UC Berkeley UC Berkeley Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC Berkeley UC Berkeley Electronic Theses and Dissertations UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Improving Wavefunction Efficiency by Tessellating Correlation Factors and Coupled State- Specific Optimization Permalink https://escholarship.org/uc/item/4j57f3q0 Author Van Der Goetz, Beatrice Weston Publication Date 2021 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Improving Wavefunction Efficiency by Tessellating Correlation Factors and Coupled State-Specific Optimization by Beatrice Van Der Goetz A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Eric Neuscamman, Chair Professor Martin Head-Gordon Professor James Demmel Spring 2021 Abstract Improving Wavefunction Efficiency by Tessellating Correlation Factors and Coupled State-Specific Optimization by Beatrice Van Der Goetz Doctor of Philosophy in Chemistry University of California, Berkeley Professor Eric Neuscamman, Chair Rearranging chemical bonds is chemistry. Simulating chemical reactions is an expen- sive and complex process, and is necessary to understand the photochemical reactions that drive processes like chemical light-harvesting. The electronic many-body physics describing the bonds that participate in these processes becomes complicated and expensive even on modestly sized molecules, and computationally affordable approximations can qualitatively fail. One approach to this problem relies on devising compact and expressive wavefunction forms that are simple enough to be efficiently computed yet complex enough to capture the subtleties of many-electron physics. Due to their relaxed integrability conditions, position-space Quantum Monte Carlo meth- ods permit the use of flexible wavefunction components like Jastrow correlation factors that can be used to exactly express wavefunction cusps, which are otherwise difficult to describe. As many existing factors used in these calculations focus primarily on short-range or gen- eral correlation effects, we aim to augment the library of real-space correlation factors by developing one designed to handle the strong electronic correlation of bond-breaking. These factors do this by accounting for correlations between populations of electrons in different pockets of space using a set of indicator-like functions fashioned into a tessellation of Voronoi cells. These Voronoi cells can be automatically constructed around atomic coordinates or further tailored to the chemical system, as the math describing them is flexible enough to allow more subtle intra-atomic subdivisions and curved interfaces. In simple test systems, this factor is able to correctly cleave chemical bonds when applied to a single-determinant reference, and the resulting wavefunction is competitive with highly-accurate but expensive methods. Just as wavefunctions can be limited by their functional form, so too they can be limited by the definition of their reference point. Many excited state methods are based on a linear response formalism, in which excited states are generated in the language of perturbations applied to a fixed ground state. When the wavefunction qualitatively changes upon elec- tronic excitation – as they do in charge-transfer states and core excitations – these methods can fail to predict excitation energies with errors on the scale of several electron-volts. Op- timizing molecular orbitals for individual excited states is one particularly efficient way to make the necessary zeroth-order changes to capture these states, but these state-specific 1 methods can suffer from instabilities in their optimization. One particular benefit of this state-specific approach is that these tailored orbitals naturally compress the wavefunction, but in certain cases, the ground state can interfere when minimal representations of the excited state are sought, ultimately causing variational collapse. We show that this collapse behavior occurs in two different state-specific approaches, and show how this arises from an inadequately-modeled avoided crossing, and argue that orbital-CI coupling plays a key role in its prevention. Newer excited state methods have also seen the use of target functions, where functions of the energy such as the square-gradient magnitude are minimized in place of the energy in order to stabilize state-specific optimization by transforming saddle points on the energy surface into minima on the target function surface. While pilot implementations of square- gradient-based optimizers for the Excited-State Mean-Field (ESMF) wavefunction are able to obtain state-specific orbitals at low cost, these are still new and have yet to benefit from numerical accelerations, limiting their use. For instance, while stable, the quasi-Newton optimizer in the ESMF-GVP implementation uses no Hessian preconditioner, and while stable to variational collapse due to its inclusion of orbital-CI coupling, is much slower relative to the occasionally-unstable ESMF-SCF implementation. Using the exact Hessian and full Newton-Raphson optimization as a benchmark, we explore a variety of Hessian approximations, and find that an approximate diagonal Hessian can accelerate the ESMF- GVP square-gradient minimization to match the speed of the gradient-only ESMF-SCF at mean-field cost-scaling while resisting variational collapse. 2 for mom Contents Acknowledgements iv List of Figures v List of Tables xi 1 Introduction 1 1.1 Quantum Mechanics . .2 1.2 Electronic Wavefunctions . .3 1.3 Second Quantization . .6 1.4 Mean-Field Theory . .8 1.5 H2 Dissociation . .9 1.6 Density Matrices . 12 1.7 Twisted Ethene . 13 1.8 Strong Correlation Overview . 16 1.9 Weak Correlation and Wavefunction Cusps . 18 1.10 Quantum Monte Carlo . 21 1.11 Variational Monte Carlo . 25 1.12 Diffusion Monte Carlo . 27 2 Number-Counting Jastrow Factors 32 2.1 Abstract . 32 2.2 Introduction . 32 2.3 Mimicking Hilbert Space Jastrows . 33 2.4 Existing 4-body Jastrows . 35 2.5 Mathematical formulation . 36 2.6 Results . 38 2.7 Hydrogen Molecule . 39 2.8 Ethene . 40 2.9 Curvature Hiding . 43 2.10 Basis Construction Schemes . 45 2.11 Conclusions . 47 3 Automated Spatial Tessellations for Correlation Factors 49 3.1 Abstract . 49 3.2 Introduction . 49 3.3 Review . 51 3.4 Normalized Counting Functions . 59 3.5 Classical Voronoi Partitioning . 61 3.6 Spherical Voronoi Partitioning . 62 3.7 Region Composition . 64 3.8 Results . 66 3.9 Ethene . 67 ii 3.10 Random Planar H4 ................................ 70 3.11 Calcium Oxide . 74 3.12 Conclusions . 81 4 Stable and Fast Excited State Orbital Optimization 83 4.1 Introduction . 83 4.2 Variational Collapse . 86 4.3 Root Flipping . 88 4.4 Coupled Collapse . 91 4.5 Methanimine . 93 4.6 Excited State Mean Field . 100 4.7 ESMF-SCF Collapse . 102 4.8 Quasi-Newton Preconditioning . 104 4.9 Hessian Preconditioning . 105 4.10 Conclusions . 109 5 Concluding Remarks 111 Bibliography 114 A Linear Dependencies 140 B Spherical Voronoi Partitioning 142 C Region Composition 143 D ESMF Derivatives 146 D.1 Wavefunction and Notation . 146 D.2 Energy . 147 D.3 First Derivatives . 147 D.4 Second Derivatives . 148 iii Acknowledgements It has taken nearly a decade and finding myself here feels all but impossible. Many deserve acknowledgement, for their mentorship, support, and friendship. Edward Perry, whose class in organic chemistry opened my eyes to its beauty; James Vyvyan and Paul Deck, for introducing me to the world of research; Daniel Crawford, for an incomparable introduction to quantum chemistry; Jim Tanko and Hervè Marand, for wonderful lectures and the longest semester of my undergraduate career; Bill Floyd, for precise and lucid lectures on Real Analysis; Susan Bell, Maria Cristina-Mendoza, and Linda Carlson for all their help. Eric Neuscamman, for personal support, dedication to the craft of research, insightful mentorship, and our many, many enlightening conversations; Luning, Jacki, Sergio, Becky, Connie, Tarini, Scott, and Rachel, for being a wonderful research group; Brad, Alex, Will, Jessalyn, Harvey, and Hazel, who I will never forget; Alexia, for everything, and who I wish nothing but the best; Kali and Taeko, for being there for me; Dad and Julie, for their constant encouragement; Erik, Brittany, and Lauren, for being the best siblings I could ever have, Mom, for all your love and support, without which I would not be here. iv List of Figures 1.1 Dissociation of the dihydrogen molecule as a function of the distance between two hydrogen atoms. The upper curve, calculated by spin-restricted Hartree- Fock (RHF), has a wavefunction determined entirely by spin-symmetry, and is given by equation (1.43) at both points A and B. The lower curve corresponds to a near-exact result obtained by exhaustively diagonalizing the Hamiltonian in the full determinant space with a large single-particle basis (FCI in cc- pV5Z). This near-exact wavefunction at equilibrium (point C) is qualitatively captured by the single-determinant wavefunction (point A) while the near- exact wavefunction at stretched geometries (point D), given approximately by equation (1.48) is not. 10 1.2 Plot of electronic energy as a function of HCCH dihedral angle in ethene. Single determinant wavefunctions with doubly occupied π and π∗ orbitals (red and orange curves respectively, wavefunctions given in equation (1.58)) are good approximations to the equilibrium ground state wavefunction at points A and C respectively. These single-determinant
Recommended publications
  • Technical Proposal for Onsite Destruction of Stored Waste on Vertac Site
    ichnicol Proposal to Arkansas Department of dilution Control and Ecology )rthe )N-SITE DESTRUCTION OF STORED VASTE ON TNE VERTAC SITE IN ACKSONVILLE, ARKANSAS ugust13,1987 ^ WESTINGHOUSE ELECTRIC CORPORATION Environmental Technology Division iZTECH INC. Westinghouse Power Systems Box 286 Electric Corporation Business Unit Madison Pennsylvania 15663-0286 E P Rahe Jr General Manager Environmental Technology Division •August 13. 1987 ^ \ A ^ Mr. Paul Mean Director Arkansas Department of Pollution Control and Ecology 8001 National Drive P.O. Box 9583 Little Rock, AR 72209 Subject: Technical Proposal for Destruction of Stored Waste on the Vertac Site in Jacksonville, Arkansas Dear Mr. Mean: Vestinghouse Electric Corporation and HAZTECH, Inc. are pleased to submit the attached technical proposal for the on-site destruction of the stored waste on the Vertac site in Jacksonville, Arkansas. The proposal addresses three options for the handling and destruction of all materials stored above ground on the site. Vestinghouse will be the project manager for all work on site. The recommended option is to destroy the liquid or crystalline material using the Vestinghouse Pyroplasma process which is a thermal treatment technology. The system uses a plasma torch which produces Cemperatures between 5000°C and 15,000°C. The most important advantages of this process, relative to combustion processes, are very low emissions, very high destruction efficiencies, and low PIC (product of incomplete combustion) formation. In addition, this system is truly mobile. All of the process equipment is contained in one 48-foot trailer and can be sec up on site within one week. Ve believe that the Pyroplasaa destruction process is very well suited for your specific waste material.
    [Show full text]
  • Buffy & Angel Watching Order
    Start with: End with: BtVS 11 Welcome to the Hellmouth Angel 41 Deep Down BtVS 11 The Harvest Angel 41 Ground State BtVS 11 Witch Angel 41 The House Always Wins BtVS 11 Teacher's Pet Angel 41 Slouching Toward Bethlehem BtVS 12 Never Kill a Boy on the First Date Angel 42 Supersymmetry BtVS 12 The Pack Angel 42 Spin the Bottle BtVS 12 Angel Angel 42 Apocalypse, Nowish BtVS 12 I, Robot... You, Jane Angel 42 Habeas Corpses BtVS 13 The Puppet Show Angel 43 Long Day's Journey BtVS 13 Nightmares Angel 43 Awakening BtVS 13 Out of Mind, Out of Sight Angel 43 Soulless BtVS 13 Prophecy Girl Angel 44 Calvary Angel 44 Salvage BtVS 21 When She Was Bad Angel 44 Release BtVS 21 Some Assembly Required Angel 44 Orpheus BtVS 21 School Hard Angel 45 Players BtVS 21 Inca Mummy Girl Angel 45 Inside Out BtVS 22 Reptile Boy Angel 45 Shiny Happy People BtVS 22 Halloween Angel 45 The Magic Bullet BtVS 22 Lie to Me Angel 46 Sacrifice BtVS 22 The Dark Age Angel 46 Peace Out BtVS 23 What's My Line, Part One Angel 46 Home BtVS 23 What's My Line, Part Two BtVS 23 Ted BtVS 71 Lessons BtVS 23 Bad Eggs BtVS 71 Beneath You BtVS 24 Surprise BtVS 71 Same Time, Same Place BtVS 24 Innocence BtVS 71 Help BtVS 24 Phases BtVS 72 Selfless BtVS 24 Bewitched, Bothered and Bewildered BtVS 72 Him BtVS 25 Passion BtVS 72 Conversations with Dead People BtVS 25 Killed by Death BtVS 72 Sleeper BtVS 25 I Only Have Eyes for You BtVS 73 Never Leave Me BtVS 25 Go Fish BtVS 73 Bring on the Night BtVS 26 Becoming, Part One BtVS 73 Showtime BtVS 26 Becoming, Part Two BtVS 74 Potential BtVS 74
    [Show full text]
  • 5 Other-Legals CFP
    FRIDAY OCTOBER 3 6 PM 6:30 7 PM 7:30 8 PM 8:30 9 PM 9:30 10 PM 10:30 11 PM 11:30 KLBY/ABC News (N) Enter- Wife Swap Heene/ Supernanny Quinn 20/20 Portrait of a News (N) Nightline Jimmy Kimmel Live H h (CC) tainment Martell (N) (CC) Family (N) (CC) President (N) (CC) (CC) (N) (CC) Lucy Liu. (N) (CC) KSNK/NBC News (N) Wheel of America’s Deal or No Deal (N) Life Everything... All News (N) The Tonight Show Late L j Fortune Toughest Jobs (N) (CC) the Time (N) (CC) With Jay Leno (CC) Night KBSL/CBS News (N) Inside Ghost Whisperer The Ex List Pilot NUMB3RS High News (N) Late Show With Late FRIDAY1< NX (CC) Edition Firestarter (N) (CC) (Series Premiere) Exposure (N) (CC) (CC) OCTOBERDavid Letterman Late3 K15CG The NewsHour Wash. Kansas Market- NOW on Bill Moyers Journal World Score- New Red Tavis d With Jim Lehrer (N) Week Week Market PBS (N) (N) (CC) News board Green Smiley ESPN Baseball6 PM Football6:30 College7 PM Football7:30: Cincinnati8 PM at Marshall.8:30 (Live)9 (CC)PM 9:30 10SportsCenterPM 10:30 (Live) 11BaseballPM NFL11:30 Live O_ Tonight Live (CC) Tonight (N) (CC) KLBY/ABC News (N) Enter- Wife Swap Heene/ Supernanny Quinn 20/20 Portrait of a News (N) Nightline Jimmy Kimmel Live HUSAh (CC)Law & Order:tainment SVU MartellHouse (N)(CC) (CC) FamilyHouse (N) (CC) (CC) PresidentLaw & Order: (N) (CC) SVU (CC)House (CC)(N) (CC) LucyMovie: Liu. John (N) (CC) Grisham KSNK/NBCP^ News (N) Wheel of America’s Deal or No Deal (N) Life Everything..
    [Show full text]
  • Download Author Version (PDF)
    PCCP Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/pccp Page 1 of 35 Physical Chemistry Chemical Physics submitted to Phys. Chem. Chem. Phys. Mechanisms and Energetics for N-Glycosidic Bond Cleavage of Protonated 2'-Deoxyguanosine and Guanosine R. R. Wu, Yu Chen, and M. T. Rodgers* Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States Abstract Experimental and theoretical investigations suggest that hydrolysis of N-glycosidic bonds Manuscript generally involves a concerted S N2 or a stepwise S N1 mechanism. While theoretical investigations have provided estimates for the intrinsic activation energies associated with N- glycosidic bond cleavage reactions, experimental measurements to validate the theoretical studies remain elusive.
    [Show full text]
  • The Toric Code at Finite Temperature by Christian Daniel Freeman A
    The Toric Code at Finite Temperature by Christian Daniel Freeman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Birgitta Whaley, Co-chair Professor Joel Moore, Co-chair Professor Irfan Siddiqi Professor Martin Head-Gordon Summer 2018 The Toric Code at Finite Temperature Copyright 2018 by Christian Daniel Freeman 1 Abstract The Toric Code at Finite Temperature by Christian Daniel Freeman Doctor of Philosophy in Physics University of California, Berkeley Professor Birgitta Whaley, Co-chair Professor Joel Moore, Co-chair Alexei Kitaev's toric code is a rich model, that has birthed and stimulated the develop- ment of topological quantum computing, error correction, and field theory. It was also the first example of a quantum error correcting code that could resiliently store quantum infor- mation in certain types of noisy environments without the need for active error correction. Unfortunately, the toric code loses much of its power as a noise-resilient quantum memory at any finite temperature. Many of the problems with the toric code at finite temperature are likewise shared among its cousin stabilizer codes. These problems can be traced to the proliferation of stringlike \defects" in these codes at finite temperature. The aim of this thesis is then twofold. First, I characterize both numerically and theoretically the failure modes of the toric code at finite temperature with fairly modest bath assumptions. I achieve this by numerically sampling the nonequilibrium dynamics of the toric code using a continuous time monte carlo algorithm.
    [Show full text]
  • Excited States from Time-Dependent Density Functional Theory
    Excited states from time-dependent density functional theory Peter Elliott Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA Kieron Burke Department of Chemistry, University of California, Irvine, CA 92697, USA Filipp Furche Institut fur¨ Physikalische Chemie, Universit¨at Karlsruhe, Kaiserstraße 12, 76128 Karlsruhe, Germany (Dated: March 21, 2007) Time-dependent density functional theory (TDDFT) is presently enjoying enormous popularity in quantum chemistry, as a useful tool for extracting electronic excited state energies. This article explains what TDDFT is, and how it differs from ground-state DFT. We show the basic formalism, and illustrate with simple examples. We discuss its implementation and possible sources of error. We discuss many of the major successes and challenges of the theory, including weak fields, strong fields, continuum states, double excitations, charge transfer, high harmonic generation, multipho- ton ionization, electronic quantum control, van der Waals interactions, transport through single molecules, currents, quantum defects, and, elastic electron-atom scattering. Contents B. Testing TDDFT 20 C. Saving standard functionals 20 I. Introduction 2 D. Electron scattering 22 A. Overview 3 VII. Beyond standard functionals 22 II. Ground-state review 3 A. Double excitations 22 A. Formalism 3 B. Polymers 23 B. Approximate Functionals 5 C. Solids 23 C. Basis Sets 6 D. Charge transfer 23 III. Time-dependent theory 7 VIII. Other topics 23 A. Runge-Gross theorem 7 A. Ground-state XC energy 23 B. Kohn-Sham equations 8 B. Strong fields 24 C. Transport 25 C. Linear response 9 D. Approximations 10 IX. Summary 27 IV. Implementation and basis sets 11 References 27 A.
    [Show full text]
  • DECLARATION of Jane Sunderland in Support of Request For
    Columbia Pictures Industries Inc v. Bunnell Doc. 373 Att. 1 Exhibit 1 Twentieth Century Fox Film Corporation Motion Pictures 28 DAYS LATER 28 WEEKS LATER ALIEN 3 Alien vs. Predator ANASTASIA Anna And The King (1999) AQUAMARINE Banger Sisters, The Battle For The Planet Of The Apes Beach, The Beauty and the Geek BECAUSE OF WINN-DIXIE BEDAZZLED BEE SEASON BEHIND ENEMY LINES Bend It Like Beckham Beneath The Planet Of The Apes BIG MOMMA'S HOUSE BIG MOMMA'S HOUSE 2 BLACK KNIGHT Black Knight, The Brokedown Palace BROKEN ARROW Broken Arrow (1996) BROKEN LIZARD'S CLUB DREAD BROWN SUGAR BULWORTH CAST AWAY CATCH THAT KID CHAIN REACTION CHASING PAPI CHEAPER BY THE DOZEN CHEAPER BY THE DOZEN 2 Clearing, The CLEOPATRA COMEBACKS, THE Commando Conquest Of The Planet Of The Apes COURAGE UNDER FIRE DAREDEVIL DATE MOVIE 4 Dockets.Justia.com DAY AFTER TOMORROW, THE DECK THE HALLS Deep End, The DEVIL WEARS PRADA, THE DIE HARD DIE HARD 2 DIE HARD WITH A VENGEANCE DODGEBALL: A TRUE UNDERDOG STORY DOWN PERISCOPE DOWN WITH LOVE DRIVE ME CRAZY DRUMLINE DUDE, WHERE'S MY CAR? Edge, The EDWARD SCISSORHANDS ELEKTRA Entrapment EPIC MOVIE ERAGON Escape From The Planet Of The Apes Everyone's Hero Family Stone, The FANTASTIC FOUR FAST FOOD NATION FAT ALBERT FEVER PITCH Fight Club, The FIREHOUSE DOG First $20 Million, The FIRST DAUGHTER FLICKA Flight 93 Flight of the Phoenix, The Fly, The FROM HELL Full Monty, The Garage Days GARDEN STATE GARFIELD GARFIELD A TAIL OF TWO KITTIES GRANDMA'S BOY Great Expectations (1998) HERE ON EARTH HIDE AND SEEK HIGH CRIMES 5 HILLS HAVE
    [Show full text]
  • All-Electron Ground-State and Time-Dependent Density Functional Theory: Fast Algorithms and Better Approximations
    All-Electron Ground-State and Time-Dependent Density Functional Theory: Fast Algorithms and Better Approximations by Bikash Kanungo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering and Scientific Computing) in The University of Michigan 2019 Doctoral Committee: Associate Professor Vikram Gavini (Chair) Professor Krishna Garikipati Associate Professor Emanuel Gull Associate Professor Shravan Veerapaneni Associate Professor Paul M. Zimmerman Bikash Kanungo [email protected] ORCID iD: 0000-0002-3911-9354 c Bikash Kanungo 2019 Dedicated to Bou and Baba (mom and dad) ii ACKNOWLEDGEMENTS This work rests on the implicit and explicit support of many different people to whom I owe my deepest gratitude. First, to Vikram (Prof. Vikram Gavini) for being an immensely enterprising and exceedingly caring advisor, and for steadily and very patiently trying to make a mature researcher out of me. I can certainly vouch for the fact that he has lost as much sleep as me for some of the particularly challenging aspects of in this thesis. I thank all my committee members for the few yet valuable discussions. I thank Prof. Paul Zimmerman for some of the crucial data used in this thesis as well as for his contribution to one of the manuscripts. I thank Prof. Krishna Garikipati, Prof. Emanuel Gull and Prof. Shravan Veerapaneni for not only being generous committee members but also for being wonderful teachers in some of my graduate courses, which provided me with a sound understanding of the key subjects involved in this work. I thank all my current and former labmates|Ian, Nelson, Nathan, Paavai, Krish- nendu, Mrinal, Janakiraman, Bala|for the pleasure of an encouraging and joyous lab experience.
    [Show full text]
  • From the Bethe-Salpeter Equation to Time-Dependent Density Functional Theory
    Th`esepr´esent´eepour obtenir le grade de DOCTEUR DE L’ECOLE´ POLYTECHNIQUE par FRANCESCO SOTTILE Response functions of semiconductors and insulators: from the Bethe-Salpeter equation to time-dependent density functional theory Soutenue le 29 Septembre 2003 devant le jury compos´ede : M. Friedhelm BECHSTEDT Rapporteur M. George BERTSCH M. Xavier BLASE Rapporteur M. Fabio FINOCCHI M.me Lucia REINING Directeur M. Jean-Claude TOLEDANO Directeur Laboratoire des Solides Irradi´esUMR 7642 CNRS-CEA/DSM, Ecole´ POLYTECHNIQUE, F-91128 Palaiseau, France Francesco Sottile [email protected] Response functions of semiconductors and insulators: from the Bethe-Salpeter equation to time-dependent density functional theory Pdf file available at the page http://theory.polytechnique.fr/people/sottile/Tesi dot.pdf 2003 This manuscript has been conceived only using free software: LATEX, Ghostscript, Kile. Figures and graphs were created with Xfig, The Gimp, Grace, PStoEdit and GNUPlot. Acknowledgments Le Laboratoire des Solides Irradi´esde l’Ecole´ Polytechnique, dirig´epar Guillaume Petite, m’a accueilli avec la plus grande sympathie et je tiens `aleur exprimer `atous ma reconnaissance. I would like to express my profound gratitude to my supervisor, Lucia Reining, for supporting, guiding, and working very closely with me for the last three years. In par- ticular, I will never forget our discussions at 7.30 in the morning. This thesis owes its existence to Lucia. I am very grateful to Prof. Toledano who agreed to be my supervisor. He left me
    [Show full text]
  • County Scenic & Historic Drive Tours
    HUDSON VALLEY REGION DutchessCOUNTYDutchess SCENIC & HISTORIC DRIVE TOURS DUTCHESS COUNTY • NEW YORK Welcome to Dutchess County Dutchess County was formed in 1683 as one of the original counties of New York, in a bold move by English Colonial Governor Thomas Dongan to cut off New England expansion and confirm control of the Northeast by the Stuart monarchy. Our name honors Maria Beatrice D’Este, the Dutchess (old spelling) of York. Her husband James, the Duke, as proprietor and future King, named everything he controlled for relatives and friends. The sole inhabitants then were the Wappinger Indians. Taconic Parkway By 1700 small settlements were growing where the Hudson and kills (Dutch for streams) met at Fishkill, Rhinebeck and European immigrants flocked to the area at the dawn of the Poughkeepsie, where the County seat was established in 1714. 19th c. and as personal fortunes grew, public institutions were The river and King’s Highway (Rt. 9) were main arteries of endowed. The Hudson River Valley was reflected in the works travel, with our position mid-way between New York and of painters, writers, architects and landscape architects; sloops, Albany a logical stopping place. Stage routes and commerce steamboats, trains and trolleys connected even the most remote increased with the advent of inns and small villages, and areas of the county. those roads became supply routes during the Revolution. First Fishkill and then Poughkeepsie were New York’s first capitals, During the 20th c. railroads surrendered to the family and it was on July 26, 1788 at the Poughkeepsie Courthouse car, and the trauma of the Great Depression gave way to that New York delegates chose to ratify the US Constitution.
    [Show full text]
  • Exact Maps in Density Functional Theory for Lattice Models
    Home Search Collections Journals About Contact us My IOPscience Exact maps in density functional theory for lattice models This content has been downloaded from IOPscience. Please scroll down to see the full text. 2016 New J. Phys. 18 083004 (http://iopscience.iop.org/1367-2630/18/8/083004) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 158.227.0.242 This content was downloaded on 07/09/2016 at 09:09 Please note that terms and conditions apply. You may also be interested in: The Hubbard dimer: a density functional case study of a many-body problem D J Carrascal, J Ferrer, J C Smith et al. Existence, uniqueness, and construction of the density-potential mapping in time-dependent density-functional theory Michael Ruggenthaler, Markus Penz and Robert van Leeuwen Subsystem density-functional theory as an effective tool for modeling ground and excited states, their dynamics and many-body interactions Alisa Krishtal, Debalina Sinha, Alessandro Genova et al. Wave-function inspired density functional applied to the H2/${{\rm{H}}}_{2}^{+}$ challenge Igor Ying Zhang, Patrick Rinke and Matthias Scheffler One-dimensional Fermi liquids J Voit Quantum phase transitions in the collective degrees of freedom: nuclei and other many-body systems Pavel Cejnar and Pavel Stránský New J. Phys. 18 (2016) 083004 doi:10.1088/1367-2630/18/8/083004 PAPER Exact maps in density functional theory for lattice models OPEN ACCESS Tanja Dimitrov1,2,4, Heiko Appel1,2, Johanna I Fuks3 and Angel Rubio1,2 RECEIVED 1 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin-Dahlem, Germany 23 March 2016 2 Max-Planck-Institut für Struktur und Dynamik der Materie, Luruper Chaussee 149, D-22761 Hamburg, Germany REVISED 3 Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, 24 June 2016 New York, NY 10065, USA ACCEPTED FOR PUBLICATION 4 Author to whom any correspondence should be addressed.
    [Show full text]
  • Buffy and Angel
    buffy and angel PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Fri, 01 Jul 2011 03:42:14 UTC Contents Articles buffy and angel 1 Buffy the Vampire Slayer (film) 1 Buffy the Vampire Slayer (TV series) 5 Buffy the Vampire Slayer (season 1) 25 Buffy the Vampire Slayer (season 2) 30 Buffy the Vampire Slayer (season 3) 37 Angel (TV series) 42 Buffy the Vampire Slayer (season 4) 58 Angel (season 1) 65 Buffy the Vampire Slayer (season 5) 72 Angel (season 2) 78 Angel (season 3) 84 Buffy the Vampire Slayer (season 6) 90 Buffy the Vampire Slayer (season 7) 97 Angel (season 4) 103 Angel (season 5) 110 Buffy the Vampire Slayer Season Eight 118 References Article Sources and Contributors 131 Image Sources, Licenses and Contributors 133 Article Licenses License 134 1 buffy and angel Buffy the Vampire Slayer (film) Buffy the Vampire Slayer Theatrical release poster Directed by Fran Rubel Kuzui Produced by Howard Rosenman Written by Joss Whedon Starring Kristy Swanson Donald Sutherland Paul Reubens Rutger Hauer Luke Perry Music by Carter Burwell Cinematography James Hayman Editing by Jill Savitt Distributed by 20th Century Fox Release date(s) July 31, 1992 Running time 86 minutes Country United States Language English Budget $7 million Gross revenue $16,624,456 Buffy the Vampire Slayer is a 1992 American action/comedy/horror film about a Valley girl cheerleader named Buffy (Kristy Swanson) who learns that it is her fate to hunt vampires. The original script for the film was written by Joss Whedon, who later created the darker and more acclaimed TV series of the same name starring Sarah Michelle Gellar as Buffy.
    [Show full text]