Antarctic Heterobranch Molluscs: Diving Into Their Challenging Ecology, Taxonomy, and Systematics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H. -
Diversity of Norwegian Sea Slugs (Nudibranchia): New Species to Norwegian Coastal Waters and New Data on Distribution of Rare Species
Fauna norvegica 2013 Vol. 32: 45-52. ISSN: 1502-4873 Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species Jussi Evertsen1 and Torkild Bakken1 Evertsen J, Bakken T. 2013. Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna norvegica 32: 45-52. A total of 5 nudibranch species are reported from the Norwegian coast for the first time (Doridoxa ingolfiana, Goniodoris castanea, Onchidoris sparsa, Eubranchus rupium and Proctonotus mucro- niferus). In addition 10 species that can be considered rare in Norwegian waters are presented with new information (Lophodoris danielsseni, Onchidoris depressa, Palio nothus, Tritonia griegi, Tritonia lineata, Hero formosa, Janolus cristatus, Cumanotus beaumonti, Berghia norvegica and Calma glau- coides), in some cases with considerable changes to their distribution. These new results present an update to our previous extensive investigation of the nudibranch fauna of the Norwegian coast from 2005, which now totals 87 species. An increase in several new species to the Norwegian fauna and new records of rare species, some with considerable updates, in relatively few years results mainly from sampling effort and contributions by specialists on samples from poorly sampled areas. doi: 10.5324/fn.v31i0.1576. Received: 2012-12-02. Accepted: 2012-12-20. Published on paper and online: 2013-02-13. Keywords: Nudibranchia, Gastropoda, taxonomy, biogeography 1. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Corresponding author: Jussi Evertsen E-mail: [email protected] IntRODUCTION the main aims. -
Metagenetic Analysis of 2017 Plankton Samples from Prince William Sound, Alaska
Metagenetic Analysis of 2017 Plankton Samples from Prince William Sound, Alaska. Report to Prince William Sound Regional Citizens’ Advisory Council (PWSRCAC) From Molecular Ecology Laboratory Moss Landing Marine Laboratory Dr. Jonathan Geller Melinda Wheelock Martin Guo Any opinions expressed in this PWSRCAC-commissioned report are not necessarily those of PWSRCAC. December 1, 2018 Revised August 15, 2019 Abstract This report describes the methods and findings of the metagenetic analysis of plankton samples from the waters of Prince William Sound (PWS), Alaska. The study was done to identify zooplankton, in particular the larvae of invasive benthic species. Plankton samples, collected by the Prince William Sound Science Center (PWSSC), were analyzed by the Molecular Ecology Laboratory at the Moss Landing Marine Laboratories. The samples were taken from five stations in May of 2017 in Port Valdez and elsewhere in PWS. DNA was extracted from bulk plankton and a portion of the mitochondrial Cytochrome c oxidase subunit 1 gene, the most commonly used DNA barcode for animals, was amplified by polymerase chain reaction (PCR). Products of PCR were sequenced using Illumina reagents and MiSeq instrument. 211 operational taxonomic units (an approximation of biological species) were found and 52 were identified to species. Most species were crustaceans and molluscs, and none were non-native. We also compared PWSRCAC samples taken in 2016 to the current set of samples. Fewer species were identified in 2017 than in 2016, but sampling methods varied across years. Standardization of methods and a longer time series are necessary to investigate temporal trends. Page 1 of 17 952.431.190815.MLMetagenetic Introduction Monitoring marine habitat for species of concern, including invasive species, can be costly and time-consuming, which limits the information available to resource managers, scientists, and the public. -
Nueva Especie De Notodiaphana Thiele, 1931 Del Océano Atlántico Y
Rev. Acad. Canar. Cicnc, Vol. XXV, 15-24 (diciembre de 2013) NUEVA ESPECIE DE Notodiaphana THIELE, 1931 DEL OCEANO ATLANTICO Y NUEVA UBICACION GENERICA PARA^s alayoi ESPINOSA & ORTEA, 2004 (GASTROPODA: OPISTHOBRANCHIA: CEPHALASPIDEA) 1 2 3 J. Ortea , L. Moro & J. Espinosa 1 Profesor jubilado, Departamento BOS, Universidad de Oviedo. Oviedo, Espana 2 Servicio de Biodiversidad, Gobierno de Canarias, Edif. Usos Multiples I Av. Anaga n° 35, PI. 11, 38071 Tenerife, Islas Canarias [email protected] 3 a Instituto de Oceanologia, Avda. l n° 18406, E. 184 y 186, Playa, La Habana, Cuba [email protected] RESUMEN Se describe la primera especie atlantica del genero Notodiaphana Thiele, 1931 a par- tir de ejemplares colectados en Bahamas, Cuba y Canarias. Asimismo, se propone un nuevo genero para Atys alayoi Espinosa & Ortea, 2004, un pequeno cefalaspideo del mar Caribe. Palabras clave: Mollusca, Cephalaspidea, Notodiaphana, nueva especie, nuevo ge- nero, oceano Atlantico, mar Caribe. ABSTRACT We describe the first species of the genus Notodiaphana Thiele, 1931, in the Atlantic Ocean from specimens collected in the Bahamas, Cuba and the Canary Islands, and proposes a new genus for Atys alayoi Espinosa and Ortea, 2004, a small Caribbean Sea cephalaspidean. Key words: Mollusca, Cephalaspidea, Notodiaphana, new species, new genus, At- lantic Ocean, Caribbean Sea. 1. INTRODUCCION El genero Notodiaphana Thiele, 1917, fue introducido por THIELE [17] para la espe- cie Bulla fragilis Velain, 1877, descrita originalmente por VELAIN [22] a partir de un ejem- plar de 2'5 x 1 mm (fig. 1) colectado bajo piedras durante la bajamar, en el interior de un crater de la isla Saint Paul, en el oceano Indico Sur. -
The Malacological Society of London
ACKNOWLEDGMENTS This meeting was made possible due to generous contributions from the following individuals and organizations: Unitas Malacologica The program committee: The American Malacological Society Lynn Bonomo, Samantha Donohoo, The Western Society of Malacologists Kelly Larkin, Emily Otstott, Lisa Paggeot David and Dixie Lindberg California Academy of Sciences Andrew Jepsen, Nick Colin The Company of Biologists. Robert Sussman, Allan Tina The American Genetics Association. Meg Burke, Katherine Piatek The Malacological Society of London The organizing committee: Pat Krug, David Lindberg, Julia Sigwart and Ellen Strong THE MALACOLOGICAL SOCIETY OF LONDON 1 SCHEDULE SUNDAY 11 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 2:00-6:00 pm Registration - Merrill Hall 10:30 am-12:00 pm Unitas Malacologica Council Meeting - Merrill Hall 1:30-3:30 pm Western Society of Malacologists Council Meeting Merrill Hall 3:30-5:30 American Malacological Society Council Meeting Merrill Hall MONDAY 12 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 7:30-8:30 am Breakfast - Crocker Dining Hall 8:30-11:30 Registration - Merrill Hall 8:30 am Welcome and Opening Session –Terry Gosliner - Merrill Hall Plenary Session: The Future of Molluscan Research - Merrill Hall 9:00 am - Genomics and the Future of Tropical Marine Ecosystems - Mónica Medina, Pennsylvania State University 9:45 am - Our New Understanding of Dead-shell Assemblages: A Powerful Tool for Deciphering Human Impacts - Sue Kidwell, University of Chicago 2 10:30-10:45 -
Nudipleura Bathydorididae Bathydoris Clavigera AY165754 2064 AY427444 1383 AF249222 445 AF249808 599
!"#$"%&'"()*&**'+),#-"',).+%/0+.+()-,)12+),",1+.)$./&3)1/),+-),'&$,)45&("3'+&.-6) !"#$%&'()*"%&+,)-"#."%)-'/%0(%1/'2,3,)45/6"%7/')89:0/5;,)8/'(7")<=)>(5#&%?)@)A(BC"/5)DBC'E752,3 +F/G"':H/%:)&I)A"'(%/)JB&#K#:/H#)FK%"H(B#,)4:H&#GC/'/)"%7)LB/"%)M/#/"'BC)N%#.:$:/,)OC/)P%(Q/'#(:K)&I)O&RK&,)?S+S?) *"#C(T"%&C",)*"#C(T",)UC(V")2WWSX?Y;,)Z"G"%=)2D8D-S-"Q"'("%)D:":/)U&55/B.&%)&I)[&&5&1K,)A9%BCC"$#/%#:'=)2+,)X+2;W) A9%BC/%,)</'H"%K=)3F/G"':H/%:)-(&5&1K)NN,)-(&[/%:'$H,)\$7T(1SA"6(H(5("%#SP%(Q/'#(:]:,)<'&^C"7/'%/'#:'=)2,)X2+?2) _5"%/11SA"'.%#'(/7,)</'H"%K`);D8D-S-"Q"'("%)D:":/)U&55/B.&%)&I)_"5/&%:&5&1K)"%7)</&5&1K,)</&V(&)U/%:/')\AP,) M(BC"'7S>"1%/'SD:'=)+a,)Xa333)A9%BC/%,)</'H"%K`)?>/#:/'%)4$#:'"5("%)A$#/$H,)\&BR/7)-"1);b,)>/5#CG&&5)FU,)_/':C,) >4)YbXY,)4$#:'"5("=))U&''/#G&%7/%B/)"%7)'/c$/#:#)I&')H":/'("5#)#C&$57)V/)"77'/##/7):&)!=*=)d/H"(5e)R"%&f"&'(=$S :&RK&="B=gGh) 7&33'+8+#1-.9)"#:/.8-;/#<) =-*'+)7>?)8$B5/&.7/)#/c$/%B/#)&I)G'(H/'#)$#/7)I&')"HG5(iB".&%)"%7)#/c$/%B(%1 =-*'+)7@?)<"#:'&G&7)#G/B(/#)"%7)#/c$/%B/#)$#/7)(%):C/)GCK5&1/%/.B)'/B&%#:'$B.&%)&I)/$:CK%/$'"%)B5"7/#)(%B5$7(%1) M(%1(B$5&(7/" A"$&.+)7>?)M46A\):'//#)V"#/7)&%)I&$'S1/%/)7":"#/:)T(:C&$:)&%/)&I):T&)H"g&')%$7(G5/$'"%)#$VB5"7/#e)d"h)8$7(V'"%BC(") d!"#$%&'()*+"%7),-.)/)&"h)"%7)dVh)_5/$'&V'"%BC&(7/")d0.-1('2("34$1*+"%7)5'/#$'/6*'3)"h= A"$&.+)7@?)O(H/SB"5(V'":/7)-J4DO):'//#)T(:C&$:)&%/)&I)I&$')B"5(V'".&%)G'(&'#e)d"h)i'#:)#G5(:)T(:C(%)J$&G(#:C&V'"%BC(")"%7) dVh)#G5(:#)V/:T//%)7"(%4$)1/)"%7)8/-"9'.)"%7)dBh)V/:T//%):)39)41.'6*)*)"%7):C'//)&:C/')'(%1(B$5(7#= A"$&.+)7B?)A'-"K/#):'//)V"#/7)&%)I&$'S1/%/)7":"#/:= -
Chemistry of the Nudibranch Aldisa Andersoni: Structure and Biological Activity of Phorbazole Metabolites
Mar. Drugs 2012, 10, 1799-1811; doi:10.3390/md10081799 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Chemistry of the Nudibranch Aldisa andersoni: Structure and Biological Activity of Phorbazole Metabolites Genoveffa Nuzzo 1, Maria Letizia Ciavatta 1,*, Robert Kiss 2, Véronique Mathieu 2, Helene Leclercqz 2, Emiliano Manzo 1, Guido Villani 1, Ernesto Mollo 1, Florence Lefranc 3, Lisette D’Souza 4, Margherita Gavagnin 1 and Guido Cimino 1 1 CNR, Instituto di Chimica Biomolecolare, Via Campi Flegrei 34, I-80078 Pozzuoli, Naples, Italy; E-Mails: [email protected] (G.N.); [email protected] (E.M.); [email protected] (G.V.); [email protected] (E.M.); [email protected] (M.G.); [email protected] (G.C.) 2 Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, 1050, Brussels, Belgium; E-Mails: [email protected] (R.K.); [email protected] (V.M.); [email protected] (H.L.) 3 Service de Neurochirurgie, Hôpital Erasme, ULB, Route de Lennik, 1070 Brussels, Belgium; E-Mail: [email protected] 4 CSIR—National Institute of Oceanography, 403 004 Dona Paula, Goa, India; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-081-867-5243; Fax: +39-081-804-1770. Received: 25 June 2012; in revised form: 18 July 2012 / Accepted: 8 August 2012 / Published: 20 August 2012 Abstract: The first chemical study of the Indo-Pacific dorid nudibranch Aldisa andersoni resulted in the isolation of five chlorinated phenyl-pyrrolyloxazoles belonging to the phorbazole series. -
Achatina Fulica and Archachatina Marginata Was Sampled in the Littoral, Center and West Regions of Cameroon
Central Journal of Veterinary Medicine and Research Research Article *Corresponding author Prisca Meffowoet, Faculty of Agronomy and Agricul- tural Sciences, University of Dschang, Dschang, Tel: Infestation rate of African 699366311/676879291; Email: [email protected] Submitted: 25 March 2020 giant snails (Achatina fulica Accepted: 02 April 2020 Published: 06 April 2020 ISSN: 2379-948X and Archachatina marginata) by Copyright © 2020 Prisca MC, et al. parasites during the rainy season OPEN ACCESS Keywords • Cameroon in three localities of Cameroon • African giant snails • Parasites Meffowoet CP1*, Kouam KM1, Kana JR2, and Tchakounte FM2 1Animal Physiology and Health Research Unit, University of Dschang, Cameroon 2Animal Nutrition and Production Research Unit, University of Dschang, Cameroon Abstract This study was designed during the rainy season in order to identify the parasites likely to infest edible snails. 360 Achatina fulica and Archachatina marginata was sampled in the Littoral, Center and West regions of Cameroon. After macroscopic observation of snails, the hepatopancreas, digestive tract, sex organs, slime and haemolymph were isolated. These samples were examined using the flotation techniques and direct rubbing. Of the 360 snails sampled, 213 (59.3%) were infested, that is 147 (82.1%) for A. marginata and 66 (36.7%) for A. fulica respectively. The highest infestation rate was recorded on protozoans (41.4%) followed by nematode (24.7%). The most represented parasites were Trichodina achatinae (23.9%) and Strongyloides stercoralis (16.1%); while the least represented were cyst of Balantidium coli (8.1%), Enteromonas sp. (8.1%), cyst of Isospora sp. (7.8%), larva of Protostrongylus sp. (7.5%), cyst of Cryptosporidium sp. -
Anuário Do Instituto De Geociências - UFRJ
Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br As Famílias Veneridae, Trochidae, Akeridae e Acteonidae (Mollusca), na Formação Romualdo: Aspectos Paleoecológicos e Paleobiogeográicos no Cretáceo Inferior da Bacia do Araripe, NE do Brasil The Families Veneridae, Trochidae, Akeridae and Acteonidae (Mollusca), in the Romualdo Formation: Paleoecological and Paleobiogeographic Aspects in the Lower Cretaceous of the Araripe Basin, NE of Brazil Priscilla Albuquerque Pereira1; Rita de Cassia Tardin Cassab2 & Alcina Magnólia Franca Barreto1 1Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, Departamento de Geologia, Laboratório de Paleontologia, Av. Hélio Acadêmico Ramos, s/n, Cidade Universitária, 50740-533, Recife, PE, Brasil 2 Universidade Federal do Rio de Janeiro, Instituto de Geociências, Departamento de Geologia, Avenida Athos da Silveira Ramos, 274, 21910-900, Cidade Universitária, Ilha do Fundão, s/n, Rio de Janeiro, Rio de Janeiro-RJ, Brasil E-mail: [email protected]; [email protected]; [email protected] Recebido em: 18/07/2018 Aprovado em: 21/09/2018 DOI: http://dx.doi.org/10.11137/2018_3_137_152 Resumo Moluscos fósseis na Bacia Sedimentar do Araripe são relatados desde a década de 1960, com biválvios presentes nas forma- ções Crato, Romualdo e gastrópodos, restritos a Formação Romualdo. A identiicação e descrição desses moluscos tem auxiliado na reconstituição paleoambiental da Formação Romualdo (Aptiano-Albiano) e na interpretação da rota de incursão marinha que aponta para inluência do mar de Tétis na bacia. Este trabalho, descreve e ilustra fósseis coletados nas localidades de Zé Gomes, Cedro/ Tabuleiro e Santo Antônio município de Exu, Pernambuco, pontuando a paleoecologia e a distribuição paleogeográica dos gêneros, além de observar as ainidades faunísticas entre as formaçõe Romualdo e Riachuelo. -
A Blind Abyssal Corambidae (Mollusca, Nudibranchia) from the Norwegian Sea, with a Reevaluation of the Systematics of the Family
A BLIND ABYSSAL CORAMBIDAE (MOLLUSCA, NUDIBRANCHIA) FROM THE NORWEGIAN SEA, WITH A REEVALUATION OF THE SYSTEMATICS OF THE FAMILY ÁNGEL VALDÉS & PHILIPPE BOUCHET VALDÉS, ÁNGEL & PHILIPPE BOUCHET 1998 03 13. A blind abyssal Corambidae (Mollusca, Nudibranchia) SARSIA from the Norwegian Sea, with a reevaluation of the systematics of the family. – Sarsia 83:15-20. Bergen. ISSN 0036-4827. Echinocorambe brattegardi gen. et sp. nov. is described based on five eyeless specimens collected between 2538 and 3016 m depth in the Norwegian Sea. This new monotypic genus differs from other confamilial taxa in having the dorsum covered with long papillae and a radula formula n.3.1.3.n. The posterior notch in the notum and gill morphology, which have traditionally been used as generic characters in the family Corambidae, are considered to have little or no taxonomical value above species level. Instead of the currently described 11 nominal genera, we recognize as valid only Corambe and Loy, to which is now added Echinocorambe. Loy differs from Corambe in the asym- metrical lobes of the posterior notal notch and the presence of spicules in the notum. All other nominal genera are objective or subjective synonyms of these two. Ángel Valdés, Departamento de Biología de Organismos y Sistemas, Laboratorio de Zoología, Universidad de Oviedo, E-33071 Oviedo, Spain (E-mail: [email protected]). – Philippe Bouchet, Muséum National d’Histoire Naturelle, Laboratoire de Biologie des Invertébrés Marins et Malacologie, 55 Rue de Buffon, F-75005 Paris, France. KEYWORDS: Mollusca; Nudibranchia; Corambidae; new genus and new species; abyssal waters; Norwegian Sea. cal with transverse lamellae. -
“Opisthobranchia”! a Review on the Contribution of Mesopsammic Sea Slugs to Euthyneuran Systematics
Thalassas, 27 (2): 101-112 An International Journal of Marine Sciences BYE BYE “OPISTHOBRANCHIA”! A REVIEW ON THE CONTRIBUTION OF MESOPSAMMIC SEA SLUGS TO EUTHYNEURAN SYSTEMATICS SCHRÖDL M(1), JÖRGER KM(1), KLUSSMANN-KOLB A(2) & WILSON NG(3) Key words: Mollusca, Heterobranchia, morphology, molecular phylogeny, classification, evolution. ABSTRACT of most mesopsammic “opisthobranchs” within a comprehensive euthyneuran taxon set. During the last decades, textbook concepts of “Opisthobranchia” have been challenged by The present study combines our published morphology-based and, more recently, molecular and unpublished topologies, and indicates that studies. It is no longer clear if any precise distinctions monophyletic Rhodopemorpha cluster outside of can be made between major opisthobranch and Euthyneura among shelled basal heterobranchs, acte- pulmonate clades. Worm-shaped, mesopsammic taxa onids are the sister to rissoellids, and Nudipleura such as Acochlidia, Platyhedylidae, Philinoglossidae are the basal offshoot of Euthyneura. Furthermore, and Rhodopemorpha were especially problematic in Pyramidellidae, Sacoglossa and Acochlidia cluster any morphology-based system. Previous molecular within paraphyletic Pulmonata, as sister to remaining phylogenetic studies contained a very limited sampling “opisthobranchs”. Worm-like mesopsammic hetero- of minute and elusive meiofaunal slugs. Our recent branch taxa have clear independent origins and thus multi-locus approaches of mitochondrial COI and 16S their similarities are the result of convergent evolu- rRNA genes and nuclear 18S and 28S rRNA genes tion. Classificatory and evolutionary implications (“standard markers”) thus included representatives from our tree hypothesis are quite dramatic, as shown by some examples, and need to be explored in more detail in future studies. (1) Bavarian State Collection of Zoology. Münchhausenstr. -
Nudibranch Range Shifts Associated with the 2014 Warm Anomaly in the Northeast Pacific
Bulletin of the Southern California Academy of Sciences Volume 115 | Issue 1 Article 2 4-26-2016 Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific Jeffrey HR Goddard University of California, Santa Barbara, [email protected] Nancy Treneman University of Oregon William E. Pence Douglas E. Mason California High School Phillip M. Dobry See next page for additional authors Follow this and additional works at: https://scholar.oxy.edu/scas Part of the Marine Biology Commons, Population Biology Commons, and the Zoology Commons Recommended Citation Goddard, Jeffrey HR; Treneman, Nancy; Pence, William E.; Mason, Douglas E.; Dobry, Phillip M.; Green, Brenna; and Hoover, Craig (2016) "Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific," Bulletin of the Southern California Academy of Sciences: Vol. 115: Iss. 1. Available at: https://scholar.oxy.edu/scas/vol115/iss1/2 This Article is brought to you for free and open access by OxyScholar. It has been accepted for inclusion in Bulletin of the Southern California Academy of Sciences by an authorized editor of OxyScholar. For more information, please contact [email protected]. Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific Cover Page Footnote We thank Will and Ziggy Goddard for their expert assistance in the field, Jackie Sones and Eric Sanford of the Bodega Marine Laboratory for sharing their observations and knowledge of the intertidal fauna of Bodega Head and Sonoma County, and David Anderson of the National Park Service and Richard Emlet of the University of Oregon for sharing their respective observations of Okenia rosacea in northern California and southern Oregon.