Solutions Are in the Genes

Total Page:16

File Type:pdf, Size:1020Kb

Solutions Are in the Genes ANNUAL REPORT 2012 • 2013 SOLUTIONS ARE IN THE GENES www.genomequebec.com WHICH WOMEN ARE MORE AT RISK OF DEVELOPING BREAST CANCER? Development of a decision-making support tool that VISION will help extend the benefits of the current screening Genomics is a driving force critical program to those women most at risk for breast cancer. to Québec’s future. To learn more, visit genomequebec.com Jacques Simard, Université Laval and Centre hospitalier universitaire de Québec TABLE OF CONTENTS CHOOSING THE BEST MEDICATION FOR EPILEPSY 2 MESSAGE FROM THE CHAIRMAN OF THE BOARD Development of a pharmacogenomic tool for the 3 more accurate diagnosis of various forms of epilepsy, MESSAGE FROM THE PRESIDENT AND CEO particularly those that are drug resistant. Improved diagnoses mean better quality of life for patients. 4 5 SCIENTIFIC ACTIVITY REPORT To learn more, visit genomequebec.com ACTIVITY REPORT FOR THE TECHNOLOGY CENTRES 6 McGill University and Génome Québec Innovation Centre Patrick Cossette, Centre hospitalier universitaire 7 Génome Québec and Centre hospitalier affilié de l’Université de Montréal (CHUM) universitaire régional de Chicoutimi Biobank Corporate information For more information, please contact the Public Affairs 7 CARTaGENE and Communications Department at 514-398-0668 or BETTER TREATMENT OF CARDIOVASCULAR DISEASES Louise Thibault by e-mail at [email protected] 8 10 ACTIVITY REPORT FROM PUBLIC AFFAIRS Head office Génome Québec AND COMMUNICATIONS 630 René-Lévesque Blvd. West, Suite 2660 Montréal, Québec H3B 1S6 Development of pharmacogenomic tests to render 514-398-0668 • Fax 514-398-0883 more effective the management of patients with 11 FINANCIAL ACTIVITY REPORT [email protected] cardiovascular diseases. Among their many benefits, www.genomequebec.com these decision-support tools, developed for health Auditors–KPMG LLP FINANCIAL STATEMENTS professionals, would improve treatments while 600 de Maisonneuve Blvd. West, Suite 1500 Statements of Financial Position Montréal, Québec H3A 0A3 reducing negative effects. 12 www.kpmg.ca 13 Statements of Operations Legal adviser–Me Jean Brunet To learn more, visit genomequebec.com Stein Monast, S.E.N.C.R.L • 70 Dalhousie Street, Suite 300 Québec, Québec G1K 4B2 14 15 MEMBERS OF THE BOARD OF DIRECTORS, Jean-Claude Tardif, Montreal Heart Institute, Université de Montréal Genome Canada COMMITTEES AND EMPLOYEES 150 Metcalfe Street, Suite 2100, Ottawa, Ontario K2P 1P1 www.genomecanada.ca 16 LARGE-SCALE PROJECT OUTCOMES Ministère de l’Enseignement supérieur, de la Recherche, MANAGING BLOOD CANCERS de la Science et de la Technologie 1035 De La Chevrotière Street, Québec, Québec G1R 5A5 17 ASSESSMENT OF COMPLETED PROJECTS www.mesrst.gouv.qc.ca Breakthrough improvement in the effectiveness of McGill University and Génome Québec Innovation Centre 740 Doctor Penfield Ave., Montréal, Québec H3A 1A4 immunotherapy used to treat chemo-resistant cancer 514-398-7211 • Fax 514-398-1790 by reducing sixfold the rejection rate and developing [email protected] a targeted lymphocyte transplant strategy. Génome Québec and Centre hospitalier affilié universitaire régional de Chicoutimi Biobank To learn more, visit genomequebec.com 305 St-Vallier Street, Chicoutimi, Québec G7H 5H6 514-398-7211 THANK YOU TO OUR PARTNERS [email protected] Claude Perreault, Hôpital Maisonneuve-Rosemont and the Institute for Research in Immunology and Cancer of Université de Montréal ISBN 978-2-9811988-3-9 Legal deposit–Bibliothèque et Archives nationales du Québec, Legal deposit–Library and Archives Canada, 2013 Read about the four other Genome Canada competition winners on page 5. Génome Québec Génome Québec MESSAGE FROM THE CHAIRMAN OF THE BOARD MESSAGE FROM THE PRESIDENT AND CEO This year, more than ever, Génome Québec’s actions were destined for success. To ensure the superior performance of our researchers in Genome Canada’s new Thanks to the excellent work of Québec researchers, along with access to top-notch research Personalized Health Competition, we needed to provide them with the best possible infrastructures at the McGill University and Génome Québec Innovation Centre and support support. To do so, we decided a change in approach was warranted. This meant reaching out from academic, industry and government partners, 2012-2013 has been a phenomenal year for to clinicians, patient groups, regulatory bodies and health agencies to build ties with them and genomic research here in Québec. harmonize their respective interests and objectives, at the same time meeting the requirements My vision since taking the helm of the Génome Québec board in June 2011 has been to make of the national competition. genomics accessible to society. This year, transforming this vision into a reality meant providing Our new approach proved to be on target, since Québec-based research teams garnered 60 percent Martin Godbout, researchers with proactive support in preparing their funding requests for the Génome Canada-CIHR of the national funding available. This all-time record clearly demonstrates Québec’s leadership Marc LePage, Chairman of the board competition in personalized health by moving closer to the medical community, foundations, patient in personalized medicine. President and CEO “Our organization must groups and, ultimately, to citizens. Of course, this success would not have been possible without the backing of the Québec government. “At the beginning of the year, implement the necessary For example, we played the role of an intermediary, connecting philanthropic foundations with In these difficult, unpredictable economic times, it had the foresight and courage to lend us its unwavering the team at Génome Québec measures to make discoveries Génome Québec-funded research groups. We did this by taking part in a major fundraising campaign support, as evidenced by the $34.2 million in funding it allocated to our organization. This sum, combined identified three broad and applications accessible for the Leukodystrophies Foundation and developing a partnership with the Grand défi Pierre Lavoie, with investments from the federal government and private partners, amounted to a total of close priorities. The first was to to users. Our goal is to make which will result in specific research activities in coming years. Through our involvement, genomics to $100 million, which will be used to develop personalized health care in Québec. succeed in the Genomics sure key partners grasp the is helping these organizations reach their goals of identifying and validating genes responsible for and Personalized Health McGILL UNIVERSITY AND GÉNOME QUÉBEC INNOVATION CENTRE importance and seize the genetic diseases, so that the development process of new drugs can move along more quickly. Competition launched by opportunities afforded by A few years ago, we made the informed decision to combine both the expertise and infrastructures Genome Canada and the IMPROVING ACCESS TO DISCOVERIES AND APPLICATIONS of the McGill University and Génome Québec Innovation Centre, a move that has allowed us to genomics, so it may continue Canadian Institutes of The year 2013-2014 will be critical for us, as we continue to develop our partnerships. Our pivotal boost the quality of our analytical services and reduce our costs per unit. It proved to be a wise to be a central component Health Research. The second role as facilitator and hub of the research and innovation life sciences ecosystem has been validated: decision indeed, since we are now serving over 800 research teams, both here in Québec and around of Québec’s strategic policies.” we must support researchers in securing funds, both at the national and international levels. More the world. was to secure financing and the third was to strengthen specifically, Génome Québec counts on building stronger ties with industry through the new Having the capacity to provide services to the entire scientific community has always been a priority the positioning of the McGill Genomic Applications Partnership Program (GAPP). for us, in keeping with the principle of universal access to genomics. In our view, the Innovation Centre University and Génome It is vital to ensure that discoveries emerging from genomics are accessible to the public and that is a prized asset that broadens the international influence of genomics, of research and ultimately applications are promptly integrated into sectors where they are needed: human health, agri-food, of Québec. For this reason, it should be considered a valuable calling card to be fully leveraged in Québec Innovation Centre. the environment and forestry. The potential of genomics must be fully exploited for the benefits of the promotion of our researchers abroad. I take personal satisfaction users and the public. in the fact that it’s ‘mission OUR FOCUS AND STRATEGIES FOR THE FUTURE I wish to take this opportunity to thank the members of the board, as well as the Québec and accomplished’ on all fronts. Canadian governments, for helping to make genomics one of the pillars of our economic and social The challenges that lie ahead represent amazing growth opportunities for Génome Québec, in Here are some of the development. I also extend heartfelt thanks to our President and CEO, Marc LePage, for his efforts in particular as regards the integration of genomic applications into our healthcare systems. To that end, year’s highlights.” achieving Génome Québec’s objectives this year. we will be launching a clinical genomic platform in Québec, a Canadian
Recommended publications
  • Gene-By-Environment Interactions in Urban Populations Modulate Risk Phenotypes
    ARTICLE DOI: 10.1038/s41467-018-03202-2 OPEN Gene-by-environment interactions in urban populations modulate risk phenotypes Marie-Julie Favé1,2, Fabien C. Lamaze1, David Soave1, Alan Hodgkinson2,3, Héloïse Gauvin2,4, Vanessa Bruat1,2, Jean-Christophe Grenier 1,2, Elias Gbeha1, Kimberly Skead1, Audrey Smargiassi5, Markey Johnson6, Youssef Idaghdour7 & Philip Awadalla1,2,8,9 Uncovering the interaction between genomes and the environment is a principal challenge of 1234567890():,; modern genomics and preventive medicine. While theoretical models are well defined, little is known of the G × E interactions in humans. We used an integrative approach to compre- hensively assess the interactions between 1.6 million data points, encompassing a range of environmental exposures, health, and gene expression levels, coupled with whole-genome genetic variation. From ∼1000 individuals of a founder population in Quebec, we reveal a substantial impact of the environment on the transcriptome and clinical endophenotypes, overpowering that of genetic ancestry. Air pollution impacts gene expression and pathways affecting cardio-metabolic and respiratory traits, when controlling for genetic ancestry. Finally, we capture four expression quantitative trait loci that interact with the environment (air pollution). Our findings demonstrate how the local environment directly affects disease risk phenotypes and that genetic variation, including less common variants, can modulate individual’s response to environmental challenges. 1 Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada. 2 Sainte-Justine Research Center, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1C5, Canada. 3 Department of Medical and Molecular Genetics, Guy’s Hospital, King’s College London, London, WC2R 2LS, UK.
    [Show full text]
  • ÉTUDES MÉDIATISÉES DANS LES MÉDIAS ET SUR LE WEB Édition Du 30 Janvier 2013
    Direction de la recherche du CHU Sainte-Justine ÉTUDES MÉDIATISÉES DANS LES MÉDIAS ET SUR LE WEB Édition du 30 janvier 2013 September 28, 2012 Study of Dr. Gregor Andelfinger and Dr. Marc-Phillip Hitz Major genetic discovery explains 10 percent of aortic valve disease READ THE PRESS RELEASE Researchers at the Sainte-Justine University Hospital Center and University of Montreal have identified genetic origins in 10% of an important form of congenital heart diseases by studying the genetic variability within families. "This is more than the sum of the genes found to date in all previous studies, which explained only 1% of the disease, says Dr. Marc-Phillip Hitz, lead author of the study published in PLoS Genetics, under the direction of Dr. Gregor Andelfinger, pediatric cardiologist and principal investigator leading an international research team, who calls this study "a very important step towards a molecular catalog, which ultimately may explain the evolution of disease in individual patients and allow to influence the progression of the disease." MEDIA COVERAGE : Genome Québec Science Daily Continental News UdeMNouvelles Medical X Press AlphaGalileo Biospace Bioscholar Muckrack Healthfitnessok Breakthrough Digest Medical News Cours de médecine (5979 personnes suivent cette page sur Facebook) October 31, 2012 Study of Dr. Grant Mitchell Confirmation of nitisinone efficacy for life-threatening liver disease READ THE PRESS RELEASE A consortium of Quebec researchers coordinated by the Medical Genetics Service of the Sainte- Justine UHC has just published the findings of a 25-year study on the treatment of tyrosinemia, a life-threatening liver disease of genetic origin, which is screened at birth in the province of Quebec, where it is much more frequent than anywhere else in the world.
    [Show full text]
  • Consent Environment and Nutrition
    The world within you Information brochure for participants ENVIRONMENT AND NUTRITION COMPONENT Production of this brochure has been made possible through a finacial contribution from Health Canada, through the Canadian Partneship Against Cancer. Introduction CARTaGENE, a research infrastructure consisting of a database and a biobank of biological samples, was designed to facilitate research in the field of health and genomics. Purpose of this Recontact CARTaGENE is again seeking your collaboration for a new component called “Environment and Nutrition.” This new component will allow CARTaGENE to add data to its database and thus provide new data for health and genomics research. This new component will allow the collection of detailed information on your eating habits and exposure to the environment. Environment and Nutrition We now know that the food we consume and the environment where we live are related to our state of health. However, we still know relatively little about these relationships and their impact on the health of individuals. The Environment and Nutrition component aims to increase our knowledge on this subject. The Environment and Nutrition component is divided into two modules. The Environment module comes first, and the Nutrition module will follow. Your consent given for the first phase of CARTaGENE’s data and sample collection included this option to be recontacted for further studies. The Environment and Nutrition component is such a study. Your participation remains voluntary however. Before making your decision, it is important that you read this brochure and the consent forms included so as to understand the implications of participating in either or both modules of this component.
    [Show full text]
  • 2012–2017 Priorities for Public Health Genomics Stakeholder Consultation | Priorities Conference Report | September 2011 2012–2017
    PRIORITIES FOR PUBLIC HEALTH GENOMICS GENOMICS HEALTH PUBLIC FOR PRIORITIES 2012–2017 PRIORITIES FOR PUBLIC HEALTH GENOMICS STAKEHOLDER CONSULTATION | PRIORITIES CONFERENCE REPORT | SEPTEMBER 2011 2012–2017 PRIORITIES FOR PUBLIC HEALTH GENOMICS 2012–2017 STAKEHOLDER CONSULTATION | PRIORITIES CONFERENCE REPORT SEPTEMBER 2011 Funding for this project was made possible by the Centers for Disease Control and prevention through McKing Consulting Corporation, contract 200-2009-F-32675. The contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC. PREFACE Priorities for Public Health Genomics 2012–2017 This report results from an initiative of the Office of Public Health Genomics, Centers for Disease Control and Prevention (CDC/OPHG) to recommend priorities to advance the field of public health genomics during the five year period 2012–2017. CDC/OPHG initiated three activities to develop these priority recommendations: (1) an extensive consultation of public health genomics stakeholders conducted by the Center for Public Health and Community Genomics at the University of Michi- gan School of Public Health , including a) analysis of a Request for Information (RFI) issued by the Department of Health and Human Services/ CDC, b) interviews of key informants from the public health system and c) informal discussions with community- and practice-based public health practitioners; (2) interviews of key informants from the non-profit and for-profit sectors conducted by Genetic Alliance; and (3) an all-day meeting held in Bethesda, MD on September 14, 2011, attended by over 70 leaders in the field of public health genomics, based in academic institutions, public health and health care organizations, and community-based organizations.
    [Show full text]
  • Thèse Numérique
    Université de Montréal The French Canadian founder population: lessons and insights for genetic epidemiological research par Héloïse Gauvin Département de médecine sociale et préventive École de Santé publique Thèse présentée à l’École de Santé Publique en vue de l’obtention du grade de Philosophiae Doctor (PhD) en Santé Publique option Épidémiologie Août 2015 © Héloïse Gauvin, 2015 Université de Montréal Faculté des études supérieures et postdoctorales Cette thèse intitulée : The French Canadian founder population: lessons and insights for genetic epidemiological research présentée par : Héloïse Gauvin a été évaluée par un jury composé des personnes suivantes : Dr. Anne-Marie Laberge, président-rapporteur Dr. Philip Awadalla, directeur de recherche Dr. Marie-Pierre Dubé, codirectrice de recherche Dr. Marie-Élise Parent, membre de jury Dr. Marc Tremblay, examinateur externe Dr. Guillaume Lettre, représentant du doyen de la FES Résumé La population canadienne-française a une histoire démographique unique faisant d’elle une population d’intérêt pour l’épidémiologie et la génétique. Cette thèse vise à mettre en valeur les caractéristiques de la population québécoise qui peuvent être utilisées afin d’améliorer la conception et l’analyse d’études d’épidémiologie génétique. Dans un premier temps, nous profitons de la présence d’information généalogique détaillée concernant les Canadiens français pour estimer leur degré d’apparentement et le comparer au degré d’apparentement génétique. L’apparentement génétique calculé à partir du partage génétique identique par ascendance est corrélé à l’apparentement généalogique, ce qui démontre l'utilité de la détection des segments identiques par ascendance pour capturer l’apparentement complexe, impliquant entre autres de la consanguinité.
    [Show full text]
  • Challenges and Promises of Big Data in Healthcare
    FOCUS | REVIEW ARTICLE FOCUS | REVIEWhttps://doi.org/10.1038/s41591-019-0727-5 ARTICLE Axes of a revolution: challenges and promises of big data in healthcare Smadar Shilo1,2,3,4, Hagai Rossman 1,2,4 and Eran Segal 1,2* Health data are increasingly being generated at a massive scale, at various levels of phenotyping and from different types of resources. Concurrent with recent technological advances in both data-generation infrastructure and data-analysis methodolo- gies, there have been many claims that these events will revolutionize healthcare, but such claims are still a matter of debate. Addressing the potential and challenges of big data in healthcare requires an understanding of the characteristics of the data. Here we characterize various properties of medical data, which we refer to as ‘axes’ of data, describe the considerations and tradeoffs taken when such data are generated, and the types of analyses that may achieve the tasks at hand. We then broadly describe the potential and challenges of using big data in healthcare resources, aiming to contribute to the ongoing discussion of the potential of big data resources to advance the understanding of health and disease. ealth has been defined as “a state of complete physical, on the volume of data needed for a dataset to be considered big5, mental and social well-being and not merely the absence of other definitions are qualitative, focusing on the size or complexity disease or infirmity”1. This definition may be expanded to of data that are too large to be properly analyzed by traditional data- H 6 view health not as a single state but rather as a dynamic process analysis methods .
    [Show full text]
  • Genetic Determinants of Fat Intake and Risk Factors of Chronic Diseases
    Genetic determinants of fat intake and risk factors of chronic diseases Tongzhu Meng School of Human Nutrition McGill Univeristy Montreal, Quebec, Canada August 2020 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science ¤ Tongzhu Meng, 2020 i TABLE OF CONTENTS TITLE PAGE………………………………………………………………………………….i TABLE OF CONTENTS…………………………………………………………….……....ii ABSTRACT……………………………………………………………………………….....iii RÉSUMÉ……………………………………………………………………………………...v ACKNOWLEDGMENTS……………………………………………………………….....vii CONTRIBUTION OF AUTHORS………………………………………………………..viii LIST OF TABLES……………………………………………………………………….......ix LIST OF FIGURES………………………………………………………………………......x LIST OF ABBREVIATIONS……………………………………………………………….xi CHAPTER 1: RATIONALE AND OBJECTIVES ….………………………………….....1 1.1 Rationale…………………………………………………………………………………2 1.2 Hypotheses ………………………………………………………………………………4 1.3 Objectives …………………………………………………………………………….....4 CHAPTER 2: LITERATURE REVIEW…………………………………………………....5 2.1 General taste……………………………………………………………………………..6 2.2 Taste physiology………………………………………………………………………....7 2.2.1 The taste system and taste bud cell types………………………………………...7 2.2.2 Signaling mechanisms of taste perception……………………………………...11 2.3 Fat taste…………………………………………………………………………………12 2.3.1 Fat taste receptor………………………………………………………………..13 2.3.2 Fat, diet and adiposity…………………………………………………………..15 2.3.3 Measurements of the oral fatty acid threshold, fat perception, fatty food liking...19 2.4 Types of fat and lipid absorption ……………………………….………………………20
    [Show full text]
  • Platform Abstracts
    American Society of Human Genetics 66th Annual Meeting October 18–22, 2016 VANCOUVER, CANADA PLATFORM ABSTRACTS Tuesday, October 18, 5:00-6:20 pm: Abstract #’s Friday, October 21, 9:00-10:30 am, Concurrent Platform Session D: 2 Featured Plenary Abstract Session I Ballroom ABC, #1-#4 48 Mapping Cancer Susceptibility Alleles Ballroom A, West #189-#194 West Building Building 49 The Genetics of Type 2 Diabetes and Glycemic Ballroom B, West #195-#200 Wednesday, October 19, 9:00-10:30 am, Concurrent Platform Session A: Traits Building 6 Interpreting Variants of Uncertain Significance Ballroom A, West #5-#10 50 Chromatin Architecture, Fine Mapping, and Ballroom C, West #201-#206 Building Disease Building 7 Insights from Large Cohorts: Part 1 Ballroom B, West #11-#16 51 Inferring the Action of Natural Selection Room 109, West #207-#212 Building Building 8 Rare Germline Variants and Cancer Risk Ballroom C, West #17-#22 52 The Many Twists of Single-gene Cardiovascu- Room 119, West #213-#218 Building lar Disorders Building 9 Early Detection: New Approaches to Pre- and Room 109, West #23-#28 53 Friends or Foes? Interactions of Hosts and Room 207, West #219-#224 Perinatal Analyses Building Pathogens Building 10 Advances in Characterizing the Genetic Basis Room 119, West #29-#34 54 Novel Methods for Analyzing GWAS and Room 211, West #225-#230 of Autism Building Sequencing Data Building 11 New Discoveries in Skeletal Disorders and Room 207, West #35-#40 55 From Gene Discovery to Mechanism in Room 221, West #231-#236 Syndromic Abnormalities Building
    [Show full text]
  • Investigating the Causal Role of MRE11A P.E506* in Breast and Ovarian Cancer Islam E
    www.nature.com/scientificreports OPEN Investigating the causal role of MRE11A p.E506* in breast and ovarian cancer Islam E. Elkholi1,2, Massimo Di Iorio3,4,5, Somayyeh Fahiminiya6, Suzanna L. Arcand6, HyeRim Han7, Clara Nogué7, Supriya Behl4,8, Nancy Hamel6, Sylvie Giroux9, Manon de Ladurantaye10, Olga Aleynikova11, Walter H. Gotlieb12,13, Jean‑François Côté1,2,14,15, François Rousseau9, Patricia N. Tonin4,6,16, Diane Provencher10,17, Anne‑Marie MesMasson10,15, Mohammad R. Akbari18,19, Barbara Rivera3,5,7* & William D. Foulkes3,4,5,6 The nuclease MRE11A is often included in genetic test panels for hereditary breast and ovarian cancer (HBOC) due to its BRCA1‑related molecular function in the DNA repair pathway. However, whether MRE11A is a true predisposition gene for HBOC is still questionable. We determined to investigate this notion by dissecting the molecular genetics of the c.1516G > T;p.E506* truncating MRE11A variant, that we pinpointed in two unrelated French‑Canadian (FC) HBOC patients. We performed a case–control study for the variant in ~ 2500 breast, ovarian, and endometrial cancer patients from the founder FC population of Quebec. Furthermore, we looked for the presence of second somatic alterations in the MRE11A gene in the tumors of the carriers. In summary, these investigations suggested that the identifed variant is not associated with an increased risk of developing breast or ovarian cancer. We fnally performed a systematic review for all the previously reported MRE11A variants in breast and ovarian cancer. We found that MRE11A germline variants annotated as pathogenic on ClinVar often lacked evidence for such classifcation, hence misleading the clinical management for afected patients.
    [Show full text]
  • Relaxed Selection During a Recent Human Expansion 20 Keywords: Range Expansion, Quebec, Mutation Load, Genetic Drift 21 * Equal Contribution
    Genetics: Early Online, published on November 29, 2017 as 10.1534/genetics.117.300551 1 Relaxed selection during a recent human 2 expansion 3 4 5 Peischl, S.1,2,3*, Dupanloup, I.1,2,4*, Foucal, A.1,2, Jomphe, M.5, Bruat, V.6, Grenier, J.-C.6, Gouy, A. 1,2, 6 Gilbert, K.J. 1,2, Gbeha, E.6, Bosshard, L.1,2, Hip-Ki, E.6, Agbessi,M.6, Hodgkinson, A.6,7, Vézina, H.5, 7 Awadalla, P.6,8, and Excoffier, L.1,2 8 1 9 CMPG, Institute of Ecology an Evolution, University of Berne, 3012 Berne, Switzerland 2 10 Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland 3 11 Interfaculty Bioinformatics Unit, University of Berne, 3012 Berne, Switzerland 12 4 Swiss Integrative Center for Human Health SA, 1700 Fribourg, Switzerland 5 13 Balsac Project, University of Quebec at Chicoutimi, Saguenay, Canada 6 14 Hôpital Ste-Justine, University of Montréal, Montréal, Canada 7 15 Department of Medical and Molecular Genetics, Guy's Hospital, King’s College London, London, UK 8 16 Ontario Institute for Cancer Research, Department of Molecular Genetics, University of Toronto, 17 Toronto Canada 18 19 Running title: Relaxed selection during a recent human expansion 20 Keywords: range expansion, Quebec, mutation load, genetic drift 21 * Equal contribution 22 Correspondence 23 Stephan Peischl & Laurent Excoffier 24 CMPG, Institute of Ecology and Evolution 25 University of Berne 26 Baltzerstrasse 6 27 3012 Berne, Switzerland 28 Email: [email protected] 29 [email protected] Copyright 2017. 30 Abstract 31 Humans have colonized the planet through a series of range expansions, which deeply impacted 32 genetic diversity in newly settled areas and potentially increased the frequency of deleterious mutations 33 on expanding wave fronts.
    [Show full text]
  • RAPPORT ANNUEL Du Centre De Recherche Du CHU De Québec - Université Laval 2016-2017
    RAPPORT ANNUEL du Centre de recherche du CHU de Québec - Université Laval 2016-2017 Table des matières MESSAGE DU PRÉSIDENT DU CONSEIL D’ADMINISTRATION ET DE LA PRÉSIDENTE- DIRECTRICE GÉNÉRALE DU CHU DE QUÉBEC ‒ UNIVERSITÉ LAVAL...................................... 4 MESSAGE DE LA VICE-RECTRICE À LA RECHERCHE, À LA CRÉATION ET À L’INNOVATION DE L’UNIVERSITÉ LAVAL ............................................................................................................... 5 MESSAGE DU DIRECTEUR DU CENTRE DE RECHERCHE .......................................................... 6 LA VISION, LA MISSION, LES VALEURS, LES OBJECTIFS .......................................................... 9 ORGANIGRAMME .......................................................................................................................... 10 STRUCTURE DU CENTRE DE RECHERCHE ................................................................................ 11 Bureau de direction du Centre de recherche ..................................................................................................13 Comité de gestion ..............................................................................................................................................13 INDICATEURS DES ACTIVITÉS DE RECHERCHE ....................................................................... 14 ENDOCRINOLOGIE ET NÉPHROLOGIE ....................................................................................... 16 Prix, reconnaissances et distinctions des chercheurs ..................................................................................16
    [Show full text]
  • Leena Palotie-Peltonen, 1952&Ndash;2010
    European Journal of Human Genetics (2010) 18, 624–625 & 2010 Macmillan Publishers Limited All rights reserved 1018-4813/10 $32.00 www.nature.com/ejhg OBITUARY Leena Palotie-Peltonen, 1952–2010, visionary and role model Gert-Jan van Ommen1 European Journal of Human Genetics (2010) 18, 624–625; doi:10.1038/ejhg.2010.58 PhD and postgraduate networks as a part of Finnish, Nordic, European and transatlantic consortia and centres of excellence. Leena Peltonen started her career in Oulu, did her postdoctoral at Rutgers University, New Jersey, and returned to the National Institute of Public Health in Helsinki, becoming a professor at 39 years in 1991. Her main focus was the ‘Finnish Disease Heritage’, a group of ca. 40 rare recessive diseases including inborn errors of metabolism, collagen disorders, skin and eye diseases, enriched in Finland due to its unusual demographics: small groups of settlers, carrying limited sets of rare mutations, who populated 2000 years ago, as she would say, ‘the edge of the inhabitable world’. She has elucidated the causative genes and mechanisms behind two dozen of these, and assisted with finding the rest. This has allowed proper screening and counselling for those patients and families afflicted with these diseases, but ironically and to her disappointment, her very Finland lacks such a programme as yet. Leena Peltonen was a tireless ambassador of genetic studies in population isolates. Her vision and flamboyance, raising and employ- ing public awareness to the special field named ‘Finnish genetics’, has helped in developing Finland as one of the most advanced places worldwide in human medical genetics.
    [Show full text]