:30 Buses return to hotels 12:45-14:00 ICTV Meeting Monday July 12, 2010 Symposium Fungi Osman Turan Congress Center Monday, 14:00-16:00 Hasan Turan 07:30 Bus pick up at hotels Environmental Change and Entomopathogenic Fungi Congress Centre Organizers: Helen Hesketh and Helen Roy 8:00-18:00 Registration 14:00 5 Influence of environmental temperature on Monday, 8:30-10:00 insect-pathogen and insect-parasite interactions. Hasan Turan Matthew Thomas, Center for Infectious Disease Dynamics, Pennsylvania State University, US. Opening Ceremony and 14:30 6 Modelling environmental gradients in host- SIP Founders‟ Lecture pathogen systems. Steven White, Rosie Hails. Centre for Ecology and Hydrology, Wallingford, Opening Ceremonies GB. Prof. Dr. Zihni Demirbag, 15:00 7 Entomopathogenic fungi and invasional Chair of Local Organizing Committee meltdown. Helen Roy, Centre for Ecology and Dr. Mark Goettel, President
Recommended publications
  • Surveillance of Grape Berry Moth, Paralobesia Viteana Clemens (Lepidoptera
    Surveillance of grape berry moth, Paralobesia viteana Clemens (Lepidoptera: Tortricidae), in Virginia vineyards by Timothy Augustus Jordan Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Entomology Douglas G. Pfeiffer, Chair J. Christopher Bergh Carlyle C. Brewster Thomas P. Kuhar Tony K. Wolf March 21, 2014 Blacksburg, Virginia Keywords: Remote, Vitis, Sex pheromone trap, Infestation, Degree-day, Landscape Chapter 3*****by Entomological Society of America used with permission All other material © 2014 by Timothy A. Jordan Surveillance of grape berry moth, Paralobesia viteana Clemens (Lepidoptera: Tortricidae), in Virginia vineyards by Timothy Augustus Jordan ABSTRACT My research addressed pheromone lure design and the activity of the grape berry moth, Paralobesia viteana, flight and infestation across three years of study. In my lure evaluations, I found all commercial lures contained impurities and inconsistencies that have implications for management. First, sex pheromone concentration in lures affected both target and non-target attraction to traps, while the blend of sex pheromones impacted attraction to P. viteana. Second, over the duration of study, 54 vineyard blocks were sampled for the pest in and around cultivated wine grape in Virginia. The trapping studies indicated earliest and sustained emergence of the spring generation in sex pheromone traps placed in a wooded periphery. Later, moths were detected most often in the vineyard, which indicated that P. viteana emerged and aggregated in woods prior to flying and egg-laying in vineyards. My research supports use of woods and vineyard trap monitoring at both the height of 2 meters and in the periphery of respective environments.
    [Show full text]
  • New Records of Psilidae, Piophilidae, Lauxaniidae, Cremifaniidae and Sphaeroceridae (Diptera) from the Czech Republic and Slovakia
    ISSN 2336-3193 Acta Mus. Siles. Sci. Natur., 65: 51-62, 2016 DOI: 10.1515/cszma-2016-0005 New records of Psilidae, Piophilidae, Lauxaniidae, Cremifaniidae and Sphaeroceridae (Diptera) from the Czech Republic and Slovakia Jindřich Roháček, Miroslav Barták & Jiří Preisler New records of Psilidae, Piophilidae, Lauxaniidae, Cremifaniidae and Sphaeroceridae (Diptera) from the Czech Republic and Slovakia. – Acta Mus. Siles. Sci. Natur. 65: 51-62, 2016. Abstract: Records of eight rare species of the families Psilidae (4), Piophilidae (1), Lauxaniidae (1), Cremifaniidae (1) and Sphaeroceridae (1) from the Czech Republic, Slovakia and Austria are presented and their importance to the knowledge of the biodiversity of local faunas is discussed along with notes on their biology, distribution and identification. Psilidae: Chamaepsila tenebrica (Shatalkin, 1986) is a new addition to the West Palaearctic fauna (recorded from the Czech Republic and Slovakia); Ch. andreji (Shatalkin, 1991) and Ch. confusa Shatalkin & Merz, 2010 are recorded from the Czech Republic (both Bohemia and Moravia) and Ch. andreji also from Austria for the first time, and Ch. unilineata (Zetterstedt, 1847) is added to the fauna of Moravia. Also Homoneura lamellata (Becker, 1895) (Lauxaniidae) and Cremifania nigrocellulata Czerny, 1904 (Cremifaniidae) are first recorded from Moravia and Copromyza pseudostercoraria Papp, 1976 (Sphaeroceridae) is a new addition to faunas of both the Czech Republic (Moravia only) and Slovakia, and its record from Moravia represents a new northernmost limit of its distribution. Pseudoseps signata (Fallén, 1820) (Piophilidae), an endangered species in the Czech Republic, is reported from Bohemia for second time. Photographs of Chamaepsila tenebrica (male), Pseudoseps signata (living female), Homoneura lamellata (male), Cremifania lanceolata (male) and Copromyza pseudostercoraria (male) are presented to enable recognition of these species.
    [Show full text]
  • Fossil History of Curculionoidea (Coleoptera) from the Paleogene
    geosciences Review Fossil History of Curculionoidea (Coleoptera) from the Paleogene Andrei A. Legalov 1,2 1 Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Ulitsa Frunze, 11, 630091 Novosibirsk, Novosibirsk Oblast, Russia; [email protected]; Tel.: +7-9139471413 2 Biological Institute, Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Tomsk Oblast, Russia Received: 23 June 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Currently, some 564 species of Curculionoidea from nine families (Nemonychidae—4, Anthribidae—33, Ithyceridae—3, Belidae—9, Rhynchitidae—41, Attelabidae—3, Brentidae—47, Curculionidae—384, Platypodidae—2, Scolytidae—37) are known from the Paleogene. Twenty-seven species are found in the Paleocene, 442 in the Eocene and 94 in the Oligocene. The greatest diversity of Curculionoidea is described from the Eocene of Europe and North America. The richest faunas are known from Eocene localities, Florissant (177 species), Baltic amber (124 species) and Green River formation (75 species). The family Curculionidae dominates in all Paleogene localities. Weevil species associated with herbaceous vegetation are present in most localities since the middle Paleocene. A list of Curculionoidea species and their distribution by location is presented. Keywords: Coleoptera; Curculionoidea; fossil weevil; faunal structure; Paleocene; Eocene; Oligocene 1. Introduction Research into the biodiversity of the past is very important for understanding the development of life on our planet. Insects are one of the Main components of both extinct and recent ecosystems. Coleoptera occupied a special place in the terrestrial animal biotas of the Mesozoic and Cenozoics, as they are characterized by not only great diversity but also by their ecological specialization.
    [Show full text]
  • Priscila Jane Romano De Oliveira Gonçalves Caracterização E
    Priscila Jane Romano de Oliveira Gonçalves Caracterização e avaliação do papel do gene wcbE de Burkholderia seminalis linhagem TC3.4.2R3 na interação microbiana. Tese apresentada ao Programa de Pós- Graduação em Microbiologia do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do título de Doutora em Microbiologia. Área de concentração: Microbiologia Orientador: Prof. Dr. Welington Luiz de Araújo Versão original. São Paulo 2017 Priscila Jane Romano de Oliveira Gonçalves Characterization and evaluation of the role of wcbE gene from Burkholderia seminalis strain TC3.4.2R3 in microbial interaction. Thesis presented to the Microbiology Department of Instituto de Ciências Biomédicas from Universidade de São Paulo, as requirement for the degree of Doctor of Philosophy in Microbiology. Concentration area: Microbiology Supervisor: Prof. Dr. Welington Luiz de Araújo Original version. São Paulo 2017 RESUMO GONÇALVES, P. J. R. O. Caracterização e avaliação do papel do gene wcbE de Burkholderia seminalis linhagem TC3.4.2R3 na interação microbiana. 2017. 149 f. Tese (Doutorado em Microbiologia) – Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2017. Burkholderia seminalis tem sido encontrada como um micro-organismo não patogênico, promotor de crescimento vegetal, nodulador de raízes, biorremediador, agente de biocontrole e, também, como organismo patogênico em algumas plantas e pacientes com fibrose cística. O gene wcbE codifica uma glicosiltransferase e pertence ao cluster wcb, que está relacionado à síntese de cápsula e interações ambientais. O objetivo deste trabalho foi investigar o papel do gene wcbE e da temperatura nas interações microbianas de B. seminalis TC3.4.2R3. A produção de biofilme, EPS e compostos antifúngicos foi maior a 28 ºC.
    [Show full text]
  • Chapter 2 Diopsoidea
    Chapter 2 Diopsoidea DiopsoideaTeaching material only, not intended for wider circulation. [email protected] 2:37 Diptera: Acalyptrates DIOPSOI D EA 50: Tanypezidae 53 ------ Base of tarsomere 1 of hind tarsus very slightly projecting ventrally; male with small stout black setae on hind trochanter and posterior base of hind femur. Postocellar bristles strong, at least half as long as upper orbital seta; one dorsocentral and three orbital setae present Tanypeza ----------------------------------------- 55 2 spp.; Maine to Alberta and Georgia; Steyskal 1965 ---------- Base of tarsomere 1 of hind tarsus strongly projecting ventrally, about twice as deep as remainder of tarsomere 1 (Fig. 3); male without special setae on hind trochanter and hind femur. Postocellar bristles weak, less than half as long as upper orbital bristle; one to three dor socentral and zero to two orbital bristles present non-British ------------------------------------------ 54 54 ------ Only one orbital bristle present, situated at top of head; one dorsocentral bristle present --------------------- Scipopeza Enderlein Neotropical ---------- Two or three each of orbital and dorsocentral bristles present ---------------------Neotanypeza Hendel Neotropical Tanypeza Fallén, 1820 One species 55 ------ A black species with a silvery patch on the vertex and each side of front of frons. Tho- rax with notopleural depression silvery and pleurae with silvery patches. Palpi black, prominent and flat. Ocellar bristles small; two pairs of fronto orbital bristles; only one (outer) pair of vertical bristles. Frons slightly narrower in the male than in the female, but not with eyes almost touching). Four scutellar, no sternopleural, two postalar and one supra-alar bristles; (the anterior supra-alar bristle not present). Wings with upcurved discal cell (11) as in members of the Micropezidae.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Lepidoptera: Erebidae, Arctiinae) SHILAP Revista De Lepidopterología, Vol
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España González, E.; Beccacece, H. M. First record of Dysschema sacrifica (Hübner, [1831]) on Soybean ( Glycine max (L.) Merr) (Lepidoptera: Erebidae, Arctiinae) SHILAP Revista de Lepidopterología, vol. 45, núm. 179, septiembre, 2017, pp. 403-408 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45552790005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative SHILAP Revta. lepid., 45 (179) septiembre 2017: 403-408 eISSN: 2340-4078 ISSN: 0300-5267 First record of Dysschema sacrifica (Hübner, [1831]) on Soybean ( Glycine max (L.) Merr) (Lepidoptera: Erebidae, Arctiinae) E. González & H. M. Beccacece Abstract The presence of Dysschema sacrifica (Hübner, [1831]) on soybean ( Glycine max (L.) Merr) is reported for the first time. Larvae of this species were found consuming soybean leaves in soybean fields in Córdoba province, Argentina, and were able to complete their life cycle. Characteristics of adults and larvae are provided for rapid identification in the field. Due to the widespread distribution of this species within the region where soybean is more intensively cultivated in South America, we conclude that D. sacrifica is a potential soybean pest. Further studies on infestation frequency, damage levels and control by natural enemies are needed. KEY WORDS: Lepidoptera, Erebidae, Arctiidae, Dysschema sacrifica , soybean, pest, Argentina. Primer registro de Dysschema sacrifica (Hübner, [1831]) en soja ( Glycine max (L.) Merr) (Lepidoptera: Erebidae, Arctiinae) Resumen Se reporta por primera vez la presencia de Dysschema sacrifica (Hübner, [1831]) en soja ( Glycine max (L.) Merr).
    [Show full text]
  • Phylogenetic Relationships and Distribution of the Rhizotrogini (Coleoptera, Scarabaeidae, Melolonthinae) in the West Mediterranean
    Graellsia, 59(2-3): 443-455 (2003) PHYLOGENETIC RELATIONSHIPS AND DISTRIBUTION OF THE RHIZOTROGINI (COLEOPTERA, SCARABAEIDAE, MELOLONTHINAE) IN THE WEST MEDITERRANEAN Mª. M. Coca-Abia* ABSTRACT In this paper, the West Mediterranean genera of Rhizotrogini are reviewed. Two kinds of character sets are discussed: those relative to the external morphology of the adult and those of the male and female genitalia. Genera Amadotrogus Reitter, 1902; Amphimallina Reitter, 1905; Amphimallon Berthold, 1827; Geotrogus Guérin-Méneville, 1842; Monotropus Erichson, 1847; Pseudoapeterogyna Escalera, 1914 and Rhizotrogus Berthold, 1827 are analysed: to demonstrate the monophyly of this group of genera; to asses the realtionships of these taxa; to test species transferred from Rhizotrogus to Geotrogus and Monotropus, and to describe external morphological and male and female genitalic cha- racters which distinguish each genus. Phylogenetic analysis leads to the conclusion that this group of genera is monophyletic. However, nothing can be said about internal relationships of the genera, which remain in a basal polytomy. Some of the species tranferred from Rhizotrogus are considered to be a new genus Firminus. The genera Amphimallina and Pseudoapterogyna are synonymized with Amphimallon and Geotrogus respectively. Key words: Taxonomy, nomenclature, review, Coleoptera, Scarabaeidae, Melolonthinae, Rhizotrogini, Amadotrogus, Amphimallon, Rhizotrogus, Geotrogus, Pseudoapterogyna, Firminus, Mediterranean basin. RESUMEN Relaciones filogenéticas y distribución de
    [Show full text]
  • Dimensional Limits for Arthropod Eyes with Superposition Optics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Vision Research 44 (2004) 2213–2223 www.elsevier.com/locate/visres Dimensional limits for arthropod eyes with superposition optics Victor Benno Meyer-Rochow a,*,Jozsef Gal b a School of Engineering and Sciences, International University Bremen (IUB), Campus Ring 6, Research II, D-28759 Bremen, Germany b Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt. 62, H-6701 Szeged, Hungary Received 10 December 2003; received in revised form 16 April 2004 Abstract An essential feature of the superposition type of compound eye is the presence of a wide zone, which is transparent and devoid of pigment and interposed between the distal array of dioptric elements and the proximally placed photoreceptive layer. Parallel rays, collected by many lenses, must (through reflection or refraction) cross this transparent clear-zone in such a way that they become focused on one receptor. Superposition depends mostly on diameter and curvature of the cornea, size and shape of the crystalline cone, lens cylinder properties of cornea and cone, dimensions of the receptor cells, and width of the clear-zone. We examined the role of the latter by geometrical, geometric-optical, and anatomical measurements and concluded that a minimal size exists, below which effective superposition can no longer occur. For an eye of a given size, it is not possible to increase the width of the clear-zone cz ¼ dcz=R1 and decrease R2 (i.e., the radius of curvature of the distal retinal surface) and/or c ¼ dc=R1 without reaching a limit.
    [Show full text]
  • Grape Commodity Survey Farm Bill Survey Work Plan – May 1, 2013 – April 30, 2014
    Grape Commodity Survey Farm Bill Survey Work Plan – May 1, 2013 – April 30, 2014 Cooperator: Kansas Department of Agriculture State: Kansas Project: Grape Commodity Survey Project funding Farmbill Survey source: Project Coordinator: Laurinda Ramonda Agreement Number 13-8420-1656-CA PO Box 19282, Forbes Field, Bldg. 282, Address: Topeka, Kansas 66619 Contact Information: Phone: 785-862-2180 Fax: 785-862-2182 Email Address: [email protected] This Work Plan reflects a cooperative relationship between the Kansas Department of Agriculture (KDA) (the Cooperator) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ). It outlines the mission-related goals, objectives, and anticipated accomplishments as well as the approach for conducting a Grape Commodity survey and control program and the related roles and responsibilities of the Kansas Department of Agriculture and USDA-APHIS-PPQ as negotiated. I) OBJECTIVES AND NEED FOR ASSISTANCE In 1985, Kansas passed the Farm Winery Act establishing guidelines for wineries and by 2005, 13 licensed farm wineries in Kansas produced 50,000 gallons of wine from only 170 total acres of grapes. In January 2010, the number of licensed farm wineries had grown to 23 located in 21 counties from central to northeastern Kansas. In 2010, the total number of acres of grapes in Kansas vineyards was 342.1 acres on 73 farms and this continues to grow. There were 174.1 acres of grapes harvested with 354.7 tons of grapes produced. Over 60 percent of grapes produced are used at their own operations. The total value in 2010 of grapes produced was $401,150 and this continues to rise.
    [Show full text]
  • The Damage Potential of Pin Nematodes, Paratylenchus Micoletzky, 1922 Sensu Lato Spp
    J. Crop Prot. 2019, 8 (3): 243-257______________________________________________________ Review Article The damage potential of pin nematodes, Paratylenchus Micoletzky, 1922 sensu lato spp. (Nematoda: Tylenchulidae) Reza Ghaderi Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran. Abstract: The genus Paratylenchus sensu lato includes members belonging to the genera Paratylenchus sensustricto (species with 10 to 40µm long stylet), Gracilacus (species with 40-120µm long stylet), Gracilpaurus (species having cuticular punctuations) and Paratylenchoides (species having sclerotized cephalic framework). Long stylet species become swollen and feed as sedentary parasites of roots, some feed from cortex of perennial host roots, but most species feed as sedentary ectoparasites on roots. In other words, species with stylet shorter than 40µm commonly feed on epidermal cells, whilst the species with longer stylet nourish primarily in cortical tissue, without penetration into the plant tissue. In general, pin nematodes, Paratylenchus spp. are parasites of higher plants with a higher abundance in the rhizosphere of trees and perennials. In present review, an attempt is made to document published information on the pathogenicity and damage potential of the pin nematodes to plants. Keywords: Gracilacus, damage, pathogenicity, perennials, pin nematodes, population, trees Introduction12 Lisetskaya, 1963; 1965; Braun et al., 1966; Fisher, 1967; Ghaderi and Karegar, 2013), and The pin nematodes, Paratylenchus Micoletzky, in some nurseries of conifers, the density of Downloaded from jcp.modares.ac.ir at 5:11 IRST on Sunday October 3rd 2021 1922 sensu lato, firstly have long been population was increased to more than 1000 considered as free-living nematodes, but further individuals per 100cm3 of soil (Ruehle, 1967; studies on their life cycle led researchers to find Rossner, 1969).
    [Show full text]
  • Carbamazepine, Triclocarban and Triclosan Biodegradation and the Phylotypes and Functional Genes Associated with Xenobiotic Degr
    Carbamazepine, Triclocarban and Triclosan Biodegradation and the Phylotypes and Functional Genes Associated with Xenobiotic Degradation in Four Agricultural Soils Jean-Rene Thelusmond, Timothy J. Strathmann and Alison M. Cupples Highlights • Rapid triclosan, yet slow carbamazepine & triclocarban degradation • Soils contained genera from previously reported CBZ, TCC or TCS degrading isolates • Several functional genes were enriched in the PPCP amended samples • Bradyrhizobium & Rhodopseudomonas were linked to xenobiotic degradation pathways 1 Carbamazepine, Triclocarban and Triclosan Biodegradation and the Phylotypes and 2 Functional Genes Associated with Xenobiotic Degradation in Four Agricultural Soils 3 Jean-Rene Thelusmond, Timothy J. Strathmann and Alison M. Cupples 4 Abstract 5 Pharmaceuticals and personal care products (PPCPs) are released into the environment due to 6 their poor removal during wastewater treatment. Agricultural soils subject to irrigation with 7 wastewater effluent and biosolids application are possible reservoirs for these chemicals. This 8 study examined the impact of the pharmaceutical carbamazepine (CBZ), and the antimicrobial 9 agents triclocarban (TCC) and triclosan (TCS) on four soil microbial communities using shotgun 10 sequencing (HiSeq Illumina) with the overall aim of determining possible degraders as well as 11 the functional genes related to general xenobiotic degradation. The biodegradation of CBZ and 12 TCC was slow, with ≤ 50 % decrease during the 80-day incubation period. In contrast, TCS 13 biodegradation
    [Show full text]