Adopting Rup (Rational Unified Process) on a Software Development Project

Total Page:16

File Type:pdf, Size:1020Kb

Adopting Rup (Rational Unified Process) on a Software Development Project ADOPTING RUP (RATIONAL UNIFIED PROCESS) ON A SOFTWARE DEVELOPMENT PROJECT A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF ÇANKAYA UNIVERSITY BY TUFAN TAŞ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN THE DEPARTMENT OF COMPUTER ENGINEERING SEPTEMBER 2009 Title of the Thesis : Adopting RUP (Rational Unified Process) on a Software Development Project Submitted by Tufan TA~ Approval of the Graduate School of Natural and Applied Sciences, <;ankaya University Pro~ Acting Director I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science. Prof.tvz'f{'Dr. Mehmet-/~R. TOLUN Head of Department This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science. ftJrr.7~ Prof.Z--A~Dr. a Ai<.TA~,1\ ~\-qk Prof. Dr. MehmetR. TOLUN Co-Supervisor Supervisor Examination Date 03.09.2009 Examining Committee Members Prof. Dr. Mehmet R. TOLUN «;ankaya Univ.) ltti1' 7~ Prof. Dr. Ziya AKTA~ (Ba~kent Univ.) .~~ Asst. Prof. Dr. AbdUlKadir GOROR «;ankaya Univ.) Instructor Dr. Ali RIza A~KUN «;ankaya Univ.) \. AA~~ STATEMET OF O PLAGIARISM I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name : Tufan TAŞ Signature : Date : 03/09/2009 iii ABSTRACT ADOPTING RUP (RATIONAL UNIFIED PROCESS) ON A SOFTWARE DEVELOPMENT PROJECT TAŞ, Tufan M.Sc., Department of Computer Engineering Supervisor: Prof. Dr. Mehmet R. TOLUN CoSupervisor: Prof. Dr. Ziya AKTAŞ September 2009, 218 pages This thesis analyzes the process of applying Rational Unified Process (RUP) successfully on a software development project step by step. Many software development projects today have a tendency to fail on some level. Even though they may not fail entirely, they might be completed with schedule delays, budget overrun or with poor quality that do not meet the requirements of customers because of poor management and lack of necessary documentation of the project. Applying RUP avoids these major problems in a project by developing set of work products which depict the essentials of the system from requirements to detailed design before the system could be implemented. However, software development teams have an overall attitude that RUP becomes less agile and too rigid as the size of projects get smaller. The thesis will also try to prove that this opinion is not true by using tools Rational Method Composer (RMC) and Rational Software Modeler (RSM) to successfully complete the project. iv ÖZ RUP YÖNTEMĐNĐN BĐR YAZILIM GELĐŞTĐRME PROJESĐ ÜZERĐNDE UYGULANMASI TAŞ, Tufan Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı Tez Yöneticisi: Prof. Dr. Mehmet R. TOLUN Ortak Tez Yöneticisi: Prof. Dr. Ziya AKTAŞ Eylül 2009, 218 sayfa Bu tez Rational Unified Process (RUP) yönteminin bir yazılım geliştirme projesinde başarıyla uygulanma sürecini adım adım incelemiştir. Günümüzde birçok yazılım geliştirme projesi bazı düzeylerde başarısız olma eğilimindedir. Projeler tamamen başarısız olmasa bile, projenin kötü yönetimi ve gerekli dökümantasyonun eksik olması nedeniyle takvim gecikmeleriyle, bütçe aşımıyla ya da müterilerin gereksinimlerini karşılamayan düük kalitede yazılım ürünleri görülmektedir. Bir projede, sistemin uygulanmasından önce gereksinimlerden detaylı tasarımına kadar esaslarını gösteren bir seri iş ürünü geliştirilerek RUP’nin uygulanması ile bu tür sorunların oluumu engellenir. Bununla birlikte, yazılım geliştirme gruplarının proje boyutları küçüldükçe RUP’nin daha az çevik ve çok katı bir hal aldığına dair genel bir kanı vardır. Bu çalışma, başarıyla bir projeyi tamamlamak için Rational Method Composer (RMC) ve Rational Software Modeler (RSM) araçlarını kullanarak bu görüün de doğru olmadığını kanıtlamaya çalışmıştır. v ACKOWLEDGEMETS I would like to express my deepest gratitude to my supervisor Prof. Dr. Mehmet R. TOLUN and cosupervisor Prof. Dr. Ziya AKTAŞ for their guidance, advices, criticism, encouragements, and insight throughout the research. Thanks are also extended to Dr. Alan Brown, Mrs. Jale Akyel and Mr. Erkan Özkan, all IBM members, for their encouragement and support they provided to cosupervisor Prof. Dr. Ziya Aktaş during the supervision of the Thesis. The last, but not the least, support of IBM Turkey by providing Rational Method Composer (RMC), Rational Software Modeler (RSM) and Rational Rose software packages during the thesis is also acknowledged. vi TABLE OF COTETS STATEMENT OF NON PLAGIARISM .................................................................. iii ABSTRACT .............................................................................................................. iv ÖZ…. ........................................................................................................................... v ACKNOWLEDGEMENTS ....................................................................................... vi TABLE OF CONTENTS ......................................................................................... vii LIST OF TABLES ..................................................................................................... xi LIST OF FIGURES ................................................................................................. xiii CHAPTERS: 1. INTRODUCTION ............................................................................................. 1 1.1 Background of the Problem .................................................................... 1 1.2 Statement of the Problem ........................................................................ 3 1.3 Objective of the Study ............................................................................ 3 1.4 Organization of the Study ....................................................................... 4 2. UNIFIED MODELING LANGUAGE (UML) ................................................. 5 2.1 Modeling Principles ................................................................................ 5 2.2 What is UML? ........................................................................................ 6 2.3 UML 2.0 ................................................................................................. 7 2.4 UML Diagrams ....................................................................................... 8 2.4.1 Class Diagram ............................................................................. 8 2.4.2 Object Diagram ......................................................................... 10 2.4.3 Composite Structure Diagram .................................................. 10 2.4.4 Deployment Diagram ................................................................ 11 2.4.5 Component Diagram ................................................................. 12 vii 2.4.6 Package Diagram ...................................................................... 13 2.4.7 Activity Diagram ...................................................................... 14 2.4.8 Use Case Diagram .................................................................... 15 2.4.9 State Machine Diagram ............................................................ 16 2.4.10 Interaction Overview Diagram ................................................. 18 2.4.11 Sequence Diagram .................................................................... 19 2.4.12 Communication Diagram .......................................................... 20 2.4.13 Timing Diagram ........................................................................ 21 2.5 The Concept View of a System ............................................................ 22 3. RATIONAL UNIFIED PROCESS (RUP) ...................................................... 24 3.1 Overview of the Rational Unified Process ........................................... 24 3.2 RUP Lifecycle ...................................................................................... 27 3.2.1 Inception Phase ......................................................................... 27 3.2.2 Elaboration Phase ..................................................................... 28 3.2.3 Construction Phase ................................................................... 29 3.2.4 Transition Phase ........................................................................ 31 3.3 RUP Disciplines.................................................................................... 32 3.3.1 Business Modeling Discipline .................................................. 32 3.3.2 Requirements Discipline ........................................................... 33 3.3.3 Analysis and Design Discipline ................................................ 34 3.3.4 Implementation Discipline ........................................................ 34 3.3.5 Test Discipline .......................................................................... 35 3.3.6 Deployment Discipline ............................................................. 35 3.3.7 Project Management Discipline ................................................ 36 3.3.8 Configuration and Change Management Discipline ................. 37 3.3.9 Environment Discipline ............................................................ 37 3.4 Iteration in Rational Unified
Recommended publications
  • Uml.Sty, a Package for Writing UML Diagrams in LATEX
    uml.sty, a package for writing UML diagrams in LATEX Ellef Fange Gjelstad March 17, 2010 Contents 1 Syntax for all the commands 5 1.1 Lengths ........................................ 5 1.2 Angles......................................... 5 1.3 Nodenames...................................... 6 1.4 Referencepoints ................................. 6 1.5 Colors ......................................... 6 1.6 Linestyles...................................... 6 2 uml.sty options 6 2.1 debug ......................................... 6 2.2 index.......................................... 6 3 Object-oriented approach 7 3.1 Colors ......................................... 10 3.2 Positions....................................... 10 4 Drawable 12 4.1 Namedoptions .................................... 12 4.1.1 import..................................... 12 5 Element 12 5.1 Namedoptions .................................... 12 5.1.1 Reference ................................... 12 5.1.2 Stereotype................................... 12 5.1.3 Subof ..................................... 13 5.1.4 ImportedFrom ................................ 13 5.1.5 Comment ................................... 13 6 Box 13 6.1 Namedoptionsconcerninglocation . ....... 13 6.2 Boxesintext ..................................... 14 6.3 Named options concerning visual appearance . ......... 14 6.3.1 grayness.................................... 14 6.3.2 border..................................... 14 1 6.3.3 borderLine .................................. 14 6.3.4 innerBorder.................................
    [Show full text]
  • Writing and Reviewing Use-Case Descriptions
    Bittner/Spence_06.fm Page 145 Tuesday, July 30, 2002 12:04 PM PART II WRITING AND REVIEWING USE-CASE DESCRIPTIONS Part I, Getting Started with Use-Case Modeling, introduced the basic con- cepts of use-case modeling, including defining the basic concepts and understanding how to use these concepts to define the vision, find actors and use cases, and to define the basic concepts the system will use. If we go no further, we have an overview of what the system will do, an under- standing of the stakeholders of the system, and an understanding of the ways the system provides value to those stakeholders. What we do not have, if we stop at this point, is an understanding of exactly what the system does. In short, we lack the details needed to actually develop and test the system. Some people, having only come this far, wonder what use-case model- ing is all about and question its value. If one only comes this far with use- case modeling, we are forced to agree; the real value of use-case modeling comes from the descriptions of the interactions of the actors and the system, and from the descriptions of what the system does in response to the actions of the actors. Surprisingly, and disappointingly, many teams stop after developing little more than simple outlines for their use cases and consider themselves done. These same teams encounter problems because their use cases are vague and lack detail, so they blame the use-case approach for having let them down. The failing in these cases is not with the approach, but with its application.
    [Show full text]
  • The Guide to Succeeding with Use Cases
    USE-CASE 2.0 The Guide to Succeeding with Use Cases Ivar Jacobson Ian Spence Kurt Bittner December 2011 USE-CASE 2.0 The Definitive Guide About this Guide 3 How to read this Guide 3 What is Use-Case 2.0? 4 First Principles 5 Principle 1: Keep it simple by telling stories 5 Principle 2: Understand the big picture 5 Principle 3: Focus on value 7 Principle 4: Build the system in slices 8 Principle 5: Deliver the system in increments 10 Principle 6: Adapt to meet the team’s needs 11 Use-Case 2.0 Content 13 Things to Work With 13 Work Products 18 Things to do 23 Using Use-Case 2.0 30 Use-Case 2.0: Applicable for all types of system 30 Use-Case 2.0: Handling all types of requirement 31 Use-Case 2.0: Applicable for all development approaches 31 Use-Case 2.0: Scaling to meet your needs – scaling in, scaling out and scaling up 39 Conclusion 40 Appendix 1: Work Products 41 Supporting Information 42 Test Case 44 Use-Case Model 46 Use-Case Narrative 47 Use-Case Realization 49 Glossary of Terms 51 Acknowledgements 52 General 52 People 52 Bibliography 53 About the Authors 54 USE-CASE 2.0 The Definitive Guide Page 2 © 2005-2011 IvAr JacobSon InternationAl SA. All rights reserved. About this Guide This guide describes how to apply use cases in an agile and scalable fashion. It builds on the current state of the art to present an evolution of the use-case technique that we call Use-Case 2.0.
    [Show full text]
  • Challenges and Opportunities for the Medical Device Industry Meeting the New IEC 62304 Standard 2 Challenges and Opportunities for the Medical Device Industry
    IBM Software Thought Leadership White Paper Life Sciences Challenges and opportunities for the medical device industry Meeting the new IEC 62304 standard 2 Challenges and opportunities for the medical device industry Contents With IEC 62304, the world has changed—country by country— for medical device manufacturers. This doesn’t mean, however, 2 Executive summary that complying with IEC 62304 must slow down your medical 2 Changes in the medical device field device software development. By applying best practices guid- ance and process automation, companies have a new opportunity 3 What is so hard about software? to improve on their fundamental business goals, while getting through regulatory approvals faster, lowering costs and deliver- 4 Disciplined agile delivery: Flexibility with more structure ing safer devices. 4 Meeting the specification: A look at some of the details This paper will explore what IEC 62304 compliance means for manufacturers in some detail, and also describe the larger con- text of systems and software engineering best practices at work 6 Process steps for IEC 62304 compliance in many of today’s most successful companies. 7 Performing the gap analysis Changes in the medical device field 8 Choosing software tools for IEC 62304 The IEC 62304 standard points to the more powerful role that software plays in the medical device industry. Once hardware 11 Conclusion was king. Older systems used software, of course, but it was not the main focus, and there wasn’t much of a user interface. Executive summary Software was primarily used for algorithmic work. Not to overly The recent IEC 62304 standard for medical device software is generalize, but the focus of management was on building causing companies worldwide to step back and examine their hardware that worked correctly; software was just a necessary software development processes with considerable scrutiny.
    [Show full text]
  • Rational Unified Process - an Overview Uppsala, 2009-02-10
    Rational Unified Process - an overview Uppsala, 2009-02-10 Mikael Broomé Consultant M.Sc. LTH 10 years in Software Development 4 different RUP implementations Project Manager Mentor for Project Managers Applying more and more of agile mindset and techniques E-Mail: [email protected] 2 1 Agenda Why a process for developing software? What is RUP? What is the “RUP-way” of developing software? How is RUP packaged? Advantages by using RUP? Challenges when using RUP? Relation to other processes? 3 A good project delivers the right solution: satisified Users satisfied Sponsor delivers in time delivers on budget 4 2 Challenges Common challenges in software development projects: Capture the “right” requirements. Requirement changes. Different parts of the system do not fit together. Small changes causes big problems. Low quality and poor performance. Major problems identified late in projects. Lack of communication. Difficult to estimate time and cost. Management of environment, platforms and tools. 5 It’s all about (lack of) communication 6 3 Agenda Why a process for developing software? What is RUP? What is the “RUP-way” of developing software? How is RUP packaged? Advantages by using RUP? Challenges when using RUP? Relation to other processes? 7 What is RUP and UML? RUP is a process for development of software that describes what should be performed (activities) who should do it (roles) what the result should be (artifacts). UML is a notation with defined symbols that is worked out by OMG (Object Management Group) is used to make drawings (for example in software development). 8 4 Agenda Why a process for developing software? What is RUP? What is the “RUP-way” of developing software? How is RUP packaged? Advantages by using RUP? Challenges when using RUP? Relation to other processes? 9 JW2 RUP’s Six Best practices 1.
    [Show full text]
  • The Timeboxing Process Model for Iterative Software Development
    The Timeboxing Process Model for Iterative Software Development Pankaj Jalote Department of Computer Science and Engineering Indian Institute of Technology Kanpur – 208016; India Aveejeet Palit, Priya Kurien Infosys Technologies Limited Electronics City Bangalore – 561 229; India Contact: [email protected] ABSTRACT In today’s business where speed is of essence, an iterative development approach that allows the functionality to be delivered in parts has become a necessity and an effective way to manage risks. In an iterative process, the development of a software system is done in increments, each increment forming of an iteration and resulting in a working system. A common iterative approach is to decide what should be developed in an iteration and then plan the iteration accordingly. A somewhat different iterative is approach is to time box different iterations. In this approach, the length of an iteration is fixed and what should be developed in an iteration is adjusted to fit the time box. Generally, the time boxed iterations are executed in sequence, with some overlap where feasible. In this paper we propose the timeboxing process model that takes the concept of time boxed iterations further by adding pipelining concepts to it for permitting overlapped execution of different iterations. In the timeboxing process model, each time boxed iteration is divided into equal length stages, each stage having a defined function and resulting in a clear work product that is handed over to the next stage. With this division into stages, pipelining concepts are employed to have multiple time boxes executing concurrently, leading to a reduction in the delivery time for product releases.
    [Show full text]
  • Network Visualization with R Katherine Ognyanova, POLNET 2015 Workshop, Portland OR
    Network visualization with R Katherine Ognyanova, www.kateto.net POLNET 2015 Workshop, Portland OR Contents Introduction: Network Visualization2 Data format, size, and preparation4 DATASET 1: edgelist ......................................4 DATASET 2: matrix .......................................5 Network visualization: first steps with igraph 5 A brief detour I: Colors in R plots8 A brief detour II: Fonts in R plots 11 Back to our main plot line: plotting networks 12 Plotting parameters ........................................ 12 Network Layouts ......................................... 17 Highlighting aspects of the network ............................... 24 Highlighting specific nodes or links ............................... 27 Interactive plotting with tkplot ................................. 29 Other ways to represent a network ............................... 30 Plotting two-mode networks with igraph ............................ 31 Quick example using the network package 35 Interactive and animated network visualizations 37 Interactive D3 Networks in R .................................. 37 Simple Plot Animations in R .................................. 38 Interactive networks with ndtv-d3 ................................ 39 Interactive plots of static networks............................ 39 Network evolution animations............................... 40 1 Introduction: Network Visualization The main concern in designing a network visualization is the purpose it has to serve. What are the structural properties that we want to highlight?
    [Show full text]
  • Best Practice of SOA
    JOURNAL OF COMPUTING, VOLUME 2, ISSUE 2, FEBRUARY 2010, ISSN: 2151-9617 38 HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/ Improvement in RUP Project Management via Service Monitoring: Best Practice of SOA Sheikh Muhammad Saqib1, Shakeel Ahmad1, Shahid Hussain 2, Bashir Ahmad 1 and Arjamand Bano3 1Institute of Computing and Information Technology Gomal University, D.I.Khan, Pakistan 2 Namal University, Mianwali , Pakistan 3 Mathematics Department Gomal University, D.I.Khan, Pakistan Abstract-- Management of project planning, monitoring, scheduling, estimation and risk management are critical issues faced by a project manager during development life cycle of software. In RUP, project management is considered as core discipline whose activities are carried in all phases during development of software products. On other side service monitoring is considered as best practice of SOA which leads to availability, auditing, debugging and tracing process. In this paper, authors define a strategy to incorporate the service monitoring of SOA into RUP to improve the artifacts of project management activities. Moreover, the authors define the rules to implement the features of service monitoring, which help the project manager to carry on activities in well define manner. Proposed frame work is implemented on RB (Resuming Bank) application and obtained improved results on PM (Project Management) work. Index Terms—RUP, SOA, Service Monitoring, Availability, auditing, tracing, Project Management NTRODUCTION 1. I 2. RATIONAL UNIFIED PROCESS (RUP) Software projects which are developed through RUP RUP is a software engineering process model, which provides process model are solution oriented and object a disciplined approach to assigning tasks and responsibilities oriented. It provides a disciplined approach to within a development environment.
    [Show full text]
  • Descriptive Approach to Software Development Life Cycle Models
    7797 Shaveta Gupta et al./ Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800 Available online at www.elixirpublishers.com (Elixir International Journal) Computer Science and Engineering Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800 Descriptive approach to software development life cycle models Shaveta Gupta and Sanjana Taya Department of Computer Science and Applications, Seth Jai Parkash Mukand Lal Institute of Engineering & Technology, Radaur, Distt. Yamunanagar (135001), Haryana, India. ARTICLE INFO ABSTRACT Article history: The concept of system lifecycle models came into existence that emphasized on the need to Received: 24 January 2012; follow some structured approach towards building new or improved system. Many models Received in revised form: were suggested like waterfall, prototype, rapid application development, V-shaped, top & 17 March 2012; Bottom model etc. In this paper, we approach towards the traditional as well as recent Accepted: 6 April 2012; software development life cycle models. © 2012 Elixir All rights reserved. Keywords Software Development Life Cycle, Phases and Software Development, Life Cycle Models, Traditional Models, Recent Models. Introduction Software Development Life Cycle Models The Software Development Life Cycle (SDLC) is the entire Software Development Life Cycle Model is an abstract process of formal, logical steps taken to develop a software representation of a development process. SDLC models can be product. Within the broader context of Application Lifecycle categorized as: Management (ALM), the SDLC
    [Show full text]
  • Sysml Distilled: a Brief Guide to the Systems Modeling Language
    ptg11539604 Praise for SysML Distilled “In keeping with the outstanding tradition of Addison-Wesley’s techni- cal publications, Lenny Delligatti’s SysML Distilled does not disappoint. Lenny has done a masterful job of capturing the spirit of OMG SysML as a practical, standards-based modeling language to help systems engi- neers address growing system complexity. This book is loaded with matter-of-fact insights, starting with basic MBSE concepts to distin- guishing the subtle differences between use cases and scenarios to illu- mination on namespaces and SysML packages, and even speaks to some of the more esoteric SysML semantics such as token flows.” — Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory “The power of a modeling language, such as SysML, is that it facilitates communication not only within systems engineering but across disci- plines and across the development life cycle. Many languages have the ptg11539604 potential to increase communication, but without an effective guide, they can fall short of that objective. In SysML Distilled, Lenny Delligatti combines just the right amount of technology with a common-sense approach to utilizing SysML toward achieving that communication. Having worked in systems and software engineering across many do- mains for the last 30 years, and having taught computer languages, UML, and SysML to many organizations and within the college setting, I find Lenny’s book an invaluable resource. He presents the concepts clearly and provides useful and pragmatic examples to get you off the ground quickly and enables you to be an effective modeler.” — Thomas W. Fargnoli, Lead Member of the Engineering Staff, Lockheed Martin “This book provides an excellent introduction to SysML.
    [Show full text]
  • UML 2 Activity and Action Models
    JOURNAL OF OBJECT TECHNOLOGY Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003 Vol. 2, No. 4, July-August 2003 UML 2 Activity and Action Models Conrad Bock, National Institute of Standards and Technology This is the first in a series introducing the activity model in the Unified Modeling Language, version 2 (UML 2), and how it integrates with the action model [1]. The series is a companion to the standard, providing additional background, rationale, examples, and introducing concepts in a logical order. This article covers motivation and architecture for the new models, basic aspects of UML 2 activities and actions, and introduces the general notion of behavior in UML 2. 1 BACKGROUND A focus of recent developments in UML has been on procedures and processes. UML 1.5 introduced a model for parameterized procedures defined by control and data flow to complement the existing state and interaction models [2]. For the first time UML supports first-class procedures that can be used as methods on objects or independently of objects, as occurs when modeling, for example, function libraries with popular programming languages. It also facilitates application of UML by modelers who do not use object-orientation (OO) routinely, such as system engineers and enterprise modelers, and provides them a path to incrementally adopt OO as needed [3]. The flexibility to combine OO with functional approaches considerably widens and integrates the potential applications of UML. UML 1.1 UML 1.3 UML 1.5 UML 2.0 1997 1999 2001 2003 Figure 1: UML Timeline UML 1.5 also inherited from earlier versions a form of state machine that was notationally modified to appear as a flow diagram, called the activity diagram.
    [Show full text]
  • Introduction OMG Systems Modeling Language (OMG Sysml™) and OOSEM Tutorial by Abe Meilich, Ph.D
    Introduction OMG Systems Modeling Language (OMG SysML™) and OOSEM Tutorial By Abe Meilich, Ph.D. [email protected] Acknowledged National Defense Industrial Association Original Authors: 9th Annual Systems Engineering Conference Sanford Friedenthal San Diego, CA Alan Moore October 23, 2006 Rick Steiner Copyright © 2006 by Object Management Group. Published and used by INCOSE and affiliated societies with permission. Caveat • These materials have been modified slightly from the original Tutorial given at INCOSE 2006 – Softcopy of Full Tutorial available at : http://www.omgsysml.org/SysML-Tutorial-Baseline-to-INCOSE- 060524-low_res.pdf • This material is based on version 1.0 of the SysML specification (ad-06-03-01) – Adopted by OMG in May ’06 – Going through finalization process • OMG SysML Website – http://www.omgsysml.org/ 11 July 2006 Copyright © 2006 by Object Management Group. 2 Objectives & Intended Audience At the end of this tutorial, you should understand the: • Benefits of model driven approaches to systems engineering • Types of SysML diagrams and their basic constructs • Cross-cutting principles for relating elements across diagrams • Relationship between SysML and other Standards • Introduction to principles of a OO System Engineering Method This course is not intended to make you a systems modeler! You must use the language. Intended Audience: • Practicing Systems Engineers interested in system modeling – Already familiar with system modeling & tools, or – Want to learn about systems modeling • Software Engineers who want to express systems concepts • Familiarity with UML is not required, but it will help 11 July 2006 Copyright © 2006 by Object Management Group. 3 Topics • Motivation & Background • Diagram Overview • SysML Modeling as Part of SE Process • OOSEM – Enhanced Security System Example • SysML in a Standards Framework • Transitioning to SysML • Summary 11 July 2006 Copyright © 2006 by Object Management Group.
    [Show full text]